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Busting the myth of Local minima

e There are still some researchers who believe that because of the
presence of local minima, neural nets should be replaced by
kernel machines (Liu, Lee & Jordan, ICML’2016)

* Yet, mounting evidence that this is a myth, for non-tiny nets:

e (Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the saddle point
problem for non-convex optimization

e (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS’ 2014):

Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization

* (Choromanska, Henaff, Mathieu, Ben Arous & LeCun AISTATS’2015): The
Loss Surface of Multilayer Nets

e (Daniel Soudry, Yair Carmon, arXiv:1605.08361): No bad local minima:

Data independent training error guarantees for multilayer neural
networks



YWolfram Global Problem

Saddle Poinks

e Local minima dominate in low-D, but, G
saddle points dominate in high-D .
* Most local minima are close to the

bottom (global minimum error) when
the network becomes large
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Low Index Crikical Poinks

Choromanska et al & LeCun 2014, ‘The Loss Surface of Multilayer Nets’
Shows that deep rectifier nets are analogous to spherical spin-glass models

The low-index critical points of large models concentrate in a band just
above the global minimum, as the number of hidden units increases
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Saddle Points During Training

e QOscillating between two behaviors:
* Slowly approaching a saddle point

* Escaping it
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Yet, training deep / recurrent
architectures can be challenging!



Effect of Initial Condikions
n Deep Nets with Tanh Units

(Erhan et al 2009, JMLR)
. Superwsed deep net (tanh) with or w/o

Neural net trajectories in
function space, visualized by
t-SNE

No two training trajectories
end up in the same place 2>
huge number of effective
local minima

with unsupervised pre-trarn'iﬁg



Guided Training, Intermediate
Concepts

 In (Gulcehre & Bengio ICLR’2013) we set up a task that seems
almost impossible to learn by shallow nets, deep nets, SVMs,
trees, forests, boosting etc

e Breaking the problem in two sub-problems and pre-training
each module separately, then fine-tuning, nails it

e Need prior knowledge to decompose the task

e Guided pre-training allows to find much better solutions, escape

effective local minima
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Curriculum Learning

Guided learning helps fraining humans and animails

Start from simpler examples / easier tasks (Piaget 1952, Skinner 1958)



Order & Selection of Examples Mal:Ee.rs

(Bengio, Louradour, Collobert & Weston, ICML’2009)

e Curriculum learning

e (Bengio et al 2009, Krueger & Dayan 2009) Ik ok VN

e Start with easier examples

—curriculum

e Faster convergence to a better local = = no-curriculum
minimum in deep architectures
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Curriculum Learning as a
Continuatkion Method

Final solution

Track local minima

asy to find minimum



Modern Uses of Curriculum Learning
in Difficult to Train Architectures
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Appropriately Injecting Noise to
Improve Trawing

Noisy Activation Functions, Gulcehre, Moczulski, Denil & Bengio, 20

Mollifying Networks, Gulcehre, Moczulski& Bengio, 2016 (submitted)

See also Neelakantan, Arvind, et al. "Adding gradient noise improves learning for
very deep networks.” arXiv:1511.06807

e |njecting noise is like smoothing the objective function, which is
easier to optimize (in the limit of high smoothing: convex)
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Gradually Decreased Noise =
Continuation Method or Annealing

e Start with high noise and gradually converge to the target
(noise-free) objective, trying to track the local minimum along
the way

’3'@ Final solution
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Noi.sv Activation Functions

e Adding noise where the nonlinearity would saturate to enhance
exploration

Simulating Tanh Activation Function with Half-Normal Noise wrt Different Alphas Derijvative of Each Unit at Each Layer with Respect to Unit's Input.
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Noi.sv Activation Functions

* Improving the ‘Learning to Execute’ architecture
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Injecting noise ko malke the objective
function have a single global minimum
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Initially, high noise: layer = linear and is skipped
Finally, low noise: layer = tanh or sigmoid, not skipped, very
useful for gates in LSTM&GRU
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Annealed Sktochastic ‘Dep&k

e With some probability p, each layer’s output is just the output of
the previous layer

e That probability p is annealed down at the same time as the
noise injection level

b ~ Bin(p)
Al = ikt 4 (1 — bh)h]

e Where hé is the normal non-linear update of the layer
e Thus the effective depth is gradually increased during training
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Resulkbs

10"

e Difficult to optimize:

—— 60-layers Mollified MLP
-~ 60-layers Residual MLP
—— 60-layers Regular MLP

parity, pentomino, very
deep nets

10°

Train NLL

id NLL

#1000 Updme

e Neural Turing Machine
e LSTM language

models: Noisy LSTM + Normal Noise

0 100 200 4 Epochs 300 400 500
Valid ppl  Test ppl
111.7 108.0
Noisy LSTM + Half Normal Noise 112.6 108.7
119.4 115.6

( PennTreeBan K7 LST™M (Reference)
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Noisy Activation Functions for NMT

* Neural Machine Translation with External Phrase Memory, Tang,
Meng, Lu, Li & Yu, arXiv:1606.01792

e Beating the SOTA on Chinese-to-English

e 3.45 BLEU score improvement (including changes in
architecture)
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Cownclusions

* Training deep nets may be easier than believed previously, and
local minima may not be the main issue

e But optimization can remain an important challenge

e Curriculum learning and other continuation or annealing
methods have become a common tool

* Injecting noise = smoothing the objective

e Specific forms of noise injection (in particular noisy activation
functions) and annealing seem to be greatly helpful for a variety
of deep learning tasks
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