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Interesting Experimental Results with 
Deep Architectures 

  Beating shallow neural networks on vision and NLP tasks 

  Beating SVMs on visions tasks from pixels (and handling dataset 
sizes that SVMs cannot handle in NLP) 

  Reaching or beating state-of-the-art performance in NLP 

  Beating deep neural nets without unsupervised component 

  Learn visual features similar to V1 and V2 neurons 



Deep Motivations 
  Brains have a deep architecture 

  Humans organize their ideas hierarchically, through 
composition of simpler ideas 

  Unsufficiently deep architectures can be exponentially 
inefficient 

 Distributed (possibly sparse) representations necessary to 
achieve non-local generalization, exponentially more efficient 
than 1-of-N enumeration latent variable values 

 Multiple levels of latent variables allow combinatorial sharing of 
statistical strength 



Architecture Depth 

Depth = 3 Depth = 4 



Deep Architectures are More Expressive 

Theoretical arguments: 

… 
1 2 3 2n 

1 2 3 
… 

n 

= universal approximator 2 layers of 
Logic gates 
Formal neurons 
RBF units 

Theorems for all 3: 
(Hastad et al 86 & 91, Bengio et al 2007) 

Functions compactly 
represented with k layers 
may require exponential 
size with k-1 layers 



Deep Architectures and Sharing 
Statistical Strength, Multi-Task Learning 

 Generalizing better to new 
tasks is crucial to approach 
AI 

 Deep architectures learn 
good intermediate 
representations that can be 
shared across tasks 

 A good representation is one 
that makes sense for many 
tasks 

raw input x 

task 1  
output y1 

task 3  
output y3 

task 2 
output y2 

shared 
intermediate 
representation h 



Feature and 
Sub-Feature Sharing 

 Different tasks can share the same 
high-level feature 

 Different high-level features can be 
built from the same set of lower-level 
features 

 More levels = up to exponential gain 
in representational efficiency … 

… 

… 

… 

… 

task 1  
output y1 

task N  
output yN 

High-level features 

Low-level features 



Sharing Components in a Deep Architecture 

Polynomial expressed 
with shared components:  

advantage of depth may 
grow exponentially 



The Deep Breakthrough 
  Before 2006, training deep architectures was unsuccessful, 

except for convolutional neural nets 

  Hinton, Osindero & Teh « A Fast Learning Algorithm for Deep 
Belief Nets », Neural Computation, 2006 

  Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise 
Training of Deep Networks », NIPS’2006 

  Ranzato, Poultney, Chopra, LeCun « Efficient Learning of 
Sparse Representations with an Energy-Based Model », 
NIPS’2006 



Greedy Layer-Wise Pre-Training 

Stacking Restricted Boltzmann Machines (RBM)  Deep Belief Network (DBN) 



Greedy Layer-Wise Unsupervised 
Pre-Training Algorithm 

  Train unsupervised feature extractor (e.g. RBM, auto-encoder) 
mapping input x to representation h1, capturing main factors of 
variation in x (models P(x)) 

  Taking h1(x) as an input, train a second unsupervised feature 
extractor, obtaining representation h2 of x 

  Etc. to level k gives hk 

  Plug a supervised classifier P(Y|hk(x)) on top, taking hk as input 

  Fine-tune parameters of whole system P(Y|x) wrt supervised 
objective 



Restricted Boltzman Machine 

  The most popular 
building block for deep 
architectures      
(Smolensky 86, Hinton 2002) 

  Bipartite undirected 
graphical model 

  h~P(h|x), or (P(hi=1|x)) 
are representations of x 

      

observed 

hidden 



Gibbs Sampling in RBMs 

P(h|x) and P(x|h) factorize 

 h1 ~ P(h|x1)  

 x2 ~ P(x|h1)   x3 ~ P(x|h2)   x1 

 h2 ~ P(h|x2)   h3 ~ P(h|x3)  

  Easy inference 

 Convenient Gibbs sampling 
xhxh…  



Training RBMs 
Contrastive Divergence:  

(CD-k) 
start negative Gibbs chain at 
observed x, run k Gibbs steps 

Persistent CD: 
(PCD)  

run negative Gibbs chain in 
background while weights slowly 
change 

Fast PCD: two sets of weights, one with a large 
learning rate only used for negative 
phase, quickly exploring modes 

Herding: (see Max Welling’s ICML, UAI and 
ICML workshop talks) 

Tempered MCMC: use higher temperature to escape 
modes 



Contrastive Divergence 
Contrastive Divergence (CD-k): start negative phase block 
Gibbs chain at observed x, run k Gibbs steps (Hinton 2002) 

Sampled x’ 
negative phase 

Observed x 
positive phase 

 h ~ P(h|x)  h’ ~ P(h|
x’) 

k = 2 steps 

x x’ 

Free Energy 

push down 

push up 



Deep Convolutional Architectures 
Mostly from Le Cun’s  (NYU) and Ng’s (Stanford) groups:  
state-of-the-art on MNIST digits, Caltech-101 objects, faces 



Convolutional DBNs 
(Lee et al, ICML’2009) 



Deep Boltzman Machines 
(Salakhutdinov et al, AISTATS 2009, Lee et al, ICML 2009) 

  Positive phase: variational 
approximation (mean-field)  

 Negative phase: persistent chain 

 Can (must) initialize from stacked RBMs 

  Improved performance on MNIST from 
1.2% to .95% error 

 Can apply AIS with 2 hidden layers observed x 

h1 

h2 

h3 



Why are Classifiers Obtained from 
DBNs Working so Well? 

 General principles? 

 Would these principles work for other single-level algorithms? 

 Why does it work? 



Stacking Auto-Encoders 



Greedy Layerwise Supervised Training 

Generally worse than unsupervised pre-training but better than 
ordinary training of a deep neural network (Bengio et al. 2007). 



Supervised Fine-Tuning is Important 
 Greedy layer-wise 

unsupervised pre-training 
phase with RBMs or auto-
encoders on MNIST 

  Supervised phase with or 
without unsupervised 
updates, with or without 
fine-tuning of hidden 
layers 

 Can train all RBMs at the 
same time, same results 



Level-Local Learning is Important 

  Initializing each layer of an unsupervised deep Boltzmann 
machine helps a lot  

  Initializing each layer of a supervised neural network as an RBM 
or auto-encoder helps a lot 

  Helps most the layers further away from the target 

  Jointly training all the levels of a deep architecture is difficult 



Replacing RBMs by Other Layer-
Local Unsupervised Learning 

 Auto-encoders (Bengio et al, NIPS’2006) 

  Sparse auto-encoders (Ranzato et al, NIPS’2006) 

  Kernel PCA (Erhan 2008) 

 Denoising auto-encoders (Vincent et al, ICML’2008) 

  Unsupervised embedding (Weston et al, ICML’2008) 

  Slow features (Mohabi et al, ICML’2009, Bergstra & Bengio 
NIPS’2009) 



Sparse Auto-Encoders 

  Sparsity penalty on the intermediate codes 

  Like sparse coding but with efficient run-time encoder 

  Sparsity penalty pushes up the free energy of all configurations 
(proxy for minimizing the partition function) 

  Impressive results in object classification (convolutional nets): 

•  MNIST             0.5% error    = record-breaking 

•  Caltech-101 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)     

  Similar results obtained with a convolutional DBN (Lee et al, ICML’2009) 

(Ranzato et al, 2007; Ranzato et al 2008) 



Denoising Auto-Encoder 

 Corrupt the input 

  Reconstruct the uncorrupted input 

KL(reconstruction | raw input) 
Hidden code (representation) 

Corrupted input Raw input reconstruction 

(Vincent et al, ICML 2008) 



Denoising Auto-Encoder 
  Learns a vector field towards 

higher probability regions 

 Minimizes variational lower bound 
on a generative model 

  Similar to pseudo-likelihood 

Corrupted input 

Corrupted input 



Stacked Denoising Auto-Encoders 

 No partition function, 
can measure training 
criterion 

  Encoder & decoder: 
any parametrization 

  Performs as well or 
better than stacking 
RBMs for usupervised 
pre-training 

Infinite MNIST 



Why is Unsupervised Pre-Training 
Working So Well? 

  Regularization hypothesis:  
•  Unsupervised component forces model close to P(x) 

•  Representations good for P(x) are good for P(y|x)  

 Optimization hypothesis: 
•  Unsupervised initialization near better local minimum of P(y|x) 

•  Can reach lower local minimum otherwise not achievable by 
random initialization 



Learning Trajectories in Function Space 
  Each point a model 

in function space 

 Color = epoch 

  Top: trajectories      
w/o pre-training 

  Each trajectory 
converges in 
different local min. 

 No overlap of 
regions with and     
w/o pre-training 



Unsupervised Learning as Regularizer 
 Adding extra regularization 

(reducing # hidden units) 
hurts more the pre-trained 
models 

  Pre-trained models have 
less variance wrt training 
sample 

  Regularizer = infinite 
penalty outside of region 
compatible with 
unsupervised pre-training 



Better Optimization of Online Error 

  Both training and online error 
are smaller with unsupervised 
pre-training 

 As # samples             
training err. = online err. = 
generalization err. 

 Without unsup. pre-training: 
can’t exploit capacity to 
capture complexity in target 
function from training data 



Learning Dynamics of Deep Nets 

Before fine-tuning After fine-tuning 



Learning Dynamics of Deep Nets 
 As weights become larger, get 

trapped in basin of attraction 
(“quadrant” does not change) 

  Initial updates have a crucial 
influence (“critical period”), 
explain more of the variance 

  Unsupervised pre-training initializes 
in basin of attraction with good 
generalization properties 

0



Order & Selection of Examples Matters 

 Curriculum learning  
(Bengio et al, ICML’2009; Krueger & Dayan 2009)   

  Start with easier examples 

  Faster convergence to a better local 
minimum in deep architectures 

 Also acts like a regularizer with 
optimization effect? 

  Influencing learning dynamics can 
make a big difference 



Take-Home Messages 
 Multiple levels of latent variables: potentially exponential gain 

in statistical sharing 

  RBMs allow fast inference, stacked RBMs / auto-encoders have 
fast approximate inference 

 Gibbs sampling in RBMs sometimes does not mix well, but 
sampling and learning can interact in surprisingly useful ways 

  Unsupervised pre-training of classifiers acts like a strange 
regularizer with improved optimization of online error 

 At least as important as the model: the inference 
approximations and the learning dynamics 



Research Program 

  Unsupervised pre-training is good but we want more 

  Understand why gradient-based optimization of lower layers of 
deep supervised architecture gets stuck 

  Is it the same reason that global coordination fails in deep 
Boltzmann machines? 

  Is it related to problem with recurrent nets and dynamic Bayes 
net failing with long-term dependencies? Important to capture 
contextual effects in sequential data such as video and text. 

 Applications to information retrieval: 



Deep Representations for 
Information Retrieval 

  Sparsity to help computational & representational efficiency 
•  Combine semantic hashing idea (make representation gradually 

nearly binary) with sparse code penalty (reduced cost of measuring 
similarity between objects) 

•  Allow effective number of non-zeros to vary per example 
(representational efficiency) 

 Combining supervised (ranking) & unsupervised criteria online 
•  Current training process with phases not practical with huge 

datasets = online 
  Put different modalities (image, query) in the same space 

•  May actually help each other during training 

•  Learn a distributed representation of requests to generalize across 
rarely occuring requests 



Thank you for your attention! 
 Questions? 

 Comments? 


