
From	Curriculum	Learning	to	
Mollifying	Networks	

June	24,	ICML’2016,	Op3miza3on	Workshop	
Yoshua	Bengio	

CIFAR	Senior	Fellow	and	Program	Co-Director	
Montreal	Ins3tute	for	Learning	Algorithms	

Université	de	Montréal	

Busting the myth of local minima

•  There	are	s:ll	some	researchers	who	believe	that	because	of	the	
presence	of	local	minima,	neural	nets	should	be	replaced	by	
kernel	machines	(Liu,	Lee	&	Jordan,	ICML’2016)	

•  Yet,	moun:ng	evidence	that	this	is	a	myth,	for	non-3ny	nets:	
•  (Pascanu,	Dauphin,	Ganguli,	Bengio,	arXiv	May	2014):	On	the	saddle	point	
problem	for	non-convex	opEmizaEon	

•  (Dauphin,	Pascanu,	Gulcehre,	Cho,	Ganguli,	Bengio,	NIPS’	2014):	
IdenEfying	and	aIacking	the	saddle	point	problem	in	high-dimensional	
non-convex	opEmizaEon		

•  (Choromanska,	Henaff,	Mathieu,	Ben	Arous	&	LeCun	AISTATS’2015):	The	
Loss	Surface	of	MulElayer	Nets	

•  (Daniel	Soudry,	Yair	Carmon,	arXiv:1605.08361):	No	bad	local	minima:	
Data	independent	training	error	guarantees	for	mulElayer	neural	
networks	

2	

Saddle Points

•  Local	minima	dominate	in	low-D,	but	
saddle	points	dominate	in	high-D	

•  Most	local	minima	are	close	to	the	
boZom	(global	minimum	error)	when	
the	network	becomes	large	

3	

Low Index Critical Points

Choromanska	et	al	&	LeCun	2014,	‘The	Loss	Surface	of	MulElayer	Nets’	
Shows	that	deep	rec:fier	nets	are	analogous	to	spherical	spin-glass	models	
The	low-index	cri:cal	points	of	large	models	concentrate	in	a	band	just	
above	the	global	minimum,	as	the	number	of	hidden	units	increases	

4	

Saddle Points During Training

•  Oscilla:ng	between	two	behaviors:	
•  Slowly	approaching	a	saddle	point	
•  Escaping	it	

5	

Yet, training deep / recurrent
architectures can be challenging!

6	

7	

Effect of Initial Conditions
in Deep Nets with Tanh Units

•  (Erhan	et	al	2009,	JMLR)	
•  Supervised	deep	net	(tanh),	with	or	w/o		
		unsupervised	pre-training	èvery	different	solu:ons	in	fn	space	

Neural	net	trajectories	in		
func:on	space,	visualized	by	
t-SNE	

No	two	training	trajectories	
end	up	in	the	same	place	à	
huge	number	of	effec:ve	
local	minima	

w/o	unsupervised	pre-training	

with	unsupervised	pre-training	

Guided Training, Intermediate
Concepts

•  In	(Gulcehre	&	Bengio	ICLR’2013)	we	set	up	a	task	that	seems	
almost	impossible	to	learn	by	shallow	nets,	deep	nets,	SVMs,	
trees,	forests,	boos:ng	etc	

•  Breaking	the	problem	in	two	sub-problems	and	pre-training	
each	module	separately,	then	fine-tuning,	nails	it	

•  Need	prior	knowledge	to	decompose	the	task	
•  Guided	pre-training	allows	to	find	much	beZer	solu:ons,	escape	

effec:ve	local	minima	

8	

HINT	

Curriculum Learning

Guided learning helps training humans and animals

 Shaping

Start from simpler examples / easier tasks (Piaget 1952, Skinner 1958)

Education

Order & Selection of Examples Matters
(Bengio,	Louradour,	Collobert	&	Weston,	ICML’2009)				A	

• Curriculum	learning		
•  (Bengio	et	al	2009,	Krueger	&	Dayan	2009)			

•  Start	with	easier	examples	

•  Faster	convergence	to	a	beZer	local	
minimum	in	deep	architectures	

!"#$%

&%

&"!$%

&"$%

'% $''% ('''% ($''%

!"
#
$%
&
'
(
)'
*
+
,)
-
"
%.
/)

01!!1"'))

23.&,*4)

)*++,)*-*.%

/01)*++,)*-*.%

!"#$%

&%

&"!$%

&"$%

'% $''% ('''% ($''%

!"
#
$%
&
'
(
)'
*
+
,)
-
"
%.
/)

01!!1"'))

23.&,*4)

)*++,)*-*.%

/01)*++,)*-*.%

10	

Curriculum learning as a
Continuation Method

Track local minima

Final solution

Easy to find minimum

Modern Uses of Curriculum Learning
in Difficult to Train Architectures

•  Zaremba,	Wojciech,	and	Ilya	Sutskever.	"Learning	to	execute."	arXiv	preprint	
arXiv:1410.4615	(2014).	

•  Zaremba,	Wojciech,	and	Ilya	Sutskever.	"Reinforcement	learning	neural	
Turing	machines."	arXiv	preprint	arXiv:1505.00521	362	(2015).	

•  Zhang,	Dingwen,	et	al.	"A	self-paced	mulEple-instance	learning	framework	for	
co-saliency	detecEon."	Proceedings	of	the	IEEE	Interna:onal	Conference	on	
Computer	Vision.	2015.	

•  Amodei,	Dario,	et	al.	"Deep	speech	2:	End-to-end	speech	recogniEon	in	
English	and	mandarin."	arXiv	preprint	arXiv:1512.02595	(2015).	

•  Gülçehre,	Çağlar,	and	Yoshua	Bengio.	"Knowledge	maIers:	Importance	of	
prior	informaEon	for	opEmizaEon."	Journal	of	Machine	Learning	
Research17.8	(2016):	1-32.	

12	

Appropriately Injecting Noise to
Improve Training

Noisy	AcEvaEon	FuncEons,	Gulcehre,	Moczulski,	Denil		&	Bengio,	2016	

Mollifying	Networks,	Gulcehre,	Moczulski&	Bengio,	2016	(submiIed)	
See	also	Neelakantan,	Arvind,	et	al.	"Adding	gradient	noise	improves	learning	for	
very	deep	networks.”	arXiv:1511.06807	
	
•  Injec:ng	noise	is	like	smoothing	the	objec:ve	func:on,	which	is	

easier	to	op:mize	(in	the	limit	of	high	smoothing:	convex)	

•  and	easy	stochas:c	gradient	

13	

LK(✓) = (L ⇤K)(✓)

=

Z

C
L(✓ � ⇠)K(⇠)d⇠

which can be estimated by a Monte Carlo approximation:

⇡ 1

N

NX

i=1

L(✓ � ⇠i), where ⇠i is a realization of the noise random variable ⇠

yielding:

@LK(✓)

@✓
⇡ 1

N

NX

i=1

@L(✓ � ⇠i)

@✓
.

(2)

Therefore introducing additive noise to the input of L(✓) is equivalent to mollification.74

A typical layer in a deep neural network takes the form:75

a

l
= f(Wl

a

l�1
) (3)

where a

l�1 is a vector of activations from the layer below, Wl is a matrix representing a linear76

transformation and f is an element-wise non-linearity of choice.77

A mollification of such layer can be formulated as:78

a

l
= f((Wl � ⇠

l
i)a

l�1
), where ⇠

l
i ⇠ N (µ,�

2
) (4)

Moreover, we can use a first-order Taylor expansion of Eq. 4 around W

l
a

l�1 and inject the noise79

outside the function f as proposed in Gulcehre et al. (2016):80

a

l ⇡ f(Wl
a

l�1
)� ⇠

l
ia

l�1rf(Wl
a

l�1
). (5)

Gulcehre et al. (2016) instead of using the gradient in Eq. 5, approximated the gradient with a simple81

MLP.82

Relationship to preconditioners Smoothing the objective function with a mollifier will make83

it better behaved with less pathological curvatures and fewer saddle-points. This is similar to the84

behavior of a preconditioner for the Hessian in terms of transforming the loss function to accelerate85

the convergence. Mollifying the loss function is equivalent to mollifying the Hessian:86

r2
✓ij

LK(✓ij) =

Z

C
r2

✓ij
L(✓ij � ⇠)K(⇠)d⇠ (6)

= (r2
✓ij

L ⇤K)(✓ij). (7)

2.1 Continuation and Annealing Methods87

Convolving a non-smooth function with a mollifier is a way to turn it into a function that is different88

from the original one but is also easier to optimize. Moreover by gradually reducing the amount89

of smoothing we can consider a sequence of optimization problems that converge to the optimization90

problem of interest.91

Such optimization methods are called continuation methods (Allgower and Georg, 1980), see Fig. 1.92

They have been very successful to tackle difficult optimization problems involving non-convex93

objective functions with multiple local minima and possibly points of non-differentiability. In94

machine learning, approaches based on curriculum learning (Bengio et al., 2009) are inspired by this95

principle to define a sequence of gradually more difficult training tasks (or training distributions) that96

converge to the task of interest. Gradient-based optimization over a sequence of mollified objective97

functions has been shown to converge (Chen, 2012).98

In the context of stochastic gradient descent, we can use an estimator of the gradient of the smoothed99

objective function. This is convenient because actually computing the mollified objective function100

may not be analytically feasible, but a Monte-Carlo sample can often be obtained easily, as in Eq. 2.101

In that case, it is the amount of noise which controls the amount of smoothing. During training, we102

gradually reduce that noise, thus performing a form of annealing (Kirkpatrick et al., 1983).103

3

LK(✓) = (L ⇤K)(✓)

=

Z

C
L(✓ � ⇠)K(⇠)d⇠

which can be estimated by a Monte Carlo approximation:

⇡ 1

N

NX

i=1

L(✓ � ⇠i), where ⇠i is a realization of the noise random variable ⇠

yielding:

@LK(✓)

@✓
⇡ 1

N

NX

i=1

@L(✓ � ⇠i)

@✓
.

(2)

Therefore introducing additive noise to the input of L(✓) is equivalent to mollification.74

A typical layer in a deep neural network takes the form:75

a

l
= f(Wl

a

l�1
) (3)

where a

l�1 is a vector of activations from the layer below, Wl is a matrix representing a linear76

transformation and f is an element-wise non-linearity of choice.77

A mollification of such layer can be formulated as:78

a

l
= f((Wl � ⇠

l
i)a

l�1
), where ⇠

l
i ⇠ N (µ,�

2
) (4)

Moreover, we can use a first-order Taylor expansion of Eq. 4 around W

l
a

l�1 and inject the noise79

outside the function f as proposed in Gulcehre et al. (2016):80

a

l ⇡ f(Wl
a

l�1
)� ⇠

l
ia

l�1rf(Wl
a

l�1
). (5)

Gulcehre et al. (2016) instead of using the gradient in Eq. 5, approximated the gradient with a simple81

MLP.82

Relationship to preconditioners Smoothing the objective function with a mollifier will make83

it better behaved with less pathological curvatures and fewer saddle-points. This is similar to the84

behavior of a preconditioner for the Hessian in terms of transforming the loss function to accelerate85

the convergence. Mollifying the loss function is equivalent to mollifying the Hessian:86

r2
✓ij

LK(✓ij) =

Z

C
r2

✓ij
L(✓ij � ⇠)K(⇠)d⇠ (6)

= (r2
✓ij

L ⇤K)(✓ij). (7)

2.1 Continuation and Annealing Methods87

Convolving a non-smooth function with a mollifier is a way to turn it into a function that is different88

from the original one but is also easier to optimize. Moreover by gradually reducing the amount89

of smoothing we can consider a sequence of optimization problems that converge to the optimization90

problem of interest.91

Such optimization methods are called continuation methods (Allgower and Georg, 1980), see Fig. 1.92

They have been very successful to tackle difficult optimization problems involving non-convex93

objective functions with multiple local minima and possibly points of non-differentiability. In94

machine learning, approaches based on curriculum learning (Bengio et al., 2009) are inspired by this95

principle to define a sequence of gradually more difficult training tasks (or training distributions) that96

converge to the task of interest. Gradient-based optimization over a sequence of mollified objective97

functions has been shown to converge (Chen, 2012).98

In the context of stochastic gradient descent, we can use an estimator of the gradient of the smoothed99

objective function. This is convenient because actually computing the mollified objective function100

may not be analytically feasible, but a Monte-Carlo sample can often be obtained easily, as in Eq. 2.101

In that case, it is the amount of noise which controls the amount of smoothing. During training, we102

gradually reduce that noise, thus performing a form of annealing (Kirkpatrick et al., 1983).103

3

Gradually Decreased Noise =
Continuation Method or Annealing

•  Start	with	high	noise	and	gradually	converge	to	the	target	
(noise-free)	objec:ve,	trying	to	track	the	local	minimum	along	
the	way	

14	

Track local minima

Final solution

Easy to find minimum

Noisy Activation Functions

•  Adding	noise	where	the	nonlinearity	would	saturate	to	enhance	
explora:on	

15	

Noisy Activation Functions

•  Improving	the	‘Learning	to	Execute’	architecture	

16	

Injecting noise to make the objective
function have a single global minimum

•  Ini:ally,	high	noise:	layer	=	linear	and	is	skipped		
•  Finally,	low	noise:	layer	=	tanh	or	sigmoid,	not	skipped,	very	

useful	for	gates	in	LSTM&GRU	
	

17	

Annealed Stochastic Depth

•  With	some	probability	p,	each	layer’s	output	is	just	the	output	of	
the	previous	layer	

•  That	probability	p	is	annealed	down	at	the	same	:me	as	the	
noise	injec:on	level	

•  Where							is	the	normal	non-linear	update	of	the	layer	
•  Thus	the	effec:ve	depth	is	gradually	increased	during	training	

	

18	

Results

•  Difficult	to	op:mize:	
parity,	pentomino,	very	
deep	nets	

•  Neural	Turing	Machine	
•  LSTM	language		
					models:	
					(PennTreeBank)	
19	

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Noisy Activation Functions

Table 3. Image Caption Generation on Flickr8k. This time we added noisy activations in the code from (Xu et al., 2015) and obtain
substantial improvements on the higher-order BLEU scores and the METEOR metric, as well as in NLL. Soft attention and hard
attention here refers to using backprop versus REINFORCE when training the attention mechanism.

BLEU -1 BLEU-2 BLEU-3 BLEU-4 METEOR Test NLL

Soft Attention (Sigmoid and Tanh) (Reference) 67 44.8 29.9 19.5 18.9 40.33
Soft Attention (Noisy Sigmoid and Tanh) 66 45.8 30.9 20.9 20.5 40.17

Hard Attention (Sigmoid and Tanh) 67 45.7 31.4 21.3 19.5 -

Figure 10. Training curves of the reference model (Zaremba &
Sutskever, 2014) and its noisy variant on the “Learning To Exe-
cute” problem. The noisy network converges faster and reaches a
higher accuracy, showing that the noisy activations help to better
optimize for such hard to optimize tasks.

Table 2. Penntreebank word-level comparative perplexities. We
only replaced in the code from Zaremba et al. (2014) the sigmoid

and tanh by corresponding noisy variants and observe a substan-
tial improvement in perplexity, which makes this the state-of-the-
art on this task.

Valid ppl Test ppl

Noisy LSTM + Normal Noise 111.7 108.0
Noisy LSTM + Half Normal Noise 112.6 108.7
LSTM (Reference) 119.4 115.6

noisy activations was able to outperform both, as shown
in Table 4. Again, we see a substantial improvement (more
than 2 BLEU points) with respect to the reference.

6.5. Image Caption Generation Experiments

We evaluated our noisy activation functions on a network
trained on the Flickr8k dataset. We used the soft neural at-
tention model proposed in (Xu et al., 2015) as our reference
model. 4 We scaled down the weight matrices initialized

4We used the code provided at https://github.com/
kelvinxu/arctic-captions.

Table 4. Neural machine Translation on Europarl. Using existing
code from (Bahdanau et al., 2014) with nonlinearities replaced
by their noisy versions, we find much improved performance (2
BLEU points is considered a lot for machine translation). We also
see that simply using the hard versions of the nonlinearities buys
about half of the gain.

Valid nll BLEU

Sigmoid and Tanh NMT (Reference) 65.26 20.18
Hard-Tanh and Hard-Sigmoid NMT 64.27 21.59
Noisy Tanh and Sigmoid NMT 63.46 22.57

to be orthogonal by the factor of 0.01. As shown in Table
3, we were able to obtain better results than the reference
model and our model also outperformed the best model
provided in (Xu et al., 2015) in terms of Meteor score.

6.6. Experiments with Continuation

We performed experiments to validate the effect of anneal-
ing the noise to obtain a continuation method for neural
networks.

We designed a new task where, given a random sequence
of integers, the objective is to predict the number of unique
elements in the sequence. We use an LSTM network over
the input sequence, and performed a time average pooling
over the hidden states of LSTM to obtain a fixed-size vec-
tor. We feed the pooled LSTM representation into a sim-
ple (one hidden-layer) ReLU MLP in order to predict the
unique number of elements in the input sequence. In the
experiments we fixed the length of input sequence to 26 and
the input values are between 0 and 10. In order to anneal
the noise, we started training with the scale hyperparameter
of the standard deviation of noise with c = 30 and annealed
it down to 0.5 with the schedule of cp

t+1
where t is being

incremented at every 200 minibatch updates. When noise
annealing is combined with a curriculum strategy (starting
with short sequences first and gradually increase the length
of the training sequences), the best models are obtained.
Code for generating this data and running the experiments
is available at http://anonymous.

As a second test, we used the same annealing procedure

Noisy Activation Functions for NMT

•  Neural	Machine	TranslaEon	with	External	Phrase	Memory,	Tang,	
Meng,	Lu,	Li	&	Yu,	arXiv:1606.01792	

•  Bea:ng	the	SOTA	on	Chinese-to-English	
•  3.45	BLEU	score	improvement	(including	changes	in	

architecture)	

20	

Conclusions

•  Training	deep	nets	may	be	easier	than	believed	previously,	and	
local	minima	may	not	be	the	main	issue	

•  But	op:miza:on	can	remain	an	important	challenge	

•  Curriculum	learning	and	other	con:nua:on	or	annealing	
methods	have	become	a	common	tool	

•  Injec:ng	noise	=	smoothing	the	objec:ve	

•  Specific	forms	of	noise	injec:on	(in	par:cular	noisy	ac:va:on	
func:ons)	and	annealing	seem	to	be	greatly	helpful	for	a	variety	
of	deep	learning	tasks	

21	

MILA: Montreal Institute For Learning Algorithms

