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Disentangling 
optimization and 
generalization 
•  The	tradi=onal	ML	picture	is	that	op=miza=on	and	

generaliza=on	are	neatly	separated	aspects	
	
•  That	makes	theory	easier	to	handle,	separately	

•  Unfortunately	not	the	case	

•  SGD	variants	influence	op=miza=on	AND	generaliza=on	



Memorization in 
Deep Networks 

Mostly	from	preprint	arXiv:1706.05394		
Devansh	Arpit,	Stanisław	Jastrzębski,	Nicolas	Ballas,	David	Krueger,	
Emmanuel	Bengio,	Maxinder	S	Kanwal,	Tegan	Maharaj,	Asja	
Fischer,	Aaron	Courville,	Yoshua	Bengio,	Simon	Lacoste-Julien	



Memorization in 
Deep Networks 

•  Deep	networks	trained	with	SGD	generalize	well	due	to	its	
implicit	regulariza=on	effect	(Zhang	et	al	2016)	

•  Deep	networks	achieve	~100%	train	accuracy	on	random	data	
(Zhang	et	al	2016)	

•  Do	deep	networks	also	memorize	real	data?	



Real data has 
Dominant Patterns 

•  Real	data:	some	samples	are	
learned	first.	

•  Random	data:	samples	are	
learned	in	arbitrary	order.	

Frac=on	of	=mes	each	of	1000	
samples	is	classified	correctly	
ajer	1	epoch	across	100	runs	



Larger Margin on 
Real data 

•  Real	data:	distance	from	
decision	boundary	is	large	

•  Random	data:	distance	from	
decision	boundary	is	small	

Cri=cal	sample	ra=o	=	
frac=on	of	samples	which	
have	adversarial	examples	
in	their	vicinity	



Patterns come First 
•  Valida=on	accuracy	peaks	

before	falling	

•  Panerns	in	real	data	learned	
before	overfiong	noise	

Train	(full)	and	valida=on	
(doned)	accuracy	on	
MNIST	during	training	
with	noisy	labels	



Regularization Hinders 
Memorization 

•  Dropout	is	best	at	hindering	
memoriza=on	

•  Maintains	performance	on	
real	data	for	reduced	
memoriza=on	on	random	
data.	

Best	valida=on	performance	(picked	
across	hyper	parameter	grid)	on	real	
data	vs.	training	performance	on	
noise	labels	for	the	same	model,	for	
different	regularizers.	



Take Home Message 
•  DNNs	learn	pa:erns	before	memorizing	noise	
	

• Why?	

• Does	it	have	to	do	with	SGD?	



On the relevance of 
loss function 
geometry for 
generalization 

Laurent Dinh, Razvan Pascanu,	
Samy Bengio, Yoshua Bengio	



Flatness



•  Flat minima                Sharp minima"
"
Sharp minima            Flat minima 

Reparametrization

•    









•  Differentiation at critical point



Reparametrization

Sharp minima can generalize
Flat minima can poorly generalize



Eppur, si muove!"
"

And yet, it generalizes!



Factors 
influencing 
Minima in SGD 

Mostly	from	preprint	arXiv:1711.04623	
Stanisław	Jastrzębski,	Zachary	Kenton,	Devansh	Arpit,	Nicolas	Ballas,	Asja	Fischer,	
Yoshua	Bengio,	Amos	Storkey	

	



Behavior of SGD 
•  Small	mini-batch	finds	wider	minima	(Keskar	et	al	2016)	

•  What	dynamics/factors	govern	the	quality	of	minima	
found	by	SGD?	



SGD as Stochastic Differential 
Equation 
•  Mini-batch	gradient	g(S)(θ)	(due	to	CLT),	batch	size	S:	

•  SGD	with	learning	rate	η	is	described	by:	

•  Con=nuous	stochas=c	differen=al	equa=on	(SDE)	form:	(Li	et	al	
2017)		

Note:	C(θ)	=	B(θ)TB(θ)	

If	small	enough	
learning	rate,	ie.	
small	steps	
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•  The	equilibrium	distribu=on	of	this	SDE	is	given	by:	

•  ~Inverse	rela=on	between	loss	and	density	

•  Noise	n	controls	the	granularity	of	the	
equilibrium	distribu=on		

Equilibrium 
Distribution of SGD 

Note:	η	=	learning	rate,	S	=	batch	size,	σ2 =	fixed	isotropic	gradient	variance	

n	=	η/S		



SGD Moves a Cloud of Points 

•  Consider	the	last	k	values	of	θ	
•  Form	a	cloud	of	points	
•  The	cloud	gradually	moves	

with	SGD	updates	
•  The	width	of	the	cloud	grows	

with	the	noise	level	(l.rate/BS)	
•  It	cannot	go	in	valleys	sharper	

than	that	width	

19	



Implications of the 
Theory 
•  Probability	of	ending	in	a	minima	A	described	by	Hessian	HA:		
	

	
•  In	general,	minima	with	larger	volume	is	favored	more	(simply	

because	it	has	higher	probability	mass)	

•  Higher	noise	n	priori=zes	width	(volume)	over	depth	
•  Final	equilibrium	distribu=on	is	unchanged	when	learning	rate	

and	batch	size	are	scaled	propor=onally	η→βη,	S→βS	

Note:	n	=	η/S,	η	=	learning	rate,	S	=	batch	size,	σ2 =	fixed	isotropic	gradient	variance	



Smaller Noise –  
Sharper Bowl 

Equal noise –  
Equal Width 

Experimental	Results	



Same Noise - Same 
Learning Dynamics 
•  Theory	talks	about	final	equilibrium	distribu=on	but	seems	

to	apply	along	trajectory	as	well	
•  But	even	learning	dynamics	is	similar	when	learning	rate	

and	batch	size	are	scaled	propor=onally								η→βη,	S→βS	

Cyclic	Learning	Rate	and	Cyclic	
Batch-size	

Constant	Learning	Rate	and	
Constant	Batch-size	



Take Home Messages 
•  DNNs	learn	pa:erns	before	memorizing	noise	

•  Regulariza*on	hinders	memoriza*on	

•  The	quality	of	final	minima	and	learning	dynamics	is	similar	

when	learning	rate	and	batch	size	are	scaled	propor*onally	

•  Larger	noise	favors	large	volume	minima	over	deep	ones	

•  Larger	noise	(e.g.	due	to	BS	or	l.rate)	hinders	memoriza*on	



A Walk with SGD 
Xing, Arpit, Tsirigotis & Bengio ArXiv:1802.08770 

•  Interpolate	in	parameter	space	
between	minibatch	SGD	
updates	and	see	convex	shape	

•  Ajer	ini=al	phase,	updates	
bounce	off	valley	floor,	which	
monotonically	improves,	
traversing	larger	distances	with	
smaller	batch	sizes	(BS)	

•  Learning	rate:	height	from	floor	
•  BS:	explora=on	noise	
•  Pure	GD	gets	stuck	on	floor,	

while	SGD	finds	flaner	regions,	
24	

A Walk with SGD

Figure 1. Plots for VGG-11 Epoch 1 trained using full batch Gra-
dient Descent (GD) on CIFAR-10. Top: Training loss for the
1st 40 iterations of training. Between the training loss at every
consecutive iteration, we uniformly sample 10 points between the
parameters before and after a training update and calculate the loss
at these points. Thus we take a slice of the loss surface between two
iterations. These loss values are plotted between every consecutive
training loss value from training updates. For instance, between
iterations 20 and 21 (vertical gray lines), there are 10 loss values
interpolating the loss surface. The dashed orange line connects the
minimum of the loss interpolation between consecutive iterations
(this minimum denotes the valley floor along the interpolation).
Middle: Cosine of the angle between gradients from two consec-
utive iterations. Bottom: Parameter distance from initialization.
Gist: The loss interpolation between consecutive iterations have a
minimum for iterations where cosine is highly negative (close to
�1 after around 20 iterations meaning the consecutive gradients
are almost along opposite directions), suggesting the optimization
is oscillating along the walls of a valley like structure. The valley
floor (dashed orange line) reduces monotonously.

stochasticity. The plot of training loss interpolation be-
tween consecutive iterations (referred in the figure as train-
ing loss), cos(gt�1,gt), and parameter distance k✓t � ✓0k2
for CIFAR-10 on VGG-11 architecture optimized using full
batch gradient descent is shown in Figure 1 for the first 40
iterations of training. To be clear, the x-axis is calibrated by
the number of iterations, and there are 10 interpolated loss
values between each consecutive iterations (vertical gray
lines) in the training loss plot which is as described above
(the cosine and parameter distance plots do not have any
interpolations). This figure shows that the interpolated loss
between every consecutive parameters from GD optimiza-
tion update after iteration 15 appears to be a quadratic-like
structure with a minimum in between. Additionally, the
cosine of the angle between consecutive gradients after it-

Figure 2. Plots for VGG-11 Epoch 1 trained using SGD on CIFAR-
10. The descriptions of the plots are same as in Figure 1. Gist: The
loss interpolation between consecutive iterations have a minimum
for iterations and cosine is less negative compared with GD, sug-
gesting the optimization is oscillating along the walls of a valley
like structure but doing more exploration compared with GD. This
is verified by the larger distance traveled by SGD compared with
GD in Figure 1. The valley floor (dashed orange line) has many
ups and downs showing barriers along SGD’s path which do not
affect its dynamics because SGD travels at a height above the floor.

eration 15 is going negative and finally very close to �1,
which means the consecutive gradients are almost along
opposite directions. These two observations together sug-
gest that the GD iterate is bouncing between walls of a
valley-like landscape. For the iterations where there is a
minimum in the interpolation between two iterations, we
refer to this minimum as the floor of the valley (these valley
floors are connected by dashed orange line in figure 1 for
clarity). Thus we see that for GD, the floor is reducing
almost monotonously. As we will see, this is not the case
with SGD, and this GD behavior shows lack of exploration
for better minima. Take note that the parameter distance
from initialization during these 40 iterations reaches ⇠ 1.4.

Table 1. Number of barriers crossed during training of a whole
epoch (450 iterations) for VGG-11 and Resnet-56 on CIFAR-
10 and MLP on MNIST. We say a barrier is crossed during a
training update step if there exists a point interpolated between
the parameters before and after an update which has a loss value
higher than the loss at either points. For most parts of the training,
we find that SGD does not cross any significant number of barriers.

Epoch 1 Epoch 10 Epoch 25 Epoch 100
VGG-11 0 0 5 13

Resnet-56 0 0 2 23
MLP 0 3 5 -

which	generalize	bener	



Sharpest Directions Along the SGD 
Trajectory  
(Jastrzębski, Kenton, Ballas, Fischer, Bengio, Storkey) 

•  Even	at	the	beginning	of	training,	a	high	learning	rate	or	small	
batch	size	influences	SGD	to	visit	flaner	loss	regions.		

•  the	largest	eigenvalues	appears	to	always	follow	a	similar	
panern,	with	a	fast	increase	in	the	early	phase	and	a	decrease	
thereajer,	where	the	peak	value	is	determined	by	the	learning	
rate	and	batch	size.		

•  altering	the	learning	rate	just	in	the	direc=on	of	the	eigenvectors	
associated	with	the	largest	eigenvalues,	SGD	can	be	steered	
towards	regions	which	are	an	order	of	magnitude	sharper	but	
correspond	to	models	with	similar	generaliza=on,	confirming	
that	curvature	of	the	endpoint	found	by	SGD	is	not	predic*ve	
of	its	generaliza*on	proper*es.	
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