Deep Learning

Yoshua Bengio

September 28, 2015

ICIP’2015, Quebec City

PLUG: Deep Learning, MIT Press book in preparation, draft chapters online for feedback
Breakthrough

• Deep Learning: machine learning algorithms based on learning multiple levels of representation / abstraction.

Amazing improvements in error rate in object recognition, object detection, speech recognition, and more recently, in natural language processing / understanding
Initial Breakthrough in 2006

Canadian initiative: CIFAR

- Ability to train deep architectures by using layer-wise unsupervised learning, whereas previous purely supervised attempts had failed

- Unsupervised feature learners:
 - RBMs
 - Auto-encoder variants
 - Sparse coding variants
2010-2012: Breakthrough in speech recognition → in Androids by 2012

According to Microsoft:

Deep learning
Breakthrough in computer vision: 2012-2015

- GPUs + 10x more data
- 1000 object categories,
- Facebook: millions of faces
- 2015: human-level performance
Deep Learning in the News

EXCLUSIVE

Facebook, Google in 'Deep Learning' Arms Race

Yann LeCun, an NYU artificial intelligence researcher who now works for Facebook. Photo: Josh Valcarcel/WIRED

WIRED NEWS BULLETIN

Google Beat Facebook for DeepMind

Google Acquires Artificial Intelligence Startup DeepMind For More Than $500M

Posted Jan 26, 2014 by Catherine Shu (@catherineshu)
IT Companies are Racing into Deep Learning
Why is Deep Learning Working so Well?
Automating Feature Discovery

- Rule-based systems
- Classic machine learning
- Representation learning
- Deep learning

- Input
- Output
- Mapping from features

- Hand-designed program
- Hand-designed features
- Features
- Simplest features
- Most complex features
Learning multiple levels of representation

Successive model layers learn deeper intermediate representations

(Lee, Largman, Pham & Ng, NIPS 2009)
(Lee, Grosse, Ranganath & Ng, ICML 2009)

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction
Google Image Search: Different object types represented in the same space

Google:
S. Bengio, J. Weston & N. Usunier

Learn $\Phi_1(\cdot)$ and $\Phi_w(\cdot)$ to optimize precision@k.
Why is deep learning working so well?
Machine Learning, AI & No Free Lunch

• Four key ingredients for ML towards AI

1. Lots & lots of data
2. Very flexible models
3. Enough computing power
4. Powerful priors that can defeat the curse of dimensionality
ML 101. What We Are Fighting Against: The Curse of Dimensionality

To generalize locally, need representative examples for all relevant variations!

Classical solution: hope for a smooth enough target function, or make it smooth by handcrafting good features / kernel
Bypassing the curse of dimensionality

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in representational power

Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the world around us efficiently
Non-distributed representations

- Clustering, n-grams, Nearest-Neighbors, RBF SVMs, local non-parametric density estimation & prediction, decision trees, etc.
- Parameters for each distinguishable region
- \# of distinguishable regions is linear in \# of parameters

→ No non-trivial generalization to regions without examples
The need for distributed representations

- Factor models, PCA, RBMs, Neural Nets, Sparse Coding, Deep Learning, etc.
- Each parameter influences many regions, not just local neighbors
- # of distinguishable regions grows almost exponentially with # of parameters
- GENERALIZE NON-LOCALLY TO NEVER-SEEN REGIONS

Non-mutually exclusive features/attributes create a combinatorially large set of distinguishable configurations.
Summary of Some New Theory Results

• Expressiveness of deep networks with piecewise linear activation functions: exponential advantage for depth
 \[\text{(Montufar et al NIPS 2014)}\]

• Theoretical and empirical evidence against bad local minima
 \[\text{(Dauphin et al NIPS 2014)}\]

• Manifold & probabilistic interpretations of auto-encoders
 • Estimating the gradient of the energy function \[\text{(Alain & Bengio ICLR 2013)}\]
 • Sampling via Markov chain \[\text{(Bengio et al NIPS 2013)}\]
 • Variational auto-encoder breakthrough \[\text{(Gregor et al arXiv 2015)}\]
The Depth Prior can be Exponentially Advantageous

Theoretical arguments:

2 layers of
- Logic gates
- Formal neurons
- RBF units

RBM & auto-encoders = universal approximator

Theorems on advantage of depth:

Some functions compactly represented with k layers may require exponential size with 2 layers
subroutine1 includes subsub1 code and subsub2 code and subsubsub1 code

subroutine2 includes subsub2 code and subsub3 code and subsubsub3 code and ...

main

“Shallow” computer program
“Deep” computer program
New theoretical result: Expressiveness of deep nets with piecewise-linear activation fns

(Pascanu, Montufar, Cho & Bengio; ICLR 2014)

(Montufar, Pascanu, Cho & Bengio; NIPS 2014)

Deeper nets with rectifier/maxout units are exponentially more expressive than shallow ones (1 hidden layer) because they can split the input space in many more (not-independent) linear regions, with constraints, e.g., with abs units, each unit creates mirror responses, folding the input space:
A Myth is Being Debunked: Local Minima in Neural Nets

Convexity is not needed

- (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS’ 2014): *Identifying and attacking the saddle point problem in high-dimensional non-convex optimization*
- (Choromanska, Henaff, Mathieu, Ben Arous & LeCun 2014): *The Loss Surface of Multilayer Nets*
Saddle Points

- Local minima dominate in low-D, but saddle points dominate in high-D
- Most local minima are close to the bottom (global minimum error)
Low Index Critical Points

Choromanska et al & LeCun 2014, ‘The Loss Surface of Multilayer Nets’

Shows that deep rectifier nets are analogous to spherical spin-glass models

The low-index critical points of large models concentrate in a band just above the global minimum
GoogLeNet: 22 layers, intermediate targets
Alternating convolutions & pooling

• Inspired by visual cortex, idea from Fukushima’s Neocognitron, combined with back-prop and developed by LeCun since 1989

• Increasing number of features, decreasing spatial resolution

• Top layers are fully connected

Krizhevsky, Sutskever & Hinton 2012 breakthrough in object recognition
Deep Learning: Beyond Pattern Recognition, towards AI

- Many researchers believed that neural nets could at best be good at pattern recognition.
- And they are really good at it!

- But many more ingredients needed towards AI. Recent progress:

 - **REASONING**: with extensions of recurrent neural networks
 - Memory networks & Neural Turing Machine

 - **PLANNING & REINFORCEMENT LEARNING**: DeepMind (Atari game playing) & Berkeley (Robotic control)
Ongoing Progress: Combining Vision and Natural Language Understanding

- Recurrent nets generating credible sentences, even better if conditionally:
 - Machine translation
 - Image 2 text

Xu et al, ICML’2015
Image-to-Text: Caption Generation

\[f = (a, \text{ man, is, jumping, into, a, lake, .}) \]

(Xu et al., 2015), (Yao et al., 2015)
Paying Attention to Selected Parts of the Image While Uttering Words
Speaking about what one sees
Attention through time for video caption generation

- (Yao et al arXiv 1502.08029, 2015) *Video Description Generation Incorporating Spatio-Temporal Features and a Soft-Attention Mechanism*

- Attention can be focused temporally, i.e., selecting input frames

```
Features-Extraction  Soft-Attention  Caption Generation
```

```
\begin{align*}
\mathbf{v}^1 & \rightarrow & & \alpha_1^t & \rightarrow & & \mathbf{h}^t \\
\mathbf{v}^2 & \rightarrow & & \alpha_2^t & \rightarrow & & \cdot \\
\vdots & \rightarrow & & \vdots & \rightarrow & & \cdot \\
\mathbf{v}^N & \rightarrow & & \alpha_N^t & \rightarrow & & \cdot \\
\sum_{i=1}^{N} \alpha_i^t \mathbf{v}^i & \rightarrow & & \mathbf{h}^{t+1} & \rightarrow & & \mathbf{man} \\
\end{align*}
```
Attention through time for video caption generation (Yao et al 2015)

- Attention is focused at appropriate frames depending on which word is generated.
Attention through time for video caption generation (Yao et al 2015)

- Soft-attention worked best in this setting

<table>
<thead>
<tr>
<th>Model</th>
<th>Feature</th>
<th>Bleu 1</th>
<th>Bleu 2</th>
<th>Bleu 3</th>
<th>Bleu 4</th>
<th>mb</th>
<th>Meteor</th>
<th>Perplexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-attention</td>
<td>GNet</td>
<td>32.0</td>
<td>9.2</td>
<td>3.4</td>
<td>1.2</td>
<td>0.3</td>
<td>4.43</td>
<td>88.28</td>
</tr>
<tr>
<td></td>
<td>GNet+3DConv</td>
<td>33.6</td>
<td>10.4</td>
<td>4.3</td>
<td>1.8</td>
<td>0.7</td>
<td>5.73</td>
<td>84.41</td>
</tr>
<tr>
<td>soft-attention</td>
<td>GNet</td>
<td>31.0</td>
<td>7.7</td>
<td>3.0</td>
<td>1.2</td>
<td>0.3</td>
<td>4.05</td>
<td>66.63</td>
</tr>
<tr>
<td></td>
<td>GNet+3DConv</td>
<td>28.2</td>
<td>8.2</td>
<td>3.1</td>
<td>1.3</td>
<td>0.7</td>
<td>5.6</td>
<td>65.44</td>
</tr>
</tbody>
</table>

Table 1. Attention and 3D-Conv performances evaluation on YouTube2Text. Bleu 1-4, multiBlue (mb), Meteor and perplexity metrics are reported.

Figure 3. A visualization of where the soft-attentional model “looks at” in a video, while generating the captions (captions included on the left). Each word is mapped into a vector of \textbf{v} in Eq. (6). Only bars in the same row are comparable, and their height reflects the magnitude of \textbf{v}. The model is able to focus its attention on different frames of the video when generating different words in the caption. Best viewed with zooming-in on pdf.

Corpus:
She rushes out.
Test_sample:
The woman turns away.

Corpus:
SOMEONE sits with his arm around SOMEONE. He nuzzles her cheek, then kisses tenderly.
Test_sample:
SOMEONE sits beside SOMEONE.

Corpus:
SOMEONE shuts the door.
Test_sample:
as he turns on his way to the door, SOMEONE turns away.
Beyond Object Recognition and Caption Generation

I: Jane went to the hallway.
I: Mary walked to the bathroom.
I: Sandra went to the garden.
I: Daniel went back to the garden.
I: Sandra took the milk there.
Q: Where is the milk?
A: garden

What color are her eyes?
What is the mustache made of?
How many slices of pizza are there?
Is this a vegetarian pizza?
Is this person expecting company?
What is just under the tree?
Does it appear to be rainy?
Does this person have 20/20 vision?
Image Processing: Depth, Motion, Odometry

Stereo Matching
(Zbontar & LeCun 2014) best on KITTI benchmark

Attention Mechanisms for Memory Access enable REASONING

- Neural Turing Machines (Graves et al 2014)
- and Memory Networks (Weston et al 2014)
- Use a form of attention mechanism to control the read and write access into a memory
- The attention mechanism outputs a softmax over memory locations
- For efficiency, the softmax should be sparse (mostly 0’s), e.g. maybe using a hash-table formulation.
Sparse Access Memory for Long-Term Dependencies

- A mental state stored in an external memory can stay for arbitrarily long durations, until evoked for read or write.
- Forgetting = vanishing gradient.
- Memory = larger state, avoiding the need for forgetting/vanishing.
- Different "threads" can run in parallel if we view the memory as an associative one.
Learning Multiple Levels of Abstraction

- The big payoff of deep learning is to allow learning higher levels of abstraction.
- Higher-level abstractions disentangle the factors of variation, which allows much easier generalization and transfer.
The Next Challenge: Unsupervised Learning

- Recent progress mostly in supervised DL
- Real technical challenges for unsupervised DL
- Potential benefits:
 - Exploit tons of unlabeled data
 - Answer new questions about the variables observed
 - Regularizer – transfer learning – domain adaptation
 - Easier optimization (local training signal)
 - Structured outputs
Extracting Structure By Gradual Disentangling and Manifold Unfolding & Variational Auto-Encoders

Each level transforms the data into a representation in which it is easier to model, unfolding it more, contracting the noise dimensions and mapping the signal dimensions to a factorized (uniform-like) distribution.

\[
\begin{align*}
Q(x) &\rightarrow Q(h_1) \\
&\quad\quad P(h_1) \\
&\quad\quad f_L \quad g_L \\
&\quad\quad \cdots \\
&\quad\quad Q(h_2|h_1) \\
&\quad\quad P(h_2|h_1) \\
&\quad\quad f_2 \quad g_2 \\
&\quad\quad \vdots \\
&\quad\quad Q(h_1|x) \\
&\quad\quad P(x|h_1) \\
&\quad\quad f_1 \quad g_1 \\
&\quad\quad Q(x)
\end{align*}
\]
The Current SOTA in Generative Models of Images

DRAW, (Gregor et al 2015) based on variational auto-encoders (Kingma et al ICLR’2014)

Generative Adversarial Networks
(Goodfellow et al, NIPS’2014, Denton et al NIPS’2015)