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Breakthrough

» Deep Learning: machine
learning algorithms inspired
by brains, based on learning
a composition multiple
transformations = levels of
representation / abstraction.



Impac!:

Deep learning has revolutionized
* Speech recognition
* Object recognition

More on the way, including other
areas of computer vision, NLP,
dialogue, reinforcement learning,
robotics, control...



Challenges to Scale towards Al

* Computational challenge

e Reasoning, natural language understanding and
knowledge representation

e Large-scale unsupervised learning



Computational Scaling

e Recent breakthroughs in speech, object recognition and NLP
hinged on faster computing, GPUs, and large datasets

e In speech, vision and NLP applications we tend to find that

as llya Sutskever would say

BIGGER IS BETTER

Because deep learning is
EASY TO REGULARIZE while
it is MORE DIFFICULT TO AVOID UNDERFITTING



Scaling up computation:
we still have a long way to g0
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Low-Precision Training of Deep Nets

Courbariaux, Bengio & David, ICLR 2015 workshop

e See (Gupta et al, arXiv Feb. 2015) for a recent review

e Previous work showed that it was possible to quantize weights
after training to obtain low-precision implementations of

trained deep nets (8 bits or even less if you retrain and keep
high precision at top layer)

e This work is about training with low precision

e How many bits are required? 12



Number of bits for computations

Normalized final test error = f(Computations bit-width, arithmetic and dataset)

L4 DYNAMIC FIXED POINT FIXED POINT

t =
w

Normalized final test error
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Computations bit-width

—»—Dynamic fixed point on Pl MNIST-#-Dynamic fixed point on MNIST —e-Dynamic fixed point on CIFAR10
—~Fixed point on PI MINIST —~Fixed point on MNIST ——Fixed point on CIFAR10

10 bits were selected, with dynamic fixed point




Number of bits for updating and
storing weights

Normalized final test error

1.1

=

o
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Normalized final test error = f(Parameters updates bit-width, arithmetic and dataset)

DYNAMIC FIXED POINT FIXED POINT

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Parameters updates bit-width

~»-Dynamic fixed point on Pl MNIST-#-Dynamic fixed point on MNIST ——Dynamic fixed point on CIFAR10
—Fixed point on PI MNIST ——Fixed point on MNIST ——Fixed point on CIFAR10
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12 bits were selected




NIPS'2015: Single-Bit Weights

BitConnect, Courbariaux, David & Bengio, NIPS’2015

e Using stochastic rounding and 16-bit precision operations, we
are able to train deep nets with weights quantized to 1 bit, i.e.,

we can get rid of most (2/3) multiplications

e This could have a drastic impact on hardware implementations,
especially for low-power devices...
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Results on MNIST

Method Validation error rate (%) Test error rate (%)
No regularizer 1.21 = 0.04 1.30 = 0.04
BinaryConnect (det.) 1.17 £ 0.02 1.29 £+ 0.08
BinaryConnect (stoch.) 1.12 4+ 0.03 1.18 £ 0.04
50% Dropout 0.94 4 0.04 1.01 4+ 0.04
Maxout networks [26] 0.94
Deep L2-SVM [27] 0.87
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Grebting Rid of the Remaining
Mut&iptica!:iows

12

g
The main remaining multiplications (1/3) are due to the weight
update of the form

oC
AW, oc —h,;
J J
8&7;
It can be eliminated by quantizing hj to powers of 2 (Simard &
Graf 1994): the multiplication becomes a shift. Similarly for the

learning rate.

The quantization can also be stochastic, to preserve the
expected value of the update:

~

Elhj] = h;



Neural Nebtworlks with Few
Mui.&i.pticakicus

e ArXiv paper, 2015: Lin, Courbariaux, Memisevic & Bengio

Binary connect +

Ternary connect +

Full precision | Binary connect Quantized backprop Quantized backprop
MNIST 1.33% 1.23% 1.29% 1.15%
CIFAR10 15.64% 12.04% 12.08% 12.01%
SVHN 2.85% 2.47% 2.48% 2.42%
=~ Full Resolution
=~ Binary Connect
Binary Connect +
Quantized BP
WO rks ! 05 ~— Ternary Connect +

Slows down training a bit but improves

results by regularizing
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The Language
Understanding
Challenge




Leariing Word Semantics: a Success

output

e Bengio et al 2000 introduced neural language models
and word vectors (word embeddings)

come
go
take
give keep
make get
meet cee continue
|'I‘Y a I]t
expect
think
say
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need help

become

remain
are .

be
wWergas

being
been

haqms

have

VYVVVV

imput sequence

Mikolov showed these embeddings
capture analogical relations:

Queen
® Woman
([
[ )
King °

Man



The Next Challenqge: Rich Semawntic
Representations f?w Word Sequences

e First challenge: machine
translation

e Second challenge: document
understanding and question
answering
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Attention-Based Neural Machine
Translation

Related to earlier Graves 2013 for generating handwriting

e (Bahdanau, Cho & Bengio, arXiv sept. 2014)
e (Jean, Cho, Memisevic & Bengio, arXiv dec. 2014)

f= (La, croissance, économique, s'est, ralentie, ces, dernicres, années, .)
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e = (Economic, growth, has, slowed, down, in, recent, years, .)

Vectors
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End-to-End Machine Translakion with
Recurrent Nebks and Atktenkion Mechawnism

e Reached the state-of-the-art in one year, from scratch

(a) English—French (WMT-14)

NMT(A) | Google | P-SMT

NMT 32.68 30.6"
+Cand 33.28 —

+UNK 33.99 32.7°
+Ens 36.71 36.9°

37.03°

(b) English—German (WMT-15) (c) English—Czech (WMT-15)

Model Note Model Note

24.8 Neural MT 18.3 Neural MT

24.0 U.Edinburgh, Syntactic SMT 18.2 JHU, SMT+4+LM+OSM+Sparse
23.6 LIMSI/KIT 17.6 CU, Phrase SMT

22.8 U.Edinburgh, Phrase SMT 17.4 U.Edinburgh, Phrase SMT
22.7 KIT, Phrase SMT 16.1 U.Edinburgh, Syntactic SMT
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Image-to-Text: Caption Generation

f=(a, man, is, jumping, into, a, lake, .)

Word

Recurrent
State

-
-
L

Attention
Mechanism

Adfnotation
Vectors

J

Convolutional Neural Network

(Xu et al., 2015), (Yao et al., 2015)
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The Good

- o T,

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- B mountain in the background.

gy

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.
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And the Bad

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a tabl A man is talking on his cell phone

with a surfboard. with a large pizza. while another man watches.
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Attention Mechanisms for Memory
Access

e Neural Turing Machines (Graves et al 2014)
and Memory Networks (Weston et al 2014)

e Use a form of attention mechanism to
control the read and write access into a
memory

e The attention mechanism outputs a softmax
over memory locations
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The Next Frontier: Reasoning and
Question Answering

e Currently working on artificial tasks, with memory networks:

Joe went to the garden then Fred picked up the milk; Joe moved to the bathroom and Fred dropped the
milk, and then Dan moved to the living_room.

Where is Dan? A: living room I believe

Where 1s Joe? A: the bathroom

Fred moved to the bedroom and Joe went to the kitchen then Joe took the milk there and Dan journeyed
to the bedroom; Joe discarded the milk.

Where is the milk now ? A: the milk is in the kitchen

Where is Dan now? A: I think he is in the bedroom

Joe took the milk there, after that Mike travelled to the office, then Joe went to the living_room, next Dan
went back to the kitchen and Joe travelled to the office.

Where is Joe now? A: I think Joe 1s in the office

From “Memory Networks”, Weston et al. ICLR 2015;
“End-to-end memory networks”, Sukhbatar et al. NIPS’2015

Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.

Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.

Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.

Sam drops the apple. Bernhard is green. Mary discarded the milk.

Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?
A. Bedroom A. White A. Hallway
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Ongoing Project: Knowledge
Extraction

e Learn to fill the memory network from natural language
descriptions of facts

e Force the neural net to understand language
e Extract knowledge from documents into a usable form
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Why does it work? Pushing off the
Cufse of Long-Term Dependencies

e Whereas LSTM memories always decay exponentially (even if
slowly), a mental state stored in an external memory can stay
for arbitrarily long durations, until overwritten.
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Why Unsupervised Learning?

e Recent progress mostly in supervised DL
e Real technical challenges for unsupervised DL

* Potential benefits:

* Exploit tons of unlabeled data

* Answer new questions about the variables observed
* Regularizer — transfer learning — domain adaptation
* Easier optimization (local training signal)
 Structured outputs
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How do humans generalize
from very few examples?

* Intelligence (good generalization) needs knowledge

* Humans transfer knowledge from previous learning:

* Representations

* Explanatory factors

* Previous learning from: unlabeled data

+ labels for other tasks

28



Unsupervised and Transfer Learning Challenge
+ Transfer Learning Challenge: Won by
Unsupervised Deep Learning

VALID: ALC=0.7878

 NIPS’2011
Transfer
Learning

Challenge
D Paper:

1 ruvesTen o sLcooes | S e ICMIL2012
ICM L’2011 oesr SYLVESTER VALID: ALC=02316
workshop on . . . .
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Intractable (Exponential) Barriers

e Statistical curse of dimensionality:

* |Intractable number of configurations of variables, in high
dimension

e Computational curse of dimensionality:
* |Intractable normalization constants
* |Intractable (non-convex) optimization?
* |Intractable inference
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Deep Grenerative Learning: the Hot
Frowntier

e Many very different approaches being explored to bypass these
intractabilities

e Exploratory mode \tzmann
" ' And the & pbe“"’eer;(\?s (Y. Bengio)
* Exciting area of research achines and 8 ckp
e Connect to brains: bridge the gap to biology
DRAW (DeepMind) LAPGAN (NYU/Facebook)
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Learning Multiple Levels of
Abstrackion

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and

transfer

Organizational Maturity
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