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S>ll	Far	from	Human-Level	AI	

•  Industrial	successes	mostly	based	on	
supervised	learning	

•  Learning	superficial	clues,	not	generalizing	
well	enough	outside	of	training	contexts,	easy	
to	fool	trained	networks:		
– Current	models	cheat	by	picking	on	surface	
regulari>es	



Learning	Mul>ple	Levels	of	Abstrac>on	

•  The	big	payoff	of	deep	learning	is	to	allow	learning	
higher	levels	of	abstrac>on	

•  Higher-level	abstrac>ons	disentangle	the	
factors	of	varia:on,	which	allows	much	easier	
generaliza>on	and	transfer	
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Invariance	and	Disentangling	
•  Invariant	features	

•  Which	invariances?	

•  Alterna>ve:	learning	to	disentangle	factors	

•  Good	disentangling	à		
					avoid	the	curse	of	dimensionality:	

Dependencies	are	“simple”	when	the	data	is	
projected	in	the	right	abstract	space	
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Domain Adaptation for Sentiment Classification with Deep Learning

Figure 1. Transfer losses on the Amazon benchmark of 4 domains: Kitchen(K), Electronics(E), DVDs(D) and
Books(B). All methods are trained on the labeled set of one domain and evaluated on the test sets of the others. SDAsh

outperforms all others on 11 out of 12 cases.

Figure 2. Left: Transfer ratios on the Amazon benchmark. Both SDA-based systems outperforms the rest even if
SDAsh is better. Right: Proxy A-distances between domains of the Amazon benchmark for the 6 di↵erent pairs.
Transforming data with SDAsh increases the proxy A-distance.
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Figure 3. L1 feature selection on the Amazon benchmark. Both graphs depict the number of tasks of domain
recognition (x-axis) and sentiment analysis (y-axis) in which a feature is re-used by L1-classifiers trained on raw features
(left) or features transformed by SDAsh. (right). See Section 4.3 for details.

Disentangling	from	denoising	objec>ve	
(Glorot,	Bordes	&	Bengio	ICML	2011)	

•  Early	deep	learning	research	already	is	looking	for	
possible	disentangling	arising	from	unsupervised	
learning	of	representa>ons	

•  Experiments	on	stacked	denoising	auto-encoders	
with	ReLUs,	on	BoW	text	classifica>on	

•  Features	tend	to	specialize	to	either	sen>ment	or	
domain	



How	to	Discover	Good	
Disentangled	Representa>ons	

•  How	to	discover	abstrac>ons?		
•  What	is	a	good	representa>on?	(Bengio	et	al	2013)	
•  Need	clues	(=	priors)	to	help	disentangle	the	
underlying	factors,	such	as	
–  Spa>al	&	temporal	scales	
– Marginal	independence	
–  Simple	dependencies	between	factors	

•  Consciousness	prior	
–  Causal	/	mechanism	independence	

•  Controllable	factors	
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What’s wrong with standard 
maximum likelihood?!

•  Pay a huge price for not putting probability 
mass at even a single training example, even 
if the data manifold and model manifold are 
very close.
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What’s wrong with standard 
maximum likelihood?!

1.  Pay a huge price for not putting probability mass at 
even a single training example, even if the data 
manifold and model manifold are very close.


•  So MLE makes the model distribution very fat and 
conservative


2.  Often requires an explicit and marginalizable 
formulation of the density, precludes powerful 
estimation of mutual information


3.  Another problem is that MLE measures error bits in 
pixel space whereas humans really care about 
errors in abstract space, so we would like loss 
measured in learned latent space
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Using a discriminator to 
optimize independence, 

mutual information or entropy!
•  Train a discriminator to separate 

between pairs (A,B) coming from P(A,B) 
and pairs coming from P(A) P(B)


•  Generalize this to measuring 
independence of all the outputs of a 
representation function (encoder). 
Maximize independence by 
backpropagating the independence 
score into the encoder 



 
à NON-LINEAR ICA.


Brakel & Bengio ArXiv:1710.05050
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(a) Anica PNL reconstructions ⇢max = .997. (b) Anica MLP reconstructions ⇢max = .968.

Figure 7: Reconstructions for the post-nonlinear mixture and MLP mixture of the synthetic sources.

(a) Audio source signals. (b) Anica PNL audio reconstructions ⇢max = .996.

Figure 8: Sources and reconstructions for the post-nonlinear mixture of audio signals.
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Non-Linear Independent 
Component Analysis Results!
•  Sources were either mixed linearly or non-linearly, 

independent components recovered in both cases


APPENDIX

A SYNTHETIC SIGNALS

The synthetic signals were defined as follows:

s1(t) = sign(cos(310⇡t)),
s2(t) = sin(1600⇡t),

s3(t) = sin(600⇡t+ 6 cos(120⇡t)),

s4(t) = sin(180⇡t),

s5(t) ⇠ uniform(x|[�1, 1]),

s6(t) ⇠ laplace(x|µ = 0, b = 1).

The experiments were done using the first 4000 samples with t linearly spaced between [0, 0.4].

B FIGURES

(a) Source signals. (b) Anica reconstructions ⇢max = .997.

Figure 6: Sources and reconstructions for the linear synthetic source ICA task. The predictions
have been rescaled to lie within the range [�1, 1] for easier comparison with the source signals.
This causes the laplacian samples to appear scaled down. The scores ⇢max represent the maximum
absolute correlation over all possible permutations of the signals.

APPENDIX

A SYNTHETIC SIGNALS

The synthetic signals were defined as follows:

s1(t) = sign(cos(310⇡t)),
s2(t) = sin(1600⇡t),

s3(t) = sin(600⇡t+ 6 cos(120⇡t)),

s4(t) = sin(180⇡t),

s5(t) ⇠ uniform(x|[�1, 1]),

s6(t) ⇠ laplace(x|µ = 0, b = 1).

The experiments were done using the first 4000 samples with t linearly spaced between [0, 0.4].

B FIGURES

(a) Source signals. (b) Anica reconstructions ⇢max = .997.

Figure 6: Sources and reconstructions for the linear synthetic source ICA task. The predictions
have been rescaled to lie within the range [�1, 1] for easier comparison with the source signals.
This causes the laplacian samples to appear scaled down. The scores ⇢max represent the maximum
absolute correlation over all possible permutations of the signals.

Linearly mixed
 Nonlinearly mixed




Using a discriminator to 
optimize independence, 

mutual information or entropy!

•  Same architecture, but with a twist in 
the training objective which provides an 
asymptotically consistent estimator of 
mutual independence


MINE: Mutual Information Neural Estimator

Belghazi et al ArXiv:1801.04062
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Mutual information, KL divergence and 
Donsker-Varadhan Representation

•  GAN: Adversarial generative framework 
between D and G

•  Goal: generate from samples from noise, z, 
transformed by a function G, such that pg(x) is 
close (equal) to a target distribution pd(x).

•  Introduce a discriminator D

•  (Original) D maximizes the value function (min-
max game): 

•  At the optimal discriminator (maximizing V), 
minimizing V amounts to minimizing JSD 
between pg(x) and pd(x).

•  Train purely through back-prop

•  Produces highly realistic data compared to 
MLE methods

•  Does not work naturally with discrete data
12!

[Belghazi et. al., 2018]!

Mutual information: measure of dependence btwn 2 variables

MINE: Mutual Information Neural Estimation

assumptions about the underlying distribution of the data. One perspective on these works is that,
given the correct constraints on a neural network, the network can be used to compute a variational
lower-bound on the distance or divergence of implicit probability measures.

In this paper we look to extend this estimation strategy to mutual information as given in equation 1,
which we note corresponds to the Kullback-Leibler (KL-) divergence Kullback (1997) between the
joint, P

XZ

and the product of the marginal distributions, P
X

⌦ P
Z

, i.e., D
KL

(P
XZ

|| P
X

⌦ P
Z

).
This observation can be used to help formulate variational Bayes in terms of implicit distribu-
tions (Mescheder et al., 2017) or INFOMAX (Brakel & Bengio, 2017).

We introduce an estimator for the mutual information based on the Donsker-Varadhan representa-
tion of the KL-divergence (Ruderman et al., 2012). As with those introduced by Nowozin et al.
(2016), our estimator is scalable, flexible, and is completely trainable via back-propagation. The
contributions of this paper are as follows.

• We introduce the mutual information neural estimator (MINE), providing its theoretical
bases and generalizability to other information metrics.

• We illustrate that our estimator can be used to train a model with improved support coverage
and richer learned representation for training adversarial models (such as adversarially-
learned inferences, ALI, Dumoulin et al., 2016).

• We demonstrate how to use MINE to improve reconstructions and inference in Adversari-
ally Learned Inference Dumoulin et al. (2016) on large scale Datasets.

• We show that our estimator provides a method of performing the Information Bottleneck
method Tishby et al. (2000) in a continuous setting, and that this approach outperforms
variational bottleneck methods (Alemi et al., 2016).

2 BACKGROUND

2.1 MUTUAL INFORMATION

Mutual information is a Shannon entropy-based measure of dependence between random variables.
Following the definition in Equation 1, the mutual information can be understood as the decrease in
the uncertainty of X given Z:

I(X;Z) := H(X)�H(X | Z) = H(Z)�H(Z | X), (2)

where H is the Shannon entropy and H(Z | X) is the conditional entropy of Z given X (the amount
of information in Z not given from X). Using simple manipulation, we write the mutual information
as the Kullback-Leibler (KL-) divergence between the joint, P

XZ

, and the product of the marginals
P
X

⌦ P
Z

:

I(X;Z) = H(X) +H(Z)�H(X,Z) = D
KL

(P
XZ

|| P
X

⌦ P
Z

), (3)

where H(X,Z) is the joint entropy of X and Z. It can be noted here that the mutual information is
zero exactly when the KL-divergence is zero. The intuitive meaning is immediately clear: the larger
the divergence between the joint and the product of the marginals, the stronger the dependence
between X and Z.

There is also a strong connection between the mutual information and the structure between random
variables. We briefly touch upon this subject in Appendix 6.1.

2.2 THE DONSKER-VARADHAN BOUND

MINE relies on the Donsker-Varadhan representation of the KL-divergence, which provides a tight
lower-bound on the mutual information. The KL-divergence between two probability distributions
P and Q on a measure space ⌦, with P absolutely continuous with respect to Q, is defined as

D
KL

(P || Q) :=

Z

⌦
log

✓
dP
dQ

◆
dP = EP


log

dP
dQ

�
(4)

2
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where the argument of the log is the density ratio2 and EP denotes the expectation with respect to
P. It follows from Jensen’s inequality that the KL-divergence is always non-negative and vanishes
if and only if P = Q.

The following theorem gives a variational representation of the KL-divergence:
Theorem 1 (Donsker-Varadhan representation). The KL divergence between any two distributions

P and Q, with P ⌧ Q, admits the following dual representation (Donsker & Varadhan, 1983):

D
KL

(P || Q) = sup

T :⌦!R
EP[T ]� log(EQ[e

T

]) (5)

where the supremum is taken over all functions T such that the two expectations are finite. Given

any subclass F of such functions, this yields the lower bound:

D
KL

(P || Q) � sup

T2F
EP[T ]� log(EQ[e

T

]) (6)

The bound in Equation 6 is known as the compression lemma in the PAC-Bayes literature (Banerjee,
2006). A simple proof goes as follows. Given T 2 F , consider the Gibbs distribution G defined by
dG =

1
Z

eT dQ, where Z = EQ[eT ]. By construction,

EP[T ]� logZ = EP


log

dG
dQ

�
(7)

The gap � between left and right hand sides of Equation 6 can then be written as:

� = EP


log

dP
dQ � log

dG
dQ

�
= EP log

dP
dG = D

KL

(P || G) � 0 (8)

and we conclude by the positivity of the KL-divergence. The identity (8) also shows that the bound
is tight whenever G = P, namely for optimal functions T ⇤ taking the form

T ⇤
= log

dP
dQ + C (9)

for some constant C 2 R.

It is interesting to compare the Donsker-Varadhan bound with other variational bounds proposed in
the literature. The variational divergence estimation proposed in (Nguyen et al., 2010) and used in
Nowozin et al. (2016) and Mescheder et al. (2017), leads to the following bound:

D
KL

(P || Q) � sup

T2F
EP[T ]� EQ[e

T�1
] (10)

Although both bounds are tight for sufficiently large families F , the Donsker-Varadhan bound is
stronger in the sense that for any fixed T , the right hand side of Equation 6 is larger than the right
hand side3 of Equation 10. We perform numerical comparisons in Section 4.1.

We refer to the work by Ruderman et al. (2012) for a derivation of both representations (6) and (10)
from unifying point of view of Fenchel duality, in the more general context of f -divergences.

3 THE MUTUAL INFORMATION NEURAL ESTIMATOR

3.1 DEFINITION

We are interested in the case of a joint random variable (X,Z) on a joint probability space ⌦ =

X ⇥Z , and where P = P
XZ

is the joint distribution, Q = P
X

⌦P
Z

is the product distribution. P is
then absolutely continuous with respect to Q. Using the expression (3) for the mutual information
in terms of a KL-divergence, we obtain the following representation:

I(X;Z) � sup

T2F
EPXZ [T (x, z)]� log(EPX⌦PZ [e

T (x,z)
]). (11)

2Although the discussion is more general, we can think of P and Q as being distributions on some compact
domain ⌦ ⇢ Rd, with density p and q respect the Lebesgue measure �, so that DKL =

R
p log

p
q d�.

3To see this, just apply the identity x � e log x with x = EQ[e
T
].

3

(Donsker & Varadhan, 1983): 
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MINE: Estimator of MI!

Given two r.v. X & Z and samples of their joint & 
marginals:








 where discriminator T is optimized to maximize the rhs
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The inequality in Equation 11 is intuitive in terms of deep learning optimization. The idea is to
parametrize the functions T : X ⇥ Z ! R in F by a deep neural network with parameters ✓ 2 ⇥,
turning the infinite dimensional problem into a much easier parametric optimization problem. In
the following we call T

✓

the statistic network. The expectations in the above lower-bound can then
be estimated by Monte-Carlo (MC) sampling using empirical samples (x, z) ⇠ P

XZ

. Samples
x̄ ⇠ P

X

and z̄ ⇠ P
Z

from the marginals are obtained by simply dropping x, z from samples (x̄, z)
and (x, z̄) ⇠ P

XZ

. The objective can be maximized by gradient ascent.

In what follows we use the notation ˆP(n)
X

for the empirical distribution associated to a given set of n
iid samples drawn for P

X

. If we denote

ˆ✓
n

= arg sup

✓2⇥
EP̂(n)

XZ
[T

✓

(x, z)]� log(EP̂(n)
X ⌦P̂(n)

Z
[eT✓(x,z)

]) (12)

as the optimal set of parameters under the above conditions, we obtain the Mutual Information

Neural Estimator (MINE):
Definition 3.1 (Mutual information neural estimator (MINE)).

\I(X;Z)

n

= EP̂(n)
XZ

[T
✓̂n
(x, z)]� log(EP̂(n)

X ⌦P̂(n)
Z

[eT✓̂n
(x,z)

]). (13)

Algorithm 1 presents details of the implementation of MINE.

Algorithm 1 . Mutual Information Estimation
✓  initialize network parameters
repeat

(x(1), z(1)), . . . , (x(n), z(n)) ⇠ P
XZ

. Draw n samples from the joint distribution
z̄(1), . . . , z̄(n) ⇠ P

Z

. Draw n samples from the Z marginal distribution
V(✓) 1

n

P
n

i=1 T✓

(x(i), z(i))� log(

1
n

P
n

i=1 e
T✓(x

(i)
,z̄

(i)

)

. Evaluate the lower-bound
✓  ✓ +r

✓

V(✓) . Update the statistic network parameters
until convergence

We will also use an adaptive gradient clipping method to ensure stability whenever MINE is used in
conjunction with another adversarial objective. The details of this are provided in Appendix 6.3.

3.2 CONSISTENCY

In this section we discuss the consistency of MINE. The estimator relies on (i) a neural network
architecture and (ii) a choice of n samples from the data distribution P

XZ

. We define consistency
in the following way:

Definition 3.2 (Consistency). The estimator \I(X;Z)

n

is (strongly) consistent if for all ✏ > 0, then
there exists a positive integer N and a choice of neural network architecture such that:

8n � N, |I(X,Z)� \I(X;Z)

n

|  ✏ with probability one

In other words, the estimator converges to the true mutual information as n ! 1, almost surely
over the choice of samples. The question of consistency breaks into two problems: an approxima-

tion problem related to the size of the family F , and inducing the gap in the inequality (11) ; and an
estimation problem related to the use of empirical measures in (12). The first problem is addressed
by the universal approximation theorem for neural networks (Hornik, 1989). For the second prob-
lem, classical consistency theorems for extremum estimators apply (Van de Geer, 2000), under mild
conditions on the parameter space.

This leads to the two lemmas below. The proofs are given in Appendix 6.2. In what follows we use
the notation ˆI[T ] for the argument of the supremum in Equation (11):

ˆI[T ] := EPXZ [T ]� log(EPX⌦PZ [e
T

])
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MINE: Consistency!

Theorem: there exists a neural net architecture such that for 
all            there exists an integer N s.t.
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. The objective can be maximized by gradient ascent.

In what follows we use the notation ˆP(n)
X

for the empirical distribution associated to a given set of n
iid samples drawn for P

X

. If we denote

ˆ✓
n

= arg sup

✓2⇥
EP̂(n)

XZ
[T

✓

(x, z)]� log(EP̂(n)
X ⌦P̂(n)

Z
[eT✓(x,z)

]) (12)

as the optimal set of parameters under the above conditions, we obtain the Mutual Information

Neural Estimator (MINE):
Definition 3.1 (Mutual information neural estimator (MINE)).

\I(X;Z)

n

= EP̂(n)
XZ

[T
✓̂n
(x, z)]� log(EP̂(n)

X ⌦P̂(n)
Z

[eT✓̂n
(x,z)

]). (13)

Algorithm 1 presents details of the implementation of MINE.

Algorithm 1 . Mutual Information Estimation
✓  initialize network parameters
repeat

(x(1), z(1)), . . . , (x(n), z(n)) ⇠ P
XZ

. Draw n samples from the joint distribution
z̄(1), . . . , z̄(n) ⇠ P

Z

. Draw n samples from the Z marginal distribution
V(✓) 1
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P
n
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(x(i), z(i))� log(
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P
n

i=1 e
T✓(x

(i)
,z̄

(i)
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. Evaluate the lower-bound
✓  ✓ +r

✓

V(✓) . Update the statistic network parameters
until convergence

We will also use an adaptive gradient clipping method to ensure stability whenever MINE is used in
conjunction with another adversarial objective. The details of this are provided in Appendix 6.3.

3.2 CONSISTENCY

In this section we discuss the consistency of MINE. The estimator relies on (i) a neural network
architecture and (ii) a choice of n samples from the data distribution P

XZ

. We define consistency
in the following way:

Definition 3.2 (Consistency). The estimator \I(X;Z)

n

is (strongly) consistent if for all ✏ > 0, then
there exists a positive integer N and a choice of neural network architecture such that:

8n � N, |I(X,Z)� \I(X;Z)

n

|  ✏ with probability one

In other words, the estimator converges to the true mutual information as n ! 1, almost surely
over the choice of samples. The question of consistency breaks into two problems: an approxima-

tion problem related to the size of the family F , and inducing the gap in the inequality (11) ; and an
estimation problem related to the use of empirical measures in (12). The first problem is addressed
by the universal approximation theorem for neural networks (Hornik, 1989). For the second prob-
lem, classical consistency theorems for extremum estimators apply (Van de Geer, 2000), under mild
conditions on the parameter space.

This leads to the two lemmas below. The proofs are given in Appendix 6.2. In what follows we use
the notation ˆI[T ] for the argument of the supremum in Equation (11):

ˆI[T ] := EPXZ [T ]� log(EPX⌦PZ [e
T

])
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Demonstration of estimation •  GAN: Adversarial generative framework 
between D and G

•  Goal: generate from samples from noise, z, 
transformed by a function G, such that pg(x) is 
close (equal) to a target distribution pd(x).

•  Introduce a discriminator D

•  (Original) D maximizes the value function (min-
max game): 

•  At the optimal discriminator (maximizing V), 
minimizing V amounts to minimizing JSD 
between pg(x) and pd(x).

•  Train purely through back-prop

•  Produces highly realistic data compared to 
MLE methods

•  Does not work naturally with discrete data
15! [Belghazi et. al., 2018]
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since  H(X|Z)=0

I(X;Z)=H(X)


GAN! GAN+MINE!

Maximizing ENTROPY: avoid GAN mode 
dropping by max MI(X,Z)

•  GAN: Adversarial generative framework 
between D and G

•  Goal: generate from samples from noise, z, 
transformed by a function G, such that pg(x) is 
close (equal) to a target distribution pd(x).

•  Introduce a discriminator D

•  (Original) D maximizes the value function (min-
max game): 

•  At the optimal discriminator (maximizing V), 
minimizing V amounts to minimizing JSD 
between pg(x) and pd(x).

•  Train purely through back-prop

•  Produces highly realistic data compared to 
MLE methods

•  Does not work naturally with discrete data
17!
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MINE: Mutual Information Neural Estimation

assumptions about the underlying distribution of the data. One perspective on these works is that,
given the correct constraints on a neural network, the network can be used to compute a variational
lower-bound on the distance or divergence of implicit probability measures.

In this paper we look to extend this estimation strategy to mutual information as given in equation 1,
which we note corresponds to the Kullback-Leibler (KL-) divergence Kullback (1997) between the
joint, P

XZ

and the product of the marginal distributions, P
X

⌦ P
Z

, i.e., D
KL

(P
XZ

|| P
X

⌦ P
Z

).
This observation can be used to help formulate variational Bayes in terms of implicit distribu-
tions (Mescheder et al., 2017) or INFOMAX (Brakel & Bengio, 2017).

We introduce an estimator for the mutual information based on the Donsker-Varadhan representa-
tion of the KL-divergence (Ruderman et al., 2012). As with those introduced by Nowozin et al.
(2016), our estimator is scalable, flexible, and is completely trainable via back-propagation. The
contributions of this paper are as follows.

• We introduce the mutual information neural estimator (MINE), providing its theoretical
bases and generalizability to other information metrics.

• We illustrate that our estimator can be used to train a model with improved support coverage
and richer learned representation for training adversarial models (such as adversarially-
learned inferences, ALI, Dumoulin et al., 2016).

• We demonstrate how to use MINE to improve reconstructions and inference in Adversari-
ally Learned Inference Dumoulin et al. (2016) on large scale Datasets.

• We show that our estimator provides a method of performing the Information Bottleneck
method Tishby et al. (2000) in a continuous setting, and that this approach outperforms
variational bottleneck methods (Alemi et al., 2016).

2 BACKGROUND

2.1 MUTUAL INFORMATION

Mutual information is a Shannon entropy-based measure of dependence between random variables.
Following the definition in Equation 1, the mutual information can be understood as the decrease in
the uncertainty of X given Z:

I(X;Z) := H(X)�H(X | Z) = H(Z)�H(Z | X), (2)

where H is the Shannon entropy and H(Z | X) is the conditional entropy of Z given X (the amount
of information in Z not given from X). Using simple manipulation, we write the mutual information
as the Kullback-Leibler (KL-) divergence between the joint, P

XZ

, and the product of the marginals
P
X

⌦ P
Z

:

I(X;Z) = H(X) +H(Z)�H(X,Z) = D
KL

(P
XZ

|| P
X

⌦ P
Z

), (3)

where H(X,Z) is the joint entropy of X and Z. It can be noted here that the mutual information is
zero exactly when the KL-divergence is zero. The intuitive meaning is immediately clear: the larger
the divergence between the joint and the product of the marginals, the stronger the dependence
between X and Z.

There is also a strong connection between the mutual information and the structure between random
variables. We briefly touch upon this subject in Appendix 6.1.

2.2 THE DONSKER-VARADHAN BOUND

MINE relies on the Donsker-Varadhan representation of the KL-divergence, which provides a tight
lower-bound on the mutual information. The KL-divergence between two probability distributions
P and Q on a measure space ⌦, with P absolutely continuous with respect to Q, is defined as

D
KL

(P || Q) :=

Z

⌦
log

✓
dP
dQ

◆
dP = EP


log

dP
dQ

�
(4)

2
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Maximizing entropy at the 
output of a neural net  

(stacked MNIST)
•  GAN: Adversarial generative framework 

between D and G

•  Goal: generate from samples from noise, z, 
transformed by a function G, such that pg(x) is 
close (equal) to a target distribution pd(x).

•  Introduce a discriminator D

•  (Original) D maximizes the value function (min-
max game): 

•  At the optimal discriminator (maximizing V), 
minimizing V amounts to minimizing JSD 
between pg(x) and pd(x).

•  Train purely through back-prop

•  Produces highly realistic data compared to 
MLE methods

•  Does not work naturally with discrete data
18! [Belghazi et. al., 2018]!

Modes (max 1000)!

DCGAN! 99! 3,4!

ALI! 16! 5,4!

Unrolled GAN! 48,7! 4,32!

VEEGAN! 150! 2,96!

PacGAN! 1000! 0,6!

DCGAN+MINE! 1000! 0,5!
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Undirected Graphical Models 

!●  Learning these models involves two fundamental goals 
○  The model must place probability mass (i.e. lower the 

energy function) where the data is located. 
○  Remove probability mass (i.e. raise the energy function) 

elsewhere.   
●  Probability modes where there is no data are known as 

spurious modes.  
●  Fundamental goal of learning is to hunt down these spurious 

modes and remove them. 






Encoders and 
generators as 

iterated 
transformations 

between 
distributions!

!
Can we share the same 

mechanism at each 
step?!
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Variational Walkback 
Goyal, Ke, Ganguli & Bengio, NIPS 2017  

•  Sample	a	data	point	(dream	seed)	
•  Start	running	the	free-runnning	Markov	

Chain	of	the	brain’s	transi>on	operator	
•  Gradually	increase	temperature	(noise)	
•  At	each	step,	update	parameters	to	make	

previous	state	more	likely	than	next	state	
(similar	to	denoising	objec>ve)	

•  This	makes	the	model	FORGET	the	states	
it	visits	in	this	noisy	dream-like	simula>on	
(reverse-STDP)	

•  Carves	dynamics	to	move	towards	data	
21	

Under review as a conference paper at ICLR 2017

RAISE is a reverse AIS, as it starts from a data point and then increases the temperature. In this
way it is similar to the Q-chain in variational walkback. The advantage of RAISE over AIS is that
it yields an estimator of the log-likelihood that tends to be pessimistic rather than optimistic, which
makes it better as an evaluation criteria.

Like AIS, RAISE estimates the log-likelihood using a form of importance sampling, based on a
product (over the chain) of the ratios of consecutive probabilities (not conditional probabilities from
the model). Variational walkback does not work with estimates of the model’s unconditional proba-
bility, and instead works directly with a conditional probability defined by the transition operator. It
is for this reason that variational walkback does not need to have an explicit energy function).

6 EXPERIMENTS

We evaluated the variational walkback on three datasets: MNIST, CIFAR (Krizhevsky & Hinton,
2009), and CelebA (Liu et al., 2015). The MNIST and CIFAR datasets were used as is, but the
aligned and cropped version of the CelebA dataset was scaled from 218 x 178 pixels to 78 x 64
pixels and center-cropped at 64 x 64 pixels (Liu et al., 2015). For all of our experiments we used
the Adam optimizer (Kingma & Ba, 2014) and the Theano framework (Al-Rfou et al., 2016). The
training procedure and architecture are detailed in appendix A.

Figure 1: Samples on MNIST using a Bernoulli likelihood in the transition operator, 8 walkback
steps during training, and 13 walkback steps during sampling. On right. Diffusion process for
sampling MNIST digits starting from bernoiulli noise. This shows how the variational walkback
iteratively generates images starting from a noise prior. For intermediate steps we display samples
and for the final step (right) we display the transition operator’s mean.

Figure 2: Variational Walkback Inpainting MNIST the left half of digits conditioned on the right
half. The goal is to fill in the left half of an MNIST digit given an observed right half of an image
(drawn from validation set).

8

Generate	

Dream	
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Learning a transition operator 
!

●  Instead of learning P(x) directly, learn Markov chain operator 
P(xt | xt-1) as P(x) could potentially have MANY MODES 

●  More efficient parameterization for a given amount of non-
linearity. 

●  Being able to clamp an arbitrary subset. 
●  Looks like what brain does in many ways (stochastic, recurrent 

and being able to handle missing inputs) 
●  Problem of finding good deep unsupervised generative models 

is still very much open. 
○  IMPORTANT to explore new approaches. 
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Variational Walkback 
Goyal et al NIPS 2017  

●  Method to directly parameterize transition operator. 
○  Providing an empirical method to control the stationary 

distribution of non-equilibrium stochastic process  that does 
not obey detail balance. 

●  Modification of variational method 
●  Potentially asymptotically infinite generative sampling process 

corresponds to non-equilibrium generalizations of energy based 
undirected models.  

●  Radical departure from both directed and undirected graphical 
models.  
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Training Process !
Learn a stochastic transition operator whose repeated application 
yields a sample from data distribution. 
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Training Process 

!
●  Index operators by temperature, gradually increase for Qt, 

gradually decrease for Pt 
●  Repeated annealed application of Pt operator à data distr. 
●  Data à repeated de-annealed application of Qt à Gaussian 
●  Training: 
●  Sample an example, apply Q1, Q2, etc. 
●  Make reverse trajectory more likely:  

 
learn to walk back heated trajectories starting at data points 
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Spurious Modes !
●  Making the destructive process identical to the transition 

operator to be learned is motivated by the idea that the 
destructive process should efficiently explore the spurious 
modes of the current transition operator.   

●  The walkback training will then destroy these modes.  
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Circumvents Credit Assignment Issue  

●  Providing targets at each time step! 
●  Each past time step of the heated trajectory 
○  Act as a training target for the future output 

of the generative operator. 
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Variational Derivation of Walkback!
●  Marginal probability of the data point at the end of generative 

process. 

 

 

●  Decomposition of marginal likelihood as variational lower 
bound. 
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Tightness of Variational bound 

!●  Tight when the distribution of the heated trajectory starting 
from a point s0, matches the posterior distribution of the 
cooled trajectory ending at s0. 
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Connection to Dreams 
 
 

●  STDP - Corresponds to increasing the probability of configurations towards 
which the network goes (i.e remembering observed configurations) 

●  Reverse-STDP has opposite sign, and corresponds to forgetting the states 
towards which the model goes. 
○  Consistent with the observation that dreams are forgotten quickly. 
○  Awake states could be remember for as long as possible(more like 

STDP) 
●  Dreams are often incoherent and this could correspond to some form of high 

temperature version of normal(awake) brain dynamics (again matching VW) 

!



Institut!
 des algorithms!

 d’apprentissage!
 de Montréal!

!
!

Institut!
 des algorithmes!
 d’apprentissage!

 de Montréal!
!
!

Lower Bound on CIFAR 
 
 Method! Lower Bound!

NET ! 5 bits/pixel!

Deep VAE! 4.54 bits/pixel!

VW (5 steps)! 8.1 bits/pixel!

VW(20 steps)! 5.2 bits/pixel!

VW (30 steps)! 4.23 bits/pixel!

DRAW ! 4.13 bits/pixel!
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