
Learning Deep Hierarchies of
Representations
Yoshua Bengio, U. Montreal

Google Research, Mountain View, California

September 23rd, 2009

Thanks to: Aaron Courville, Pascal Vincent, Dumitru Erhan, Olivier Delalleau,
 Olivier Breuleux, Yann LeCun, Guillaume Desjardins, Pascal Lamblin,

 James Bergstra, Nicolas Le Roux, Max Welling, Myriam Côté,
 Jérôme Louradour, Ronan Collobert, Jason Weston

Interesting Experimental Results with
Deep Architectures

  Beating shallow neural networks on vision and NLP tasks

  Beating SVMs on visions tasks from pixels (and handling dataset
sizes that SVMs cannot handle in NLP)

  Reaching or beating state-of-the-art performance in NLP

  Beating deep neural nets without unsupervised component

  Learn visual features similar to V1 and V2 neurons

Deep Motivations
  Brains have a deep architecture

  Humans organize their ideas hierarchically, through
composition of simpler ideas

  Unsufficiently deep architectures can be exponentially
inefficient

 Distributed (possibly sparse) representations necessary to
achieve non-local generalization, exponentially more efficient
than 1-of-N enumeration latent variable values

 Multiple levels of latent variables allow combinatorial sharing of
statistical strength

Architecture Depth

Depth = 3 Depth = 4

Deep Architectures are More Expressive

Theoretical arguments:

…
1 2 3 2n

1 2 3
…

n

= universal approximator 2 layers of
Logic gates
Formal neurons
RBF units

Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al 2007)

Functions compactly
represented with k layers
may require exponential
size with k-1 layers

Deep Architectures and Sharing
Statistical Strength, Multi-Task Learning

 Generalizing better to new
tasks is crucial to approach
AI

 Deep architectures learn
good intermediate
representations that can be
shared across tasks

 A good representation is one
that makes sense for many
tasks

raw input x

task 1
output y1

task 3
output y3

task 2
output y2

shared
intermediate
representation h

Feature and
Sub-Feature Sharing

 Different tasks can share the same
high-level feature

 Different high-level features can be
built from the same set of lower-level
features

 More levels = up to exponential gain
in representational efficiency …

…

…

…

…

task 1
output y1

task N
output yN

High-level features

Low-level features

Sharing Components in a Deep Architecture

Polynomial expressed
with shared components:

advantage of depth may
grow exponentially

The Deep Breakthrough
  Before 2006, training deep architectures was unsuccessful,

except for convolutional neural nets

  Hinton, Osindero & Teh « A Fast Learning Algorithm for Deep
Belief Nets », Neural Computation, 2006

  Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise
Training of Deep Networks », NIPS’2006

  Ranzato, Poultney, Chopra, LeCun « Efficient Learning of
Sparse Representations with an Energy-Based Model »,
NIPS’2006

Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM)  Deep Belief Network (DBN)

Greedy Layer-Wise Unsupervised
Pre-Training Algorithm

  Train unsupervised feature extractor (e.g. RBM, auto-encoder)
mapping input x to representation h1, capturing main factors of
variation in x (models P(x))

  Taking h1(x) as an input, train a second unsupervised feature
extractor, obtaining representation h2 of x

  Etc. to level k gives hk

  Plug a supervised classifier P(Y|hk(x)) on top, taking hk as input

  Fine-tune parameters of whole system P(Y|x) wrt supervised
objective

Restricted Boltzman Machine

  The most popular
building block for deep
architectures
(Smolensky 86, Hinton 2002)

  Bipartite undirected
graphical model

  h~P(h|x), or (P(hi=1|x))
are representations of x

observed

hidden

Gibbs Sampling in RBMs

P(h|x) and P(x|h) factorize

 h1 ~ P(h|x1)

 x2 ~ P(x|h1) x3 ~ P(x|h2) x1

 h2 ~ P(h|x2) h3 ~ P(h|x3)

  Easy inference

 Convenient Gibbs sampling
xhxh…

Training RBMs
Contrastive Divergence:

(CD-k)
start negative Gibbs chain at
observed x, run k Gibbs steps

Persistent CD:
(PCD)

run negative Gibbs chain in
background while weights slowly
change

Fast PCD: two sets of weights, one with a large
learning rate only used for negative
phase, quickly exploring modes

Herding: (see Max Welling’s ICML, UAI and
ICML workshop talks)

Tempered MCMC: use higher temperature to escape
modes

Contrastive Divergence
Contrastive Divergence (CD-k): start negative phase block
Gibbs chain at observed x, run k Gibbs steps (Hinton 2002)

Sampled x’
negative phase

Observed x
positive phase

 h ~ P(h|x) h’ ~ P(h|
x’)

k = 2 steps

x x’

Free Energy

push down

push up

Deep Convolutional Architectures
Mostly from Le Cun’s (NYU) and Ng’s (Stanford) groups:
state-of-the-art on MNIST digits, Caltech-101 objects, faces

Convolutional DBNs
(Lee et al, ICML’2009)

Deep Boltzman Machines
(Salakhutdinov et al, AISTATS 2009, Lee et al, ICML 2009)

  Positive phase: variational
approximation (mean-field)

 Negative phase: persistent chain

 Can (must) initialize from stacked RBMs

  Improved performance on MNIST from
1.2% to .95% error

 Can apply AIS with 2 hidden layers observed x

h1

h2

h3

Why are Classifiers Obtained from
DBNs Working so Well?

 General principles?

 Would these principles work for other single-level algorithms?

 Why does it work?

Stacking Auto-Encoders

Greedy Layerwise Supervised Training

Generally worse than unsupervised pre-training but better than
ordinary training of a deep neural network (Bengio et al. 2007).

Supervised Fine-Tuning is Important
 Greedy layer-wise

unsupervised pre-training
phase with RBMs or auto-
encoders on MNIST

  Supervised phase with or
without unsupervised
updates, with or without
fine-tuning of hidden
layers

 Can train all RBMs at the
same time, same results

Level-Local Learning is Important

  Initializing each layer of an unsupervised deep Boltzmann
machine helps a lot

  Initializing each layer of a supervised neural network as an RBM
or auto-encoder helps a lot

  Helps most the layers further away from the target

  Jointly training all the levels of a deep architecture is difficult

Replacing RBMs by Other Layer-
Local Unsupervised Learning

 Auto-encoders (Bengio et al, NIPS’2006)

  Sparse auto-encoders (Ranzato et al, NIPS’2006)

  Kernel PCA (Erhan 2008)

 Denoising auto-encoders (Vincent et al, ICML’2008)

  Unsupervised embedding (Weston et al, ICML’2008)

  Slow features (Mohabi et al, ICML’2009, Bergstra & Bengio
NIPS’2009)

Sparse Auto-Encoders

  Sparsity penalty on the intermediate codes

  Like sparse coding but with efficient run-time encoder

  Sparsity penalty pushes up the free energy of all configurations
(proxy for minimizing the partition function)

  Impressive results in object classification (convolutional nets):

•  MNIST 0.5% error = record-breaking

•  Caltech-101 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)

  Similar results obtained with a convolutional DBN (Lee et al, ICML’2009)

(Ranzato et al, 2007; Ranzato et al 2008)

Denoising Auto-Encoder

 Corrupt the input

  Reconstruct the uncorrupted input

KL(reconstruction | raw input)
Hidden code (representation)

Corrupted input Raw input reconstruction

(Vincent et al, ICML 2008)

Denoising Auto-Encoder
  Learns a vector field towards

higher probability regions

 Minimizes variational lower bound
on a generative model

  Similar to pseudo-likelihood

Corrupted input

Corrupted input

Stacked Denoising Auto-Encoders

 No partition function,
can measure training
criterion

  Encoder & decoder:
any parametrization

  Performs as well or
better than stacking
RBMs for usupervised
pre-training

Infinite MNIST

Why is Unsupervised Pre-Training
Working So Well?

  Regularization hypothesis:
•  Unsupervised component forces model close to P(x)

•  Representations good for P(x) are good for P(y|x)

 Optimization hypothesis:
•  Unsupervised initialization near better local minimum of P(y|x)

•  Can reach lower local minimum otherwise not achievable by
random initialization

Learning Trajectories in Function Space
  Each point a model

in function space

 Color = epoch

  Top: trajectories
w/o pre-training

  Each trajectory
converges in
different local min.

 No overlap of
regions with and
w/o pre-training

Unsupervised Learning as Regularizer
 Adding extra regularization

(reducing # hidden units)
hurts more the pre-trained
models

  Pre-trained models have
less variance wrt training
sample

  Regularizer = infinite
penalty outside of region
compatible with
unsupervised pre-training

Better Optimization of Online Error

  Both training and online error
are smaller with unsupervised
pre-training

 As # samples 
training err. = online err. =
generalization err.

 Without unsup. pre-training:
can’t exploit capacity to
capture complexity in target
function from training data

Learning Dynamics of Deep Nets

Before fine-tuning After fine-tuning

Learning Dynamics of Deep Nets
 As weights become larger, get

trapped in basin of attraction
(“quadrant” does not change)

  Initial updates have a crucial
influence (“critical period”),
explain more of the variance

  Unsupervised pre-training initializes
in basin of attraction with good
generalization properties

0

Order & Selection of Examples Matters

 Curriculum learning
(Bengio et al, ICML’2009; Krueger & Dayan 2009)

  Start with easier examples

  Faster convergence to a better local
minimum in deep architectures

 Also acts like a regularizer with
optimization effect?

  Influencing learning dynamics can
make a big difference

Take-Home Messages
 Multiple levels of latent variables: potentially exponential gain

in statistical sharing

  RBMs allow fast inference, stacked RBMs / auto-encoders have
fast approximate inference

 Gibbs sampling in RBMs sometimes does not mix well, but
sampling and learning can interact in surprisingly useful ways

  Unsupervised pre-training of classifiers acts like a strange
regularizer with improved optimization of online error

 At least as important as the model: the inference
approximations and the learning dynamics

Research Program

  Unsupervised pre-training is good but we want more

  Understand why gradient-based optimization of lower layers of
deep supervised architecture gets stuck

  Is it the same reason that global coordination fails in deep
Boltzmann machines?

  Is it related to problem with recurrent nets and dynamic Bayes
net failing with long-term dependencies? Important to capture
contextual effects in sequential data such as video and text.

 Applications to information retrieval:

Deep Representations for
Information Retrieval

  Sparsity to help computational & representational efficiency
•  Combine semantic hashing idea (make representation gradually

nearly binary) with sparse code penalty (reduced cost of measuring
similarity between objects)

•  Allow effective number of non-zeros to vary per example
(representational efficiency)

 Combining supervised (ranking) & unsupervised criteria online
•  Current training process with phases not practical with huge

datasets = online
  Put different modalities (image, query) in the same space

•  May actually help each other during training

•  Learn a distributed representation of requests to generalize across
rarely occuring requests

Thank you for your attention!
 Questions?

 Comments?

