Hyper-Parameters for Deep Learning

ICML’2014
AutoML Workshop

Yoshua Bengio
June 26, 2014
Deep Representation Learning

Learn multiple levels of representation of increasing complexity/abstraction

- theory: exponential gain
- brains are deep
- cognition is compositional
- Better mixing (Bengio et al, ICML 2013)
 - They work! SOTA on industrial-scale AI tasks
 (object recognition, speech recognition, language modeling, music modeling)
Deep Learning

When the number of levels can be data-selected, this is a deep architecture
Temporal & Spatial Inputs: Convolutional & Recurrent Nets

- Local connectivity across time/space
- Sharing weights across time/space (translation equivariance)
- Pooling (translation invariance, cross-channel pooling for learned invariances)

Recurrent nets (RNNs) can summarize information from the past
Bidirectional RNNs also summarize information from the future
Alternating convolutions & pooling

- Inspired by visual cortex, idea from Fukushima’s Neocognitron, combined with back-prop and developed by LeCun since 1989

- Increasing number of features, decreasing spatial resolution
- Top layers are fully connected

Krizhevsky, Sutskever & Hinton 2012 breakthrough in object recognition
Understanding the difficulty of training deep feedforward supervised neural networks

(Glorot & Bengio, AISTATS 2010)

Study the activations and gradients

- wrt depth
- as training progresses
- for different initializations → big difference
- for different non-linearities → big difference

First demonstration that deep supervised nets can be successfully trained almost as well as with unsupervised pre-training, by setting up the optimization problem appropriately...
Training RBMs

Contrastive Divergence: start negative Gibbs chain at observed x, run k Gibbs steps

SML/Persistent CD: run negative Gibbs chain in background while weights slowly change

Fast PCD: two sets of weights, one with a large learning rate only used for negative phase, quickly exploring modes

Herding: Deterministic near-chaos dynamical system defines both learning and sampling

Tempered MCMC: use higher temperature to escape modes
Some RBM Variants

- Different energy functions and allowed values for the hidden and visible units:
 - Hinton et al 2006: binary-binary RBMs
 - Welling NIPS’2004: exponential family units
 - Ranzato & Hinton CVPR’2010: Gaussian RBM weaknesses (no conditional covariance), propose mcRBM
 - Ranzato et al NIPS’2010: mPoT, similar energy function
 - Courville et al ICML’2011: spike-and-slab RBM
Denoising Auto-Encoder
(Vincent et al 2008)

- Corrupt the input during training only
- Train to reconstruct the uncorrupted input

- Encoder & decoder: any parametrization
- As good or better than RBMs for unsupervised pre-training
Level-Local Learning is Important

- Initializing each layer of an unsupervised deep Boltzmann machine helps a lot
- Initializing each layer of a supervised neural network as an RBM, auto-encoder, denoising auto-encoder, etc can help a lot
- Helps most the layers further away from the target
- Not just an effect of the unsupervised prior
- Jointly training all the levels of a deep architecture is difficult because of the increased non-linearity / non-smoothness
- Initializing using a level-local learning algorithm is a useful trick
- Providing intermediate-level targets can help tremendously
 (Gulcehre & Bengio ICLR 2013)
Different hyper-parameters for different stages of learning

- Hyper-parameters for pre-training 1st layer
- Hyper-parameters for pre-training 2nd layer
- ...
- Hyper-parameter for supervised fine-tuning
Stack of RBMs / AEs → Deep MLP

- Encoder or $P(h|v)$ becomes MLP layer
Stack of RBMs / AEs → Deep Auto-Encoder

(Hinton & Salakhutdinov 2006)

- Stack encoders / $P(h|x)$ into deep encoder
- Stack decoders / $P(x|h)$ into deep decoder
Stack of RBMs / AEs → Deep Recurrent Autoencoder, GSN

(Savard 2011) (Bengio & Laufer, arxiv 2013)

- Each hidden layer receives input from below and above
- Deterministic (mean-field) recurrent computation (Savard 2011)
- Stochastic (injecting noise) recurrent computation: Deep Generative Stochastic Networks (GSNs)
 (Bengio & Laufer arxiv 2013)
Stack of RBMs → Deep Belief Net

(Hinton et al 2006)

- Stack lower levels RBMs’ $P(x|h)$ along with top-level RBM
- $P(x, h_1, h_2, h_3) = P(h_2, h_3) P(h_1|h_2) P(x|h_1)$
- Sample: Gibbs on top RBM, propagate down
Stack of RBMs
→ Deep Boltzmann Machine
(Salakhutdinov & Hinton AISTATS 2009)

• Halve the RBM weights because each layer now has inputs from below and from above
• Positive phase: (mean-field) variational inference = recurrent AE
• Negative phase: Gibbs sampling (stochastic units)
• train by SML/PCD
Stack of Auto-Encoders → Deep Generative Auto-Encoder

(Rifai et al ICML 2012)

• MCMC on top-level auto-encoder
 • $h_{t+1} = \text{encode} (\text{decode}(h_t)) + \sigma \text{ noise}$
 where noise is $\text{Normal}(0, d/dh \ \text{encode} (\text{decode}(h_t)))$
• Then deterministically propagate down with decoders
Deep Learning Tricks of the Trade

 - Unsupervised pre-training
 - Stochastic gradient descent and setting learning rates
 - Main hyper-parameters
 - Learning rate schedule
 - Early stopping
 - Minibatches
 - Parameter initialization
 - Number of hidden units
 - L1 and L2 weight decay
 - Sparsity regularization
 - Debugging
 - How to efficiently search for hyper-parameter configurations
Learning Rates

- Simplest recipe: keep it fixed and use the same for all parameters.
- Collobert scales them by the inverse of square root of the fan-in of each neuron.
- Better results can generally be obtained by allowing learning rates to decrease, typically in $O(1/t)$ because of theoretical convergence guarantees, e.g.,

$$\varepsilon_t = \frac{\varepsilon_0 \tau}{\max(t, \tau)}$$

with hyper-parameters ε_0 and τ.
- New papers on adaptive learning rates procedures (Schaul 2012, 2013), Adagrad (Duchi et al 2011), ADADELTA (Zeiler 2012)
Early Stopping

• Beautiful **FREE LUNCH** (no need to launch many different training runs for each value of hyper-parameter for #iterations)

• Monitor validation error during training (after visiting # of training examples = a multiple of validation set size)

• Keep track of parameters with best validation error and report them at the end

• If error does not improve enough (with some patience), stop.
RNN Tricks
(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

- Clipping gradients (avoid exploding gradients)
- Leaky integration (propagate long-term dependencies)
- Momentum (cheap 2nd order)
- Initialization (start in right ballpark avoids exploding/vanishing)
- Sparse Gradients (symmetry breaking)
- Gradient propagation regularizer (avoid vanishing gradient)
- LSTM self-loops (avoid vanishing gradient)
Orthogonal Initialization Works Even Better

- Auto-encoder pre-training tends to yield orthogonal W
- (Saxe, McClelland & Ganguli ICLR 2014) showed that very deep nets initialized with random orthogonal weights are much easier to train
- All singular values = 1
Grid Search for Hyper-Parameters

- Discretize hyper-parameter values
- Form cross-product of values across all hyper-parameters: the grid
- Launch a trial training + validation error measurement for each element of the grid
- Can be parallelized on a cluster, but may need to redo failed experiments, until all grid is filled
- Exponential in # of hyper-parameters!
Examples of hyper-parameters in DL

- Initial learning rate
- Learning rate decrease rate
- Number of layers
- Layer size
- Non-linear activation function
- Output non-linearity
- Output cost function
- Minibatch size
- Skip connections
- Dropout probability
- L1 regularizer, L2 regularizer
- Max weight vector norm
- Pre-training algorithm

Other hyper-parameters:

- Pre-training hyper-parameters
- Momentum
- Gradient clipping norm
- Early stopping patience
- Input normalization
- Input dimensionality reduction
- Convolution kernels widths
- Convolutions stride
- Pooling windows sizes
- Pooling strides
- Number of shared layers in multi-task settings
- Output layer regularizer
- Embeddings dimension
Random Sampling of Hyperparameters
(Bergstra & Bengio 2012)

• Random search: simple & efficient
 • Independently sample each HP, e.g. \(l.\text{rate} \sim \exp(\mathcal{U}[\log(.1),\log(.0001)]) \)
 • Each training trial is iid
 • If a HP is irrelevant grid search is wasteful
 • More convenient: ok to early-stop, continue further, etc.
Random Search Learning Curves

- Blue dotted line = grid search with 100 trials
Random Search Learning Curves

- Blue dotted line = grid search with 100 trials
The Low Effective Dimension of Hyper-Optimization

Color Key
- n. hidden units
- activation fn.
- initial W algo.
- initial W norm
- l_2 penalty
- learning rate
- learning rate anneal.
Sequential Model-Based Optimization of Hyper-Parameters

- (Hutter et al JAIR 2009; Bergstra et al NIPS 2011; Thornton et al arXiv 2012; Snoek et al NIPS 2012)

- Iterate

- Estimate $P(\text{valid. err} \mid \text{hyper-params config } x, D)$
- choose optimistic x, e.g. $\max_x P(\text{valid. err} < \text{current min. err} \mid x)$
- train with config x, observe valid. err. v, $D \leftarrow D \cup \{(x,v)\}$

![Graph showing GP mean and data points]
Is Sequential Model-Based Optimization of Hyperparameters Already Commonly Used in my Lab?

No, not yet.

Why?

• Need handling conditional variables (that exist only if some variables take some values)
• Need automatic stopping of training trials that will fail
• Need parallelized version (what are the next best N trials to run in parallel?)
• It needs to work substantially better than random search, since the latter is so simple. For this to happen probably need to learn from more than a single sequence of runs, across datasets, etc.
Conclusions

• Deep Learning and neural nets have scared novice practitioners in the past because of the many hyper-parameters
• Hyper-parameter optimization is crucial to make deep learning easier to use
• Random sampling + manual selection of ranges + iterate remains the method most commonly used
• Need more R&D in hyper-parameter optimization, and easy to use robust software