Scaling up Deep Learning towards Al

Yoshua Bengio

October 13, 2015

IBM Cognitive Colloquium, San Francisco

Breakthrough

• Deep Learning: machine learning algorithms inspired by brains, based on learning a composition multiple transformations = levels of representation / abstraction.

Impact

Deep learning has revolutionized

- Speech recognition
- Object recognition

More on the way, including other areas of computer vision, NLP, dialogue, reinforcement learning, robotics, control...

Challenges to Scale towards AI

Computational challenge

 Reasoning, natural language understanding and knowledge representation

Large-scale unsupervised learning

Computational Scaling

- Recent breakthroughs in speech, object recognition and NLP hinged on faster computing, GPUs, and large datasets
- In speech, vision and NLP applications we tend to find that

as **Ilya Sutskever** would say

BIGGER IS BETTER

Because deep learning is

EASY TO REGULARIZE while

it is MORE DIFFICULT TO AVOID UNDERFITTING

Scaling up computation: we still have a long way to go in raw computational power

Figure: Ian Goodfellow

Low-Precision Training of Deep Nets

Courbariaux, Bengio & David, ICLR 2015 workshop

- See (Gupta et al, arXiv Feb. 2015) for a recent review
- Previous work showed that it was possible to quantize weights
 after training to obtain low-precision implementations of
 trained deep nets (8 bits or even less if you retrain and keep
 high precision at top layer)
- This work is about training with low precision
- How many bits are required?

Number of bits for computations

10 bits were selected, with dynamic fixed point

Number of bits for updating and storing weights

12 bits were selected

NIPS'2015: Single-Bit Weights

BitConnect, Courbariaux, David & Bengio, NIPS'2015

- Using stochastic rounding and 16-bit precision operations, we are able to train deep nets with weights quantized to 1 bit, i.e., we can get rid of most (2/3) multiplications
- This could have a drastic impact on hardware implementations, especially for low-power devices...

Results on MNIST

Method	Validation error rate (%)	Test error rate (%)
No regularizer	1.21 ± 0.04	1.30 ± 0.04
BinaryConnect (det.)	1.17 ± 0.02	1.29 ± 0.08
BinaryConnect (stoch.)	1.12 ± 0.03	1.18 ± 0.04
50% Dropout	0.94 ± 0.04	1.01 ± 0.04
Maxout networks [26]		0.94
Deep L2-SVM [27]		0.87

Getting Rid of the Remaining Multiplications

 The main remaining multiplications (1/3) are due to the weight update of the form

$$\Delta W_{ij} \propto \frac{\partial C}{\partial a_i} h_j$$

- It can be eliminated by quantizing h_j to powers of 2 (Simard & Graf 1994): the multiplication becomes a shift. Similarly for the learning rate.
- The quantization can also be stochastic, to preserve the expected value of the update:

$$E[\tilde{h}_j] = h_j$$

Neural Networks with Few Multiplications

ArXiv paper, 2015: Lin, Courbariaux, Memisevic & Bengio

	Full precision	Binary connect	Binary connect + Quantized backprop	Ternary connect + Quantized backprop
MNIST	1.33%	1.23%	1.29%	1.15%
CIFAR10	15.64%	12.04%	12.08%	12.01%
SVHN	2.85%	2.47%	2.48%	2.42%

Works!

Slows down training a bit but improves results by regularizing

The Language Understanding Challenge

Learning Word Semantics: a Success

 Bengio et al 2000 introduced neural language models and word vectors (word embeddings)

output

input sequence

Mikolov showed these embeddings capture analogical relations:

The Next Challenge: Rich Semantic Representations for Word Sequences

- First challenge: machine translation
- Second challenge: document understanding and question answering

Attention-Based Neural Machine Translation

Related to earlier Graves 2013 for generating handwriting

- (Bahdanau, Cho & Bengio, arXiv sept. 2014)
- (Jean, Cho, Memisevic & Bengio, arXiv dec. 2014)

End-to-End Machine Translation with Recurrent Nets and Attention Mechanism

Reached the state-of-the-art in one year, from scratch

(a) English→French (WMT-14)

	NMT(A)	Google	P-SMT
NMT	32.68	30.6*	
+Cand	33.28	_	37.03°
+UNK	33.99	32.7°	37.03
+Ens	36.71	36.9°	

(b) English \rightarrow German (WMT-15) (c) English \rightarrow Czech (WMT-15)

Model	Note	Model	Note
24.8	Neural MT	18.3	Neural MT
24.0	U.Edinburgh, Syntactic SMT	18.2	JHU, SMT+LM+OSM+Sparse
23.6	LIMSI/KIT	17.6	CU, Phrase SMT
22.8	U.Edinburgh, Phrase SMT	17.4	U.Edinburgh, Phrase SMT
22.7	KIT, Phrase SMT	16.1	U.Edinburgh, Syntactic SMT

Image-to-Text: Caption Generation

The Good

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with <u>trees</u> in the background.

And the Bad

A large white bird standing in a forest.

A woman holding a <u>clock</u> in her hand.

A man wearing a hat and a hat on a skateboard.

A person is standing on a beach with a surfboard.

A woman is sitting at a table with a large pizza.

A man is talking on his cell phone while another man watches.

Attention Mechanisms for Memory Access

- Neural Turing Machines (Graves et al 2014)
 and Memory Networks (Weston et al 2014)
- Use a form of attention mechanism to control the read and write access into a memory
- The attention mechanism outputs a softmax over memory locations

The Next Frontier: Reasoning and Question Answering

Currently working on artificial tasks, with memory networks:

Joe went to the garden then Fred picked up the milk; Joe moved to the bathroom and Fred dropped the milk, and then Dan moved to the living_room.

Where is Dan? A: living room I believe

Where is Joe? A: the bathroom

Fred moved to the bedroom and Joe went to the kitchen then Joe took the milk there and Dan journeyed to the bedroom; Joe discarded the milk.

Where is the milk now? A: the milk is in the kitchen

Where is Dan now? A: I think he is in the bedroom

Joe took the milk there, after that Mike travelled to the office, then Joe went to the living_room, next Dan went back to the kitchen and Joe travelled to the office.

Where is Joe now? A: I think Joe is in the office

From "Memory Networks", Weston et al. ICLR 2015; "End-to-end memory networks", Sukhbatar et al. NIPS'2015

Sam walks into the kitchen.
Sam picks up an apple.
Sam walks into the bedroom.
Sam drops the apple.

Q: Where is the apple?

A. Bedroom

```
Brian is a lion.
Julius is a lion.
Julius is white.
Bernhard is green.
Q: What color is Brian?
A. White
```

```
Mary journeyed to the den.
Mary went back to the kitchen.
John journeyed to the bedroom.
Mary discarded the milk.
Q: Where was the milk before the den?
```

Ongoing Project: Knowledge Extraction

- Learn to fill the memory network from natural language descriptions of facts
- Force the neural net to understand language
- Extract knowledge from documents into a usable form

Why does it work? Pushing off the Curse of Long-Term Dependencies

 Whereas LSTM memories always decay exponentially (even if slowly), a mental state stored in an external memory can stay for arbitrarily long durations, until overwritten.

The Unsupervised Learning Challenge

Unsupervised

Why Unsupervised Learning?

- Recent progress mostly in supervised DL
- Real technical challenges for unsupervised DL
- Potential benefits:
 - Exploit tons of unlabeled data
 - Answer new questions about the variables observed
 - Regularizer transfer learning domain adaptation
 - Easier optimization (local training signal)
 - Structured outputs

How do humans generalize from very few examples?

- Intelligence (good generalization) needs knowledge
- Humans transfer knowledge from previous learning:
 - Representations
 - Explanatory factors

- Previous learning from: unlabeled data
 - + labels for other tasks

Unsupervised and Transfer Learning Challenge + Transfer Learning Challenge: Won by
Unsupervised Deep Learning
SYLVESTER VALID ALC-0.07878 NIPS'2011 Transfer Raw data Learning 1 layer 2 layers Challenge Paper: ICML'2012 SYLVESTER VALID: ALC=0.8511 ICML'2011 SYLVESTER VALID: ALC=0.9316 workshop on 0.9770 0.95 Unsup. & 0.9 3 layers Transfer Learning * 0.75 Area under the ROC curve (AUC)

2.0

3.0

3.0

3.0

3.0 4 layers Log₂(Number of training examples) 0.65 Log_a(Number of training examples)

Intractable (Exponential) Barriers

- Statistical curse of dimensionality:
 - Intractable number of configurations of variables, in high dimension
- Computational curse of dimensionality:
 - Intractable normalization constants
 - Intractable (non-convex) optimization?
 - Intractable inference

Deep Generative Learning: the Hot Frontier

- Many very different approaches being explored to bypass these intractabilities
- Exploratory mode
- Exciting area of research

And the gap between Boltzmann machines and Backprop (Y. Bengio)

Connect to brains: bridge the gap to biology

DRAW (DeepMind)

LAPGAN (NYU/Facebook)

Learning Multiple Levels of Abstraction

 The big payoff of deep learning is to allow learning higher levels of abstraction

 Higher-level abstractions disentangle the factors of variation, which allows much easier generalization and

transfer

MILA: Montreal Institute for Learning Algorithms

