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Disentangling
optimization and
generalization

The traditional ML picture is that optimization and
generalization are neatly separated aspects

That makes theory easier to handle, separately

Unfortunately not the case

SGD variants influence optimization AND generalization



Memorization in
’De.e.p Nelbworlkes

Mostly from preprint arXiv:1706.05394

Devansh Arpit, Stanistaw Jastrzebski, Nicolas Ballas, David Krueger,
Emmanuel Bengio, Maxinder S Kanwal, Tegan Maharaj, Asja
Fischer, Aaron Courville, Yoshua Bengio, Simon Lacoste-Julien




Memorization in
‘be.ep Neblworlkes

e Deep networks trained with SGD generalize well due to its
implicit regularization effect (zhang et al 2016)

e Deep networks achieve ~100% train accuracy on random data
(Zhang et al 2016)

e Do deep networks also memorize real data?



Real data has
Dominant Patterns
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Real data: some samples are
learned first.

Random data: samples are
learned in arbitrary order.



Larger Margin on
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Paklterns come First

e Validation accuracy peaks
before falling

| e Patternsin real data learned
R O BT before overfitting noise

noise_0.2

= noise_0.4]
= noise_0.6
= noise_0.8

20 40 60 80 100
Epoch(s)

Train (full) and validation
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Reqularization Hinders
Memorization
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Best performance on real data

Training performance on random labels

Best validation performance (picked
across hyper parameter grid) on real
data vs. training performance on
noise labels for the same model, for
different regularizers.

Dropout is best at hindering
memorization

Maintains performance on
real data for reduced
memorization on random
data.



Take Home Messaqge

e DNNs learn patterns before memorizing noise

* Why?

* Does it have to do with SGD?



On the relevance of
Loss function
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Flatness
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Reparametrization
1=g7(0)  Ly(n)=L(g(n))

 Differentiation at critical point

(V2Ly)(n) = (Vg)(n) (VL) (g(n)) (Vg)(n)

« Flat minima i> Sharp minima

g

Sharp minima =y Flat minima



Reparametrization

AT

Sharp minima can generalize
Flat minima can poorly generalize



Eppur, sl muove!

And yet, It generalizes!



~actors
influencing
Minima in SGD

Mostly from preprint arXiv:1711.04623
Stanistaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer,
Yoshua Bengio, Amos Storkey



Behavior of SGD

e Small mini-batch finds wider minima (keskar et al 2016)

e What dynamics/factors govern the quality of minima
found by SGD?



SGD as Skochastic Differential
Eqm&io\r\
e Mini-batch gradient g”(0) (due to CLT), batch size S:

e SGD with learning rate n is described by:

1
(S) _
g7’ (0)=g(0) + —~=
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00
e Continuous stochastic differential equation (SDE) form: (Liet al

2017)

Ag(0), where Ag(0) ~ N(0,C(0))

0(t +1) = 6(t) — ng>(6)

If small enough
learning rate, ie.

dé B n small steps
& =190+ =BO()

Note: C(0) = B(8)'B(0)



q uilibrium
Distribution of SGD

e The equilibrium distribution of this SDE is given by:
* ~Inverse relation between loss and density
P(8) = Pyexp (— QL(O))

no?
* Noise n controls the granularity of the

ilib distributi
equilik rium distribution |M
Py — >\W
|w N '

> W

n= r]/S n=10

Note: n = learning rate, S = batch size, o:= fixed isotropic gradient variance



SGD Moves a Cloud of Poinks

e Consider the last k values of 6
e Form a cloud of points

e The cloud gradually moves
with SGD updates

e The width of the cloud grows
with the noise level (l.rate/BS)

e |t cannot go in valleys sharper

than that width
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Implications of the
Theory

* Probability of ending in a minima A described by Hessian H,:

1 2
_c
PA X vdetHpy exp( no? A)

* In general, minima with larger volume is favored more (simply
because it has higher probability mass)

e Higher noise n prioritizes width (volume) over depth

e Final equilibrium distribution is unchanged when learning rate
and batch size are scaled proportionally n->pn, s>8s

ro-nes (52) [\

>

Note: n = n/S, n = learning rate, S = batch size, o:= fixed isotropic gradient variance



Experimental Results
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Same Noise - Same
Learning Dynamics

Theory talks about final equilibrium distribution but seems
to apply along trajectory as well

But even learning dynamics is similar when learning rate
and batch size are scaled proportionally n=>Bn, S>BS
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Take Home Messaqges

e DNNs learn patterns before memorizing noise
 Regularization hinders memorization

 The quality of final minima and learning dynamics is similar

when learning rate and batch size are scaled proportionally
e Larger noise favors large volume minima over deep ones

e Larger noise (e.g. due to BS or l.rate) hinders memorization



A Walle with SGD

Xing, Arpit, Tsirigotis F Bengio ArXiv:1502,05770

e |nterpolate in parameter space

between minibatch SGD [~
updates and see convex shape
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e After initial phase, updates

bounce off valley floor, which

0 10 20 30 40
monotonically improves, L
traversing larger distances with 3
smaller batch sizes (BS) s ©
e Learningrate: height from floor ~ | = S~
0 10 20 30 40

e BS: exploration noise

Pure GD gets stuck on floor,
while SGD finds flatter regions, which generalize better
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Sharpest Directions Along the SGD

Tro Jector
(Jastrzebsici, Kefiton, Ballas, Fischer, Bengio, S&orkev)
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Even at the beginning of training, a high learning rate or small
batch size influences SGD to visit flatter loss regions.

the largest eigenvalues appears to always follow a similar
pattern, with a fast increase in the early phase and a decrease
thereafter, where the peak value is determined by the learning
rate and batch size.

altering the learning rate just in the direction of the eigenvectors
associated with the largest eigenvalues, SGD can be steered
towards regions which are an order of magnitude sharper but
correspond to models with similar generalization, confirming
that curvature of the endpoint found by SGD is not predictive
of its generalization properties.






