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Breakthrough

 Deep Learning: machine
learning algorithms based on
learning multiple levels of
representation / abstraction.

Amazing improvements in error rate in object recognition, object
detection, speech recognition, and more recently, in natural
language processing / understanding



Initial Breakthrough in 20
Canadian initiative: CIFAR
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e Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

* Unsupervised feature learners:
* RBMs

e  Auto-encoder variants

 Sparse coding variants
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2010-2012: Breakthrough in speech
recognition > in Androids by 2012
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Breakthrough in computer vision:
RO12-20186

e GPUs + 10x more data
B — 11

person

e 1000 object categories,

chair -
e Facebook: millions of faces

motorcycle
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Facebook, Google in 'Deep Learning'
Arms Race

NEWS BULLETIN

Google Beat Facebook for DeepMmd

Google Acqulres Artificial Intelllgence Startup DeepMind
For More Than $5ooM

Catherine Shu (@cathe



1T Companies are Racing into
Deep Learhing

ANee amazon



Why is Deep Learning
Working so Well?
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Learning mut&i;pte. levels M
Qf TEP‘QQSQH&Q&EJO“ (Lee, Largman, Pham & Ng, NS 209)

i (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
g Layer 3 linguistic representations

Parts combine
to form objects
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Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




Google Image Search:

Different object types represented in the
same space
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100-dim
embedding space

Learn ®(+) and 9,-) to optimize precision@k.
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Machine Learning, Al
# No Free Lunch

* Four key ingredients for ML towards Al
1. Lots & lots of data
2. Very flexible models

3. Enough computing power

4. Powerful priors that can defeat the curse of
dimensionality
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ML 10l, What We Are Fighting Against:
The Curse of Dimensionaliby

To generalize locally,
need representative
examples for all
relevant variations!

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting good
features / kernel

1 dimension:
10 positions

2 dimensions:
100 positions
Q

» 3 dimensions:
1000 positions!



Bypassing the curse of
A?K«‘ev\si.ovmt&v

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently
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Nown-distributed representations

e Clustering, n-grams, Nearest-

Clusterin )
8 / Neighbors, RBF SVMs, local
X /\ non-parametric density
e estimation & prediction,

decision trees, etc.

e Parameters for each
distinguishable region

e # of distinguishable regions
is linear in # of parameters

LOCAL PARTITION

- No non-trivial generalization to regions without examples
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The need for distributed
re.pre.sevx&a!:iov\s
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Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

Each parameter influences
many regions, not just local
neighbors

# of distinguishable regions

grows almost exponentially
with # of parameters

GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Multi-
Clustering
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Non-mutually
exclusive features/
attributes create a
combinatorially large
set of distinguiable
configurations



Summary of Some New Theory Results

e Expressiveness of deep networks with piecewise linear
activation functions: exponential advantage for depth

(Montufar et al NIPS 2014)

 Theoretical and empirical evidence against bad local minima
(Dauphin et al NIPS 2014)

e Manifold & probabilistic interpretations of auto-encoders
e Estimating the gradient of the energy function (Alain & Bengio ICLR 2013)
e Sampling via Markov chain (Bengio et al NIPS 2013)
* Variational auto-encoder breakthrough (Gregor et al arxiv 2015)
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The Depth Prior can be Exponentially
Advantageous

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal approximator
RBF units

RBMs & auto-encoders = universal approximat
Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007,
Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014, Montufar et al NIPS 2014) 1 2 3 2n

Some functions compactly

represented with k layers may
require exponential size with 2
layers 1 2 3 n



subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program
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subsubsu //////////fBbSUbSUbs
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\ . /

“Deep” computer program



New theoretical result:
Expressiveness of deep hets with
ri.e.cemi.se.-uv\ear activakion fis
Pascanu, Montufar, Cho & Bengio; ICLR 2014)

(Montufar, Pascanu, Cho & Bengio; NIPS 2014)

Deeper nets with rectifier/maxout units are exponentially more
expressive than shallow ones (1 hidden layer) because they can split
the input space in many more (not-independent) linear regions, with
constraints, e.g., with abs units, each unit creates mirror responses,
folding the input space:
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A Myth is Being Debuniced: Local
Minima in Neural Nets

= Cov\ve.xi.&v s wolt needed

e (Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the
saddle point problem for non-convex optimization

e (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS’ 2014):
Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization

e (Choromanska, Henaff, Mathieu, Ben Arous & LeCun 2014): The
Loss Surface of Multilayer Nets
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Saddle Poinks

* Local minima dominate in low-D, but
saddle points dominate in high-D ok

e Most local minima are close to the
bottom (global minimum error)

O e cpupe et O ¢

0700 0.05 0.10 0.15 0.20 0.25
Index of critical point
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YWolfram Global Problem




Low Index Crikical Poinks

Choromanska et al & LeCun 2014, ‘The Loss Surface of Multilayer Nets’
Shows that deep rectifier nets are analogous to spherical spin-glass models

The low-index critical points of large models concentrate in a band just
above the global minimum
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GoogleNet: 22 layers, intermediate targets
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Alternating convolutions & pooling

* Inspired by visual cortex, idea from Fukushima’s Neocognitron,
combined with back-prop and developped by LeCun since 1989

Input layer (S1) 4 feature maps

1 1 (CI) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

convolution layer l sub-sampling layer | convolution layer l sub-sampling layer | fully connected MLP |

e |ncreasing number of features, decreasing spatial resolution

° Top Iayers are fu”y connected Krizhevsky, Sutskever & Hinton 2012
breakthrough in object recognition

128 ><2_4><zma dense

dense dense)

128 Max

pooling 204 2048
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'Deep Learhingg: Bevohd Patlern
Recognition, towards Al

e Many researchers believed that neural nets could at best be
good at pattern recognition

e And they are really good at it!
 But many more ingredients needed towards Al. Recent progress:

* REASONING: with extensions of recurrent neural networks

e Memory networks & Neural Turing Machine

* PLANNING & REINFORCEMENT LEARNING: DeepMind (Atari
game playing) & Berkeley (Robotic control)
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Ongoing Progress: Combining Vision
and Natural Language Understanding

e Recurrent nets generating credible sentences, even better if
conditionally:

* Machine translation

Xu et al, ICML’2015
* Image 2 text

A dog is standing on a hardwood floor. A stop sign is on a road with a
- mountain in the background.

| —— et : L
A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with

a teddy bear. in the water. trees in the background.



Image-to-Text: Caption Generation

f=(a, man, is, jumping, into, a, lake, .)

Word

Recurrent
State

-
-
L

Attention
Mechanism

Adfnotation
Vectors

J

Convolutional Neural Network

(Xu et al., 2015), (Yao et al., 2015)
30
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' field(0.24) of(0.24) A&&QK&“OV\ &o
Selected Parts
of the Image

—— While Uttering
Words

A
bird
flying
over

14x14 Feature Map

a
body
of
water
1. Input 2. Convolutional 3, RNN with attention 4. Word by
Image  Feature Extraction over the image word
generation)
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Speaking about what one sees

~ A(0.97) stop(0.36) sign(0.19)

: n u
i5(0.22) on(0.25) a(0.21) - road(0.26)
- u [

. ‘ | -

a(0.30) mountain(0.44)

with(0.28) in(0.37)

background(0.11)
=
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Attention through time for video
caption generation

e (Yao et al arXiv 1502.08029, 2015) Video Description Generation
Incorporating Spatio-Temporal Features and a Soft-Attention
Mechanism

1
o |
]

——————

b <+ =

* Attention can be focused [ " l /
temporally, i.e., selecting | - "
i L.N;: E - g
input frames vy
N
—) oﬁvi — t+1
; @ h == man
¢
C.aption

Features-Extraction Soft-Attention Generation
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Attention through time for video
caption generation (Yoo et al 2015)

e Attention is focused at I I
appropriate frames man O B o a - - m
depending on which I I I I

word is generated.

cutting I I
paper = 0 I I
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Attention through time for video
caption generation (Yoo et al 2015)

e Soft-attention worked best in this setting

Bleu Meteor | Perplexity
Model Feature | ) 3 4 mb
nonattention GNet 320 92 34 12|03 4.43 88.28
GNet+3DConvpop-att | 33.6 104 43 1.8 | 0.7 5.73 84.41
soft-attention GNet 310 77 30 12|03 4.05 66.63
GNet+3DConv ¢ 282 82 3.1 1307 5.6 65.44

Generated
captions
Corpus: Corpus: Corpus:
She rushes out. SOMEONE sits with his arm around SOMEONE. SOMEONE shuts the door.
Test_sample: He nuzzles her cheek, then kisses tenderly. Test_sample:
The woman turns away. Test_sample: as he turns on his way to the door , SOMEONE

SOMEONE sits beside SOMEONE. turns away.



Beyond Object Recognition and
Caption Greneration

Visual Question
Answering (Antol et
al 2015)

Jane went to the hallway.
Mary walked to the bathroom.
Sandra went to the garden. What color are her eyes? How many slices of pizza are there?

: What is the mustache made of? Is this a vegetarian pizza?
Daniel went back to the garden.

Sandra took the milk there.
Where is the milk?
garden

Is this person expecting company? Does it appear to be rn;r?
36 What is just under the tree? Does this person have 20/20 vision?



Image Processing: Depth, Motion,
Odometry

dp

dx

Stereo Matching DeepStereo: Flynn,
(Zbontar & LeCun 2014) best Neulander, Philbin,
on KITTI benchmark Snavely (2015)
La: | 200 | J200
| * ; - | 400
v
La: | : | 300
La: | | S0 Vi
¥
Le: | | 300
v
L7 | ﬁ | 300
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Attention Mechanisms for Memory
Access enable REASONING

e Neural Turing Machines (Graves et al 2014)
e and Memory Networks (Weston et al 2014)

e Use a form of attention mechanism to
control the read and write access into a
memory

e The attention mechanism outputs a softmax
over memory locations

e For efficiency, the softmax should be sparse
(mostly 0’s), e.g. maybe using a hash-table
formulation.
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Sparse Access Memory for Long-Term
Dependencies

e A mental state stored in an external memory can stay for
arbitrarily long durations, until evoked for read or write

e Forgetting = vanishing gradient.
* Memory = larger state, avoiding the need for forgetting/vanishing

e Different « threads » can run in parallel if we view the memory as
an associative one.
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Learning Multiple Levels of
Abstraction

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and

transfer

Organizational Maturity
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The Next Challenge:
Unsupervised Learning

e Recent progress mostly in supervised DL

e Real technical challenges for unsupervised DL

e Potential benefits:
e Exploit tons of unlabeled data
* Answer new questions about the variables observed
e Regularizer — transfer learning — domain adaptation
 Easier optimization (local training signal)
 Structured outputs

41



Extracting Structure By Gradual
Disentangling and Manifold Unfolding

& Variational Auto-Encoders 3
Ag P(
Q(h,)
Each level transforms the T gt
data into a representation in Tf Tg
which it is easier to model, L L

unfolding it more,
contracting the noise

Q(h,lh,) |f g, P(h,[h;)
dimensions and mapping the o ’ 2

signal dimensions to a alh,) P(
factorized (uniform-like) o Pl
distribution. Q(h,/x) sz l

Q(x)
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The Current SOTA in SIS EERTRTITEFER
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Images
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MILA: Mowntreal Institute for L

eariing Algorithms
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