Hyper-Parameters for
Deep Learning

ICML’2014
AutoML Workshop

Yoshua Bengio
June 26, 2014

Université f'"’\

de Montréal

DEQF Represen&a&i.ovx Learning

Learn multiple levels of representation

of increasing complexity/abstraction i
* theory: exponential gain hym—
X

* brains are deep
e cognition is compositional
e Better mixing (Bengio et al, ICML 2013)

e They work! SOTA on industrial-scale Al tasks
(object recognition, speech recognition,
language modeling, music modeling)

Deep Learning

When the number of levels can be
data-selected,/this is a deep
architecture

Hyper-parameter

Temporal & Spatial Inputs:
Convolutional & Recurrent Nets

e Local connectivity across time/space
e Sharing weights across time/space (translation equivariance)

e Pooling (translation invariance, cross-channel pooling for learned invariances)
Input layer (S1) 4 feature maps

(Cl) 4 feature maps (S2) 6 feature maps

(C2) 6 feature maps

l sub-sampling layer l convolution layer l sub-sampling layer | fully connected MLP |

><1048 dense ‘ ‘ ‘
Xt Xt Xt

dense|

Il Recurrent nets (RNNs) can summarize
information from the past

Bidirectional RNNs also summarize
4 information from the future

Alternating convolutions & pooling

e |nspired by visual cortex, idea from Fukushima’s Neocognitron,
combined with back-prop and developped by LeCun since 1989

Input layer (S1) 4 feature maps

1 1 (CI) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

convolution layer l sub-sampling layer | convolution layer l sub-sampling layer | fully connected MLP |

e |ncreasing number of features, decreasing spatial resolution

° Top Iayers are fu”y connected Krizhevsky, Sutskever & Hinton 2012
breakthrough in object recognition

128 ><2_4><zm; dense

dense dense)

128 Max

pooling 204 2048

Understanding the difficully of
training deep feedforward
supervised heural networks

(Glorot & Bengio, AISTATS 2010)

Study the activations and gradients
* wrt depth
* as training progresses
 for different initializations = big difference
 for different non-linearities = big difference

First demonstration that deep supervised nets can be successfully
trained almost as well as with unsupervised pre-training, by
setting up the optimization problem appropriately...

Training RBMs

Contrastive Divergence: start negative Gibbs chain at observed x, run k
(CD-k) Gibbs steps

SML/Persistent CD: run negative Gibbs chain in background while
(PCD) weights slowly change

Fast PCD: two sets of weights, one with a large learning rate

only used for negative phase, quickly exploring
modes

Herding: Deterministic near-chaos dynamical system defines
both learning and sampling

Tempered MCMC: use higher temperature to escape modes

Sowme RBM Variawks

e Different energy functions and allowed
values for the hidden and visible units:

* Hinton et al 2006: binary-binary RBMs
Welling NIPS’2004: exponential family units)

Ranzato & Hinton CVPR’2010: Gaussian RBM weaknesses (no
conditional covariance), propose mcRBM

e Ranzato et al NIPS’2010: mPoT, similar energy function
Courville et al ICML’2011: spike-and-slab RBM

Denoising Auto-Encoder B

(Vincent et al 2008)

e Corrupt the input during training only
e Train to reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)

(OO0

-V W

-
-
-~
-

-
-

RORO Ole— (00000 (OO000)

Corrupted input Raw input reconstruction

e Encoder & decoder: any parametrization
e As good or better than RBMs for unsupervised pre-training

Level-Local Learning is Important

e |nitializing each layer of an unsupervised deep Boltzmann
machine helps a lot

e |nitializing each layer of a supervised neural network as an RBM,
auto-encoder, denoising auto-encoder, etc can help a lot

e Helps most the layers further away from the target
* Not just an effect of the unsupervised prior

e Jointly training all the levels of a deep architecture is difficult
because of the increased non-linearity / non-smoothness

e |nitializing using a level-local learning algorithm is a useful trick

e Providing intermediate-level targets can help tremendously
(Gulcehre & Bengio ICLR 2013)

Different hyper-parameters for
different stages of Learning

e Hyper-parameters for pre-training 1st layer
e Hyper-parameters for pre-training 2" layer

* Hyper-parameter for supervised fine-tuning

11

Staclke of RBMs / AEs
> Deep MLY

 Encoder or P(h|v) becomes MLP layer

12

Stack of RBMs / AEs
= Deer Auto-Encoder

(Hinton & Salakhdtdinov 2006)

e Stack encoders / P(h|x) into deep encoder
e Stack decoders / P(x|h) into deep decoder

o
"
j—

13

Stack of RBMs / AEs

> Deep Recurrent Autoencoder, &SN
(Savard 2011) Py (Bengio & Laufer, arxiv 2013) .

e Each hidden layer receives input from below and above h

2
e Deterministic (mean-field) recurrent computation (Savard 2011) $W2
e Stochastic (injecting noise) recurrent computation: Deep

Generative Stochastic Networks (GSNs) h,
(Bengio & Laufer arxiv 2013) §W1

h; e——

14

Stack of RBMs
9 DQQF BQL‘:@.{ NQ‘: (Hinon e\aI2006)

e Stack lower levels RBMs’ P(x| h) along with top-level RBM
° P(X/ h1/ h2/ h3) = P(h2/ h3) P(hllhz) P(X | hl)
e Sample: Gibbs on top RBM, propagate down

15

hs

h,

X

Stack of RBMs ll

> Deeﬁ Bolkzmann Machine

(Salakhutdinov &*™Hinton AISTATS 2009)

e Halve the RBM weights because each layer now has inputs from
below and from above

e Positive phase: (mean-field) variational inference = recurrent AE

e Negative phase: Gibbs sampling (stochastic units)
e train by SML/PCD

h;mees e y E— T—
Ya 3 2
h, —— Ms
2 2 2
h, ? A
T

!
2 2VV5

. S s

x‘wzl —ZT 2%

:

16

Stack of Auto-Encoders
> Deep Grenerative Auto-Encoder

(Rifai et al ICML 2012)

e MCMC on top-level auto-encoder
* h,,; = encode(decode(h,))+o noise
where noise is Normal(0, d/dh encode(decode(h,)))
e Then deterministically propagate down with decoders

17

Deep Learning Tricks of the Trade

* Y.Bengio (2013), “Practical Recommendations for Gradient-
Based Training of Deep Architectures”

* Unsupervised pre-training -
* Stochastic gradient descent and setting learning rates

* Main hyper-parameters
e Learning rate schedule
e Early stopping
* Minibatches
e Parameter initialization
e Number of hidden units
e L1 and L2 weight decay
e Sparsity regularization

* Debugging

How to efficiently search for hyper-parameter configurations
18

Learining Rates

e Simplest recipe: keep it fixed and use the same for all
parameters.

e Collobert scales them by the inverse of square root of the fan-in
of each neuron

e Better results can generally be obtained by allowing learning
rates to decrease, typically in O(1/t) because of theoretical

convergence guara ntees, e.g.,
€EQT

T max(t, 7)

with hyper-parameters g, and t.

e New papers on adaptive learning rates procedures (Schaul 2012,
2013), Adagrad (Duchi et al 2011), ADADELTA (Zeiler 2012)

19

Early Stopping

» Beautiful FREE LUNCH (no need to launch many different
training runs for each value of hyper-parameter for #iterations)

e Monitor validation error during training (after visiting # of
training examples = a multiple of validation set size)

e Keep track of parameters with best validation error and report
them at the end

e If error does not improve enough (with some patience), stop.

20

RNN Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2" order)

e |nitialization (start in right ballpark avoids exploding/vanishing)

e Sparse Gradients (symmetry breaking)
e Gradient propagation regularizer (avoid vanishing gradient)
e LSTM self-loops (avoid vanishing gradient)

0.35
0.30
0.25 o
o
0.20 =
w
0.15
0.10
0.05

eIrror

4.6 ' =
/6
% 5-
Or 3-2 -2.0
> 5.4 -24 722 7%

21 0 “54 58 -26 124

Orthogonal Initialization Works Even
Better

e Auto-encoder pre-training tends to yield orthogonal W

e (Saxe, McClelland & Ganguli ICLR 2014) showed that very deep nets

initialized with random orthogonal weights are much easier to
train

e Allsingular values =1 200
— Glorot
150 || — Pretrained
| — Orthogonal

)
o

o

Epochs to reach error threshold
—
o
o

50 100
Depth

o

22

Grid Search for Hyper-Parameters

* Discretize hyper-parameter values

 Form cross-product of values across all

hyper-parameters: the grid (.

* Launch atrial training + validation error | o 4
measurement for each element of the
grid

* (Can be parallelized on a cluster, but may

need to redo failed experiments, until all
grid is filled

*»3 Exponential in # of hyper-parameters!

Examples of hyper-parameters in DL

Initial learning rate

Learning rate decrease rate

Number of layers
Layer size

Non-linear activation function
Output non-linearity
Output cost function

Minibatch size
Skip connections
Dropout probability

L1 regularizer, L2 regularizer
Max weight vector norm
Pre-training algorithm

Other hyper-parameters:

Pre-training hyper-parameters
Momentum

Gradient clipping norm

Early stopping patience

Input normalization

Input dimensionality reduction
Convolution kernels widths
Convolutions stride

Pooling windows sizes

Pooling strides

Number of shared layers in
multi-task settings

Output layer regularizer
Embeddings dimension

Random Sampling of Hyperparameters

(Bergstra & Bengio 2012)

e Random search: simple & efficient
* Independently sample each HP, e.g. I.rate~exp(U[log(.1),log(.0001)])
* Each training trial is iid
* |If a HP is irrelevant grid search is wasteful
* More convenient: ok to early-stop, continue further, etc.

Grid Layout Random Layout

Unimportant parameter
O
O
O
Unimportant parameter
(@)
O

“O O O

55 Important parameter Important parameter

Random Search Learning Curves

e Blue dotted line = grid search with 100 trials

11%r1nist rotated background images
09}

0.8

accuracy

o o
=~ ot
T

=
w
T

26

e
\]
T

<
D
T

e
SR
$T+llll
12 4 8 16 32 64

experiment size (# trials)

accuracy

1.0

I
Nej
T

e
0.¢]
T

e
J
1

<
o

=
(@)
T

o
N
I

=
w
T

convex
I I I

4 8 16 32 64

experiment size (# trials)

Random Search Learning Curves

e Blue dotted line = grid search with 100 trials

L0 rectangles L0 rectangles images
— - . — — f N . T T T T T
N el e Sl == Sl St
. I:I ;| o i 09F
+
0.8} LT 0.8}
— T . % — = +
? 0.7 % N 22 0.7 I:' o
© & Fr-rt--------------1
= : = +
=S 06F = 0.6
Q Q
< I)
05 ~ 0.5 +
0.4} 0.4
0.3F 0.3

1 2 4 8 16 32 o4 2z 4 8 16 32 o
experiment size (# trials) experiment size (# trials)

27

mnist basic

mnist background images

mnist background random

b i y
O Jus iz
I‘_[_‘ - = o .[} | ‘ -
T b 14 H[H 4
0 i L (k
%1 mm SRR . S i m SRR : freamas {3
- S I | A
) rel;vanoé (1 /Glengt;l sca,le()) relezvance {(1 / le'sngth séa,le) S reléva.nce‘(l / li-mgth Uscale)w
mnist rotated mnist rotated background images __convex
-t----- | A {T}--
(Jp-veememmenn-- [N SRR i i{[J--eeeeemmen-- I
! Ty | ’
The Low fooo 1= &
. - L A SR
EFFQC&LVQ s M ¥ s S i Y R0 SRR
® ® F---4 FF------ - CF---4
b bmehs Lo“ 0 ; ':' S : a ‘ ':‘ .; ; \': (‘5 7 oo 0‘5 l.C '..5 2‘(‘ ?‘:’ SAU a5
relevance (1 / length scale) relevance (1 / length scale) relevance (1 / length scale)
Of Hj Fer- rectangles rectangles images Color Key
» . [] SRR VN Sl (LN n. hidden units
OP&LMMQ&LQ “ g--------- ! -4 activation fn.
HH i initial W algo.
-+ # initial W norm
£, penalty
i Ul learning rate
b Fe--e--- | T B SETETETETTITE | learning rate anneal.
D o —

28

G
relevance (1 / length scale)

U T S R S
relevance (1 / length scale)

Sequehtiat Model-Based Opf:imiz.a&iov\
of Hyper-Parameters

e (Hutter et al JAIR 2009; Bergstra et al NIPS 2011; Thornton et al
arXiv 2012; Snoek et al NIPS 2012)

* |terate

e Estimate P(valid. err | hyper-params config x, D)

e choose optimistic x, e.g. max, P(valid. err < current min. err | x)
 train with config x, observe valid. err. v, D €< D U {(x,v)}

30

— GP mean||
0 o data

25r

20F

o
u.1v

0.0 [— &)
| 0.06f |
0.04} :
1 0.02} -

0.00

Is Sequential Model-Based
Optimization of Hyperparameters
Already Commonly Used in my Lab?

No, not yet.

Whj?

 Need handling conditional variables (that exist only if some
variables take some values)

e Need automatic stopping of training trials that will fail
e Need parallelized version (what are the next best N trials to run
in parallel?)

e It needs to work substantially better than random search, since
the latter is so simple. For this to happen probably need to learn

0 from more than a single sequence of runs, across datasets, etc.

Conclusions

e Deep Learning and neural nets have scared novice practitioners
in the past because of the many hyper-parameters

e Hyper-parameter optimization is crucial to make deep learning
easier to use

e Random sampling + manual selection of ranges + iterate
remains the method most commonly used

e Need more R&D in hyper-parameter optimization, and easy to
use robust software

31

