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Still Far from Human-Level Al

* Industrial successes mostly based on
supervised learning

* Learning superficial clues, not generalizing
well enough outside of training contexts, easy
to fool trained networks:

— Current models cheat by picking on surface
regularities



Learning Multiple Levels of Abstraction

(Bengio & LeCun 2007)

* The big payoff of deep learning is to allow learning
higher levels of abstraction

* Higher-level abstractions disentangle the

factors of variation, which allows much easier
generalization and transfer




Invariance and Disentangling

Invariant features

Which invariances?

Alternative: learning to disentangle ! /

Good disentangling =2
avoid the curse of dimensionality:

Dependencies are “simple” when the data is
projected in the right abstract space



Disentangling from denoising objective
(Glorot, Bordes & Bengio ICML 2011) % o

* Early deep learning research already is Iookin’rB a
possible disentangling arising from unsupervised
learning of representations

* Experiments on stacked denoising auto-encoders
with ReLUs, on BoW text classification

* Features tend to specialize to either sentiment or
domain
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How to Discover Good
Disentangled Representations

* How to discover abstractions? é
« What is a good representation? (Bengio et al 2013

* Need clues (= priors) to help disentangle the
underlying factors, such as

— Spatial & temporal scales

— Marginal independence K XK ¥ ¥
— Simple dependencies between factorm

e Consciousness prior ( ) ) ) )

— Causal / mechanism independence [M{ T
* Controllable factors
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What’s wrong with standard
maximum likelihood?

Model

* Pay a huge price for not putting probability
manifold

mass at even a single training example, even
If the data manifold and model manifold are Data

very close. manifold



What’s wrong with standard
maximum likelihood?

1. Pay a huge price for not putting probability mass at
even a single training example, even if the data
manifold and model manifold are very close.

Model
density

Data

* So MLE makes the model distribution very fat and )
manifold

conservative

2. Often requires an explicit and marginalizable
formulation of the density, precludes powerful
estimation of mutual information

3. Another problem is that MLE measures error bits in
pixel space whereas humans really care about
errors in abstract space, so we would like loss
measured in learned latent space



Using a discriminator to

optimize independence,

mutual information or entropy

£ Brakel & Bengio ArXiv:1710.05050
. . '* Train a discriminator to separate

) between pairs (A,B) coming from P(A,B)
and pairs coming from P(A) P(B)

Discriminator

Minibatch
per-
Generalize this to measuring ‘chii
independence of all the outputs of a
representation function (encoder). f
Maximize independence by Nonlinear
backpropagating the independence ICA

' d
score into the encoder encoder

- NON-LINEAR ICA.



Non-Linear Independent
Component Analysis Results

* Sources were either mixed linearly or non-linearly,
iIndependent components recovered in both cases
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(a) Source signals.

(b) Anica reconstructions pmax = .997.

Linearly mixed

(a) Anica PNL reconstructions pmax = .997.

Nonlinearly mixed



Using a discriminator to
optimize independence,

mutual information or entropy

Discriminator

MINE: Mutual Information Neural Estimator
™ Belghazi et al ArXiv:1801.04062

Minibatch
per-
variable

Same architecture, but with a twist in shuffle
the training objective which provides an
asymptotically consistent estimator of
mutual independence



Mutual information, KL divergence and

Donsker-Varadhan Representation
[Belghazi et. al., 2018]

Mutual information: measure of dependence btwn 2 variables

I(X: Z) = Dru(Przl|Px @P2) = Bz, [log (F 0|

I[(X;Z2)=H(X)+ H(Z) - H(X,Z) = Dkr(Pxz || Px ® Pz)

(Donsker & Varadhan, 1983):
Drr(P||Q) = sup Ep[T]—log(Eg[e])

T:QQ—R
Optimal T: With suboptimal T:
dlP
T =log— +C Drr(P || Q) > sup Ep[T] — log(Egle’])

dQ TeF

12



MINE: Estimator of Ml

Given two r.v. X & Z and samples of their joint &
marginals:

Discriminator T

/'\ = - A — - - Tén (,2) inibatc
I(X, Z)n EPE?% [Ten (ZL‘, Z)] log(EP%)Q@P(Zn) [6 ]) M P_Z:;tl h
shuffle

where discriminator T is optimized to maximize the rhs



MINE: Consistency

Theorem: there exists a neural net architecture such that for
all ¢ > 0 there exists an integer N s.t.

/\

Vn>N, |I(X,Z)—-1(X;Z), | <e with probability one



Demonstration of estimation

Mutual Information of 2-dimensional variables

— MINE
—— MINE-f
\ —— Kraskov /

True MI

MI between 2
Gaussians

s [Belghazi et. al., 2018]



Demonstration of estimation

40

35

30

(Xa; Xb)

Mutual Information of 20-dimensional variables

—— MINE i

—— MINE- [

—— Kraskov 1

-==- True MI ,"
,,' MI between 2
',' Gaussians
I

16 [Belghazi et. al., 2018]



Maximizing ENTROPY: avoid GAN mode
dropping by max MI(X,Z)

GAN+MINE
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22’32 output of a neural net
(_'
(027 (stacked MNIST)
3 ﬁ ;}z ; Modes (max 1000) Dk r(Py||Qy)
| dasg
DCGAN 99 3,4
ALI 16 5,4
Unrolled GAN 48,7 4,32
VEEGAN 150 2,96
PacGAN 1000 0,6
DCGAN+MINE 1000 0,5
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Undirected Graphical Models

Learning these models involves two fundamental goals

o The model must place probability mass (i.e. lower the
energy function) where the data is located.

o Remove probability mass (i.e. raise the energy function)
elsewhere.

Probability modes where there is no data are known as

spurious modes.

Fundamental goal of learning is to hunt down these spurious

modes and remove them.




Abstract
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Variational Wallkbaclk
Goual, Ke. Ganquli & Bengio, NIPS 2017

Generate

e Sample a data point (dream seed)
e Start running the free-runnning Markov
Chain of the brain’s transition operator

* Gradually increase temperature (noise) “™ "~ ™ = —

« At each step, update parameters to make @hit 22 8% <2 el e
previous state more likely than next state £3 4 § '
(similar to denoising objective)

e This makes the model FORGET the states :: j:‘

it visits in this noisy dream-like simulation #3 &2 $5d &

( Feverse- STD P ) s reconstruct

e (Carves dynamics to move towards data Dream




Learning a transition operator

e Instead of learning P(x) directly, learn Markov chain operator
P(x; | x..1) as P(x) could potentially have MANY MODES

e More efficient parameterization for a given amount of non-
linearity.

e Being able to clamp an arbitrary subset.

e Looks like what brain does in many ways (stochastic, recurrent
and being able to handle missing inputs)

e Problem of finding good deep unsupervised generative models
Is still very much open.
o IMPORTANT to explore new approaches




Variational Walkback
Goyal et al NIPS 2017

Method to directly parameterize transition operator.

o Providing an empirical method to control the stationary
distribution of non-equilibrium stochastic process that does
not obey detail balance.

Modification of variational method

Potentially asymptotically infinite generative sampling process
corresponds to non-equilibrium generalizations of energy based
undirected models.

Radical departure from both directed and undirected graphical
models.




Training Process

Learn a stochastic transition operator whose repeated application
yields a sample from data distribution.

Analysis / Recognition / Destruction / Forward Process
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Synthesis / Generation / Creation / Reverse Process




Training Process

e Index operators by temperature, gradually increase for Q,,
gradually decrease for P,
e Repeated annealed application of P, operator - data distr.
e Data - repeated de-annealed application of Q, > Gaussian
e Training:
e Sample an example, apply Q, Q, etc.
e Make reverse trajectory more likely:

learn to walk back heated trajectories starting at data points




Spurious Modes

e Making the destructive process identical to the transition
operator to be learned is motivated by the idea that the
destructive process should efficiently explore the spurious
modes of the current transition operator.

e The walkback training will then destroy these modes.




Circumvents Credit Assignment Issue

e Providing targets at each time step!
e Each past time step of the heated trajectory
o Act as a training target for the future output
of the generative operator.

Analysis / Recognition / Destruction / Forward Process

P1:(81(82)

Synthesis / Generation / Creation / Reverse Process




Variational Derivation of Walkback

e Marginal probability of the data point at the end of generative
process.
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Tightness of Variational bound

e Tight when the distribution of the heated trajectory starting
from a point s,, matches the posterior distribution of the
cooled trajectory ending at s,,.
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Connection to Dreams

e STDP - Corresponds to increasing the probability of configurations towards
which the network goes (i.e remembering observed configurations)
e Reverse-STDP has opposite sign, and corresponds to forgetting the states
towards which the model goes.
o Consistent with the observation that dreams are forgotten quickly.
o Awake states could be remember for as long as possible(more like
STDP)
e Dreams are often incoherent and this could correspond to some form of high
temperature version of normal(awake) brain dynamics (again matching VW)




Lower Bound on CIFAR

Method Lower Bound
NET 5 bits/pixel
Deep VAE 4.54 bits/pixel
VW (5 steps) 8.1 bits/pixel
VW(20 steps) 5.2 bits/pixel
VW (30 steps) 4.23 bits/pixel
DRAW

4.13 bits/pixel







