Towards disentangling underlying explanatory factors

Yoshua Bengio

July 13th, 2018

ICML’2018 Workshop on Learning with Limited Labels
Generalizing Beyond i.i.d. Data

• Current ML theory is strongly dependent on the iid assumption
• Real-life applications often require generalizations in regimes not seen during training
• Humans can project themselves in situations they have never been (e.g. imagine being on another planet, or going through exceptional events like in many movies)

• Key to success: understanding explanatory/causal factors and mechanisms
Learning Multiple Levels of Abstraction

(Bengio & LeCun 2007)

- The big payoff of deep learning is to facilitate learning higher levels of abstraction.
- Higher-level abstractions can **disentangle the factors of variation**, which allows much easier generalization and transfer.
Invariance and Disentangling

- Invariant features
- Which invariances?
- Alternative: learning to disentangle factors

• Good disentangling ➔
 avoid the curse of dimensionality:

Dependencies are “simple” when the data is projected in the right abstract space
Disentangling from denoising objective (Glorot, Bordes & Bengio ICML 2011)

- Early deep learning research already is looking for possible disentangling arising from unsupervised learning of representations
- Experiments on stacked denoising auto-encoders with ReLUs, on BoW text classification
- Features tend to specialize to either sentiment or domain
Space-Filling in Representation-Space

- Deeper representations ➔ abstractions ➔ disentangling
- Manifolds are expanded and flattened

(Bengio et al ICML 2013)
Interpolating in Latent Space

If the model is good (unfolds the manifold), interpolating between latent values yields plausible images.

Figure 4: Top rows: Interpolation between a series of 9 random points in \mathbb{Z} show that the space learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In the 6th row, you see a room without a window slowly transforming into a room with a giant window. In the 10th row, you see what appears to be a TV slowly being transformed into a window.

Scene classification learn object detectors (Oquab et al., 2014). We demonstrate that an unsupervised DCGAN trained on a large image dataset can also learn a hierarchy of features that are interesting. Using guided backpropagation as proposed by (Springenberg et al., 2014), we show in Fig. 5 that the features learnt by the discriminator activate on typical parts of a bedroom, like beds and windows. For comparison, in the same figure, we give a baseline for randomly initialized features that are not activated on anything that is semantically relevant or interesting.

6.3 Manipulating the Generator Representation

6.3.1 Forgetting to Draw Certain Objects

In addition to the representations learnt by a discriminator, there is the question of what representations the generator learns. The quality of samples suggest that the generator learns specific object representations for major scene components such as beds, windows, lamps, doors, and miscellaneous furniture. In order to explore the form that these representations take, we conducted an experiment to attempt to remove windows from the generator completely.

Figure 7: Vector arithmetic for visual concepts. For each column, the \mathbb{Z} vectors of samples are averaged. Arithmetic was then performed on the mean vectors creating a new vector \mathbb{Y}. The center sample on the right hand side is produce by feeding \mathbb{Y} as input to the generator. To demonstrate the interpolation capabilities of the generator, uniform noise sampled with scale ± 0.25 was added to \mathbb{Y} to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples) results in noisy overlap due to misalignment.

Radford et al. 2016
Latent Variables and Abstract Representations

- Encoder/decoder view: maps between low & high-levels
- Encoder does inference: interpret the data at the abstract level
- Decoder can generate new configurations
- Encoder flattens and disentangles the data manifold
• **Hypothesis**: *Deep CNNs have a tendency to learn superficial statistical regularities in the dataset rather than high level abstract concepts.*

• From the perspective of learning high level abstractions, Fourier image statistics can be *superficial* regularities, not changing object category.
Measuring the Tendency of CNNs to Learn Surface Statistical Regularities

- Different Fourier filters, same high level abstractions (objects) but different surface statistical regularities (Fourier image statistics).

- **Experiment**: Train on one training set and evaluate the test sets.
 - A generalization gap: max difference in test accuracies

- Large generalization gap: CNN exploits too much of low level regularities, as opposed to learning the abstract high level concepts.
What’s Missing with Deep Learning?

Deep Understanding
Learning « How the world ticks »

- So long as our machine learning models « cheat » by relying only on superficial statistical regularities, they remain vulnerable to out-of-distribution examples.

- Humans generalize better than other animals thanks to a more accurate internal model of the underlying causal relationships.

- To predict future situations (e.g., the effect of planned actions) far from anything seen before while involving known concepts, an essential component of reasoning, intelligence and science.
How to Discover Good Disentangled Representations

• How to discover abstractions?
• What is a good representation? (Bengio et al 2013)
• Need clues (= priors) to help disentangle the underlying factors, such as
 – Spatial & temporal scales
 – Marginal independence
 – Simple dependencies between factors
 • Consciousness prior
 – Causal / mechanism independence
 • Controllable factors
Acting to Guide Representation Learning & Disentangling

(E. Bengio et al, 2017; V. Thomas et al, 2017)

- Some factors (e.g. objects) correspond to ‘independently controllable’ aspects of the world

- Can only be discovered by acting in the world
 - Control linked to notion of objects & agents
 - Causal but agent-specific & subjective: affordances
Abstraction Challenge for Unsupervised Learning

• Why is modeling $P(\text{acoustics})$ so much worse than modeling $P(\text{acoustics} \mid \text{phonemes}) P(\text{phonemes})$?

• Wrong level of abstraction?
 • many more entropy bits in acoustic details then linguistic content

→ predict the future in in abstract space instead: non-trivial
The Consciousness Prior
Bengio 2017, arXiv:1709.08568

- Conscious thoughts are very low-dimensional objects compared to the full state of the (unconscious) brain
- Yet they have unexpected predictive value or usefulness
 → strong constraint or prior on the underlying representation

- **Thought**: composition of few selected factors / concepts (key/value) at the highest level of abstraction of our brain

- Richer than but closely associated with short verbal expression such as a *sentence* or phrase, a *rule* or *fact* (link to classical symbolic AI & knowledge representation)
How to select a few relevant abstract concepts making a thought?

Content-based Attention
On the Relation between Abstraction and Attention

- Attention allows to focus on a few elements out of a large set.
- Soft-attention allows this process to be trainable with gradient-based optimization and backprop.

Attention focuses on a few appropriate abstract or concrete elements of mental representation.
The Consciousness Prior
Bengio 2017, arXiv:1709.08568

- 2 levels of representation:
 - High-dimensional abstract representation space (all known concepts and factors) h
 - Low-dimensional conscious thought c, extracted from h

- c includes names (keys) and values of fac...
Disentangling up to Linear Projection

• My old view of disentangling: each dimension of the representation = one ‘nameable’ (semantic) factor

• Potential problem: the number of ‘nameable’ factors is limited by the number of units, and brains don’t use a completely localized representation for named things

• My current view of disentangling: it is enough that a linear projection exist to ‘classify’ or ‘predict’ any of the factors

• The ‘number’ of potential ‘nameable’ factors is now exponentially larger (e.g. subsets of dimensions, weights of these projections)
The Consciousness Prior
Bengio 2017, arXiv:1709.08568

- Conscious prediction over attended variables A (soft attention)

$$V = - \sum_A w_A \log P(h_{t,A} = a | c_{t-1})$$

- Attention weights
- Factor name
- Predicted value
- Earlier conscious state

conscious state c
unconscious state h
input x
• How to train the attention mechanism which selects which variables to predict?
 • Representation learning without reconstruction:
 • Maximize entropy of code
 • Maximize mutual information between past and future
 • Objective function completely in abstract space, higher-level parameters model dependencies in abstract space
 • Usefulness of thoughts: as conditioning information for action, i.e., a particular form of planning for RL, i.e., the estimated gradient of rewards could also be used to drive learning of abstract representations
Montreal Institute for Learning Algorithms