From Curriculum Learning to **Mollifying Networks**

June 24, ICML'2016, Optimization Workshop PLUG: Deep Learning, MIT Press book in press, PLUG: Deep Learning, MIT Press book in press, Chapters will remain online **Yoshua Bengio CIFAR Senior Fellow and Program Co-Director Montreal Institute for Learning Algorithms** Université de Montréal

ΙΙΔ

Université 🍈 de Montréal

Busting the myth of local minima

- There are still some researchers who believe that because of the presence of local minima, neural nets should be replaced by kernel machines (Liu, Lee & Jordan, ICML'2016)
- Yet, mounting evidence that this is a **myth**, for non-tiny nets:
 - (Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the saddle point problem for non-convex optimization
 - (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS' 2014): Identifying and attacking the saddle point problem in high-dimensional non-convex optimization
 - (Choromanska, Henaff, Mathieu, Ben Arous & LeCun AISTATS'2015): *The Loss Surface of Multilayer Nets*
 - (Daniel Soudry, Yair Carmon, arXiv:1605.08361): No bad local minima: Data independent training error guarantees for multilayer neural networks

Saddle Points

- Local minima dominate in low-D, but⁴
 saddle points dominate in high-D
- Most local minima are close to the bottom (global minimum error) when the network becomes large

Low Index Critical Points

Choromanska et al & LeCun 2014, 'The Loss Surface of Multilayer Nets' Shows that deep rectifier nets are analogous to spherical spin-glass models The low-index critical points of large models concentrate in a band just above the global minimum, as the number of hidden units increases

Saddle Points During Training

- Oscillating between two behaviors:
 - Slowly approaching a saddle point
 - Escaping it

Yet, training deep / recurrent architectures can be challenging!

Effect of Initial Conditions in Deep Nets with Tanh Units

- (Erhan et al 2009, JMLR)
- Supervised deep net (tanh), with or w/o unsupervised pre-training ->very different solutions in fn space

Neural net trajectories in function space, visualized by t-SNE

No two training trajectories end up in the same place \rightarrow huge number of effective local minima

Guided Training, Intermediate Concepts

- In (Gulcehre & Bengio ICLR'2013) we set up a task that seems almost impossible to learn by shallow nets, deep nets, SVMs, trees, forests, boosting etc
- Breaking the problem in two sub-problems and pre-training each module separately, then fine-tuning, nails it
- Need prior knowledge to decompose the task
- Guided pre-training allows to find much better solutions, escape effective local minima

Curriculum Learning

Guided learning helps training humans and animals

Start from simpler examples / easier tasks (Piaget 1952, Skinner 1958)

Order & Selection of Examples Matters

(Bengio, Louradour, Collobert & Weston, ICML'2009)

- Curriculum learning
- (Bengio et al 2009, Krueger & Dayan 2009)
- Start with easier examples
- Faster convergence to a better local minimum in deep architectures

Curriculum learning as a Continuation Method

Modern Uses of Curriculum Learning in Difficult to Train Architectures

- Zaremba, Wojciech, and Ilya Sutskever. "*Learning to execute*." arXiv preprint arXiv:1410.4615 (2014).
- Zaremba, Wojciech, and Ilya Sutskever. "*Reinforcement learning neural Turing machines*." arXiv preprint arXiv:1505.00521 362 (2015).
- Zhang, Dingwen, et al. "*A self-paced multiple-instance learning framework for co-saliency detection*." Proceedings of the IEEE International Conference on Computer Vision. 2015.
- Amodei, Dario, et al. "*Deep speech 2: End-to-end speech recognition in English and mandarin*." arXiv preprint arXiv:1512.02595 (2015).
- Gülçehre, Çağlar, and Yoshua Bengio. "*Knowledge matters: Importance of prior information for optimization*." Journal of Machine Learning Research17.8 (2016): 1-32.

Appropriately Injecting Noise to Improve Training

Noisy Activation Functions, Gulcehre, Moczulski, Denil & Bengio, 20

Mollifying Networks, Gulcehre, Moczulski& Bengio, 2016 (submitted) See also Neelakantan, Arvind, et al. "Adding gradient noise improves learning for very deep networks." arXiv:1511.06807

 Injecting noise is like smoothing the objective function, which is easier to optimize (in the limit of high smoothing: convex)

$$egin{aligned} \mathcal{L}_K(oldsymbol{ heta}) &= (\mathcal{L} * K)(oldsymbol{ heta}) \ &= \int_C \mathcal{L}(oldsymbol{ heta} - \xi) K(\xi) d_\xi \end{aligned}$$

and easy stochastic gradient

$$\frac{\partial \mathcal{L}_K(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \approx \frac{1}{N} \sum_{i=1}^N \frac{\partial \mathcal{L}(\boldsymbol{\theta} - \xi_i)}{\partial \boldsymbol{\theta}}$$

Gradually Decreased Noise = Continuation Method or Annealing

 Start with high noise and gradually converge to the target (noise-free) objective, trying to track the local minimum along the way

Noisy Activation Functions

Adding noise where the nonlinearity would saturate to enhance exploration

Derivative of Each Unit at Each Layer with Respect to Unit's Input.

Noisy Activation Functions

• Improving the 'Learning to Execute' architecture

Injecting noise to make the objective function have a single global minimum

- Initially, high noise: layer = linear and is skipped
- Finally, low noise: layer = tanh or sigmoid, not skipped, very useful for gates in LSTM&GRU

Annealed Stochastic Depth

- With some probability p, each layer's output is just the output of the previous layer
- That probability p is annealed down at the same time as the noise injection level

$$\begin{split} \mathbf{b} &\sim \operatorname{Bin}(p) \\ h_i^l &= b_i^l h_i^{l-1} + (1-b_i^l) \tilde{h}_i^l \end{split}$$

- Where $ilde{h}_i^l$ is the normal non-linear update of the layer
- Thus the effective depth is gradually increased during training

Results

Noisy Activation Functions for NMT

- Neural Machine Translation with External Phrase Memory, Tang, Meng, Lu, Li & Yu, arXiv:1606.01792
- Beating the SOTA on Chinese-to-English
- 3.45 BLEU score improvement (including changes in architecture)

Conclusions

- Training deep nets may be easier than believed previously, and local minima may not be the main issue
- But optimization can remain an important challenge
- Curriculum learning and other continuation or annealing methods have become a common tool
- Injecting noise = smoothing the objective
- Specific forms of noise injection (in particular noisy activation functions) and annealing seem to be greatly helpful for a variety of deep learning tasks

MILA: Montreal Institute For Learning Algorithms

