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Sktatistical Considerakions



Now-distributed representations

e N-grams, Clustering, Nearest-

Clusterin :
5 , Neighbors, RBF SVMs, local
X /\ non-parametric density
e estimation & prediction,

decision trees, etc.

e Parameters for each
distinguishable region

e # of distinguishable regions
is linear in # of parameters

LOCAL PARTITION

- No non-trivial generalization to regions without examples



Why N-grams have poor generalization

For fixed N, the function P(next word | last N-1 words) is learned
purely from the instances of the specific N-tuples associated
with each possible (N-1)-word context. No generalization to
other sequences of N words.

With back-off / smoothing models, there is some (limited)
generalization arising from shorter n-grams, for which there is

more data, at the price of less specific predictions.
the

No sharing, where lots ca{/\do
would be possible /\ /K

sat is sat barks
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The power of distributed
representations

Multi-
Clustering Sub-partition 3

e, Sub—partition 2
\ Cl= ;

e Factor models, PCA, RBMs, \ Qom0 S
Neural Nets, Sparse Coding, cino
Deep Learning, etc. Sub—partition 1

e Each parameter influences

many regions, not just local S e .o
neighbors o
* # of distinguishable regions DISTRIBUTED PARTITION

\
Non-mutually
C1 C2 3 exclusive features/
attributes create a

grows almost exponentially
with # of parameters

e GENERALIZE NON-LOCALLY combinatorially large
TO NEVER-SEEN REGIONS set of distinguiable
configurations
input



The power of distributed
repre.seu&a&iov\s

Learned attributes/
embeddings

Sub—partition 3 o
\ Sub-—partition 2

N-grams,
clustering, etc.

X v Cl=1
Cl=1 \ €220 7
C€2=0 \C3=1 7
C3=0 L
v
. Sub—partition 1 o -
'3

prototypes

Cl1=0

C2=1 \ C1=0
C3=0 \ Co=1
\ C3=1

DISTRIBUTED PARTITION \

LOCAL PARTITION

Learning a set of features that are not mutually exclusive
can be exponentially more statistically efficient than
having nearest-neighbor-like or clustering-like models
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Putting Probability Mass where
Structure is Plausible

e Empirical distribution: mass at
training examples

e Smoothness: spread mass around

e |nsufficient

e Guess some ‘structure’ and
generalize accordingly



From the Darlke Ages of Neural Nebs:
the Neural Language Model

i-th output = P(wy = i | context)

 Bengio et al NIPS’2000
and JMLR 2003 “A |

Neural Probabilistic B
Language Model” tanh

(eo0o o0 )

normalized exponential
(e o - o - (XX

* Each word represented by
a distributed continuous-
valued code vector =
embedding

Generalizes to sequences ~., Mawix
hared i

of words that are it i Tty

semantically similar to

training sequences

Wi—1




(Bengio et al NIP§R000, IMLR 2003)
Learning Neural Word Embeddings

need help
come
go
take
give keep
make get
meet cem continue
expect want become
think
say remain
are .
Is
be
wergas
being
been
haq\as
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Analogical Representations for Free
(Mc.kc;tov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome
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DEQF Represehka&i.oh Learning

Learn multiple levels of representation

of increasing complexity/abstraction i
* theory: exponential gain hym—
X

* brains are deep
e cognition is compositional
e Better mixing (Bengio et al, ICML 2013)

e They work! SOTA on industrial-scale Al tasks
(object recognition, speech recognition,
language modeling, music modeling)
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'Dee.p Architectures are Mo»re
Expre.sswe.

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal opproximo‘ror
RBF units

RBMs & ou’ro encoders = universal approximat;
Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007,

Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014)

Some functions compactly
represented with k layers may

require exponential size with 2
layers




subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



N

bsubsub] subsubsub?

subsubsu //////////fBbS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



Sharing Components in a Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(r179)(XoX3) + (r129) (23224) + (X2X3)2 + (x9x3)(7374)

(X2X3) 9X3) + (r374)
Sum-product
network
X9X3 Ty
2 3

Theorems in
(Bengio & Delalleau, ALT 2011;
T W €Ty
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Delalleau & Bengio NIPS 2011)



Bypassing the curse

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently
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Re-Using Fealures across
Tasks: Multi-Task Learning

e Generalizing better to new tasks
(tens of thousands!) is crucial to
approach Al

e Deep architectures learn good
intermediate representations that
can be shared across tasks

(Collobert & Weston ICML 2008,
Bengio et al AISTATS 2011)

e Good representations that
disentangle underlying factors of
variation make sense for many tasks  E.g. dictionary, with intermediate
because each task concerns a concepts re-used across many definitions
subset of the factors

Prior: shared underlying explanatory factors between tasks
17



Shared Representations of Entities

peron || wert
hi
e Relational learning: multiple sources, ol Jwords | history |

different tuples of variables
e Share representations of same types N
across data sources
e Shared learned representations help event _url person

propagate information among data " history words__url

* Traditional ML: data = matrix

sources: e.g., WordNet, XWN,

Wikipedia, FreeBase, ImageNet...
(Bordes et al AISTATS 2012, ML J. 2013)

e FACTS = DATA o P(person,url,event)

o

e Deduction = Generalization
18

P(url,words,history)



Re-Using Operators Across Time and
Levels: Handling the compositionality of
human Language and thought

z+1

e Human languages, ideas, and
artifacts are composed from
simpler components

Xt+1

e Recursion: the same
operator (same parameters) is
applied repeatedly on
different states/components
of the computation

* Result after unfolding = deep (G s ,ti0u 2011, socher et al 2011) S

g computation / representation ¥



Sharing a Common Represev\&al:iov\
Space Across Modalikies

DDDDDDDD

DOLPHIN
— OBAMA
—EIFFEL TOWER

Google:
i S. Bengio, J.
Weston & N.
| Usunier
ToF (1ICAI 2011,
— NIPS’2010,
JMLR 2010,
N ML J. 2010)

"

4

100-dim
embedding space

More recently, Salakhutdinov’s work (and demo)

on multi-modal representation learning from images and text,
NIPS’2012, ICML’2014

http://deeplearning.cs.toronto.edu



Compu&a&i.omt Cownsiderakions
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Conditional Computation on kthe
Output Layer for Large Vocabularies

e When computing the loss L(f(x),y), we can exploit the knowledge
of y to make the computation of the loss NOT HAVE TO
COMPUTE ALL THE PARAMETERS involved in f(x).

e Example 1: - log P(y|x) can be decomposed in a tree structure
over the classes y, into super-(super-)categories

e Example 2: a sampling approximation of L(f(x),y) can be
computed that is much cheaper
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Handling Large Output Spaces

e Auto-encoders and RBMs reconstruct the input, which is sparse and high-
dimensional; Language models have a huge output space (1 unit per word).

codes latent features Alternatives to likelihood not

Q.... requiring the compute the
cheap expensive normalization constant, e.g. NCE
(Mnlh&Kavukcuoqu NIPS 2013)
sparse input dense output probabilities

e (Dauphin et al, ICML 2011) Reconstruct the non-zeros in
the input, and reconstruct as many randomly chosen
zeros, + importance weights 1N

« (Collobert & Weston, ICML 2008) sample a ranking loss categories
 Decompose output probabilities hierarchically (Morin
& Bengio 2005; Blitzer et al 2005; Mnih & Hinton Q

n words within each category

2007,2009; Mikolov et al 2011) ﬂﬂ.
23 O k&
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Optimization & Underfitting

e On large datasets, major obstacle is underfitting

Marginal utility of wider MLPs decreases quickly below
memorization baseline

e Current limitations: local minima, ill-conditioning or else?
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Marginal utility (MU)
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Guided Training, Intermediate
Cos«cep&s

 In (Gulcehre & Bengio ICLR’2013) we set up a task that seems
almost impossible to learn by shallow nets, deep nets, SVMs,

trees, boosting etc

e Breaking the problem in two sub-problems and pre-training
each module separately, then fine-tuning, nails it

e Need prior knowledge to decompose the task

e Guided pre-training allows to find much better solutions, escape
effective local minima

25



Order & Selection of Examples Ma!:&ars

(Bengio, Louradour, Collobert & Weston, ICML’2009) |

e Curriculum learning

e (Bengio et al 2009, Krueger & Dayan 2009) Ik ok VN

e Start with easier examples

e Faster convergence to a better local
minimum in deep architectures - curriculum

= =no-curriculum




Continuation Methods

Final solution

Track local minima

asy to find minimum



Long-Term Dependencies i

* Invery deep networks such as recurrent networks (or possibly
recursive ones), the gradient is a product of Jacobian matrices,
each associated with a step in the forward computation. This
can become very small or very large quickly [Bengio et al 1994],
and the locality assumption of gradient descent breaks down.

L= L(sr(s7—1(---8t+1(8¢,-...))))
8_L B 0L Ost 0St11
Os;  OsT Osp—_1 ~ Osy

e Two kinds of problems:
* sing. values of Jacobians > 1 - gradients explode

 or sing. values < 1 = gradients shrink & vanish
28



The Optimization Challenge in
Deep / Recurrent Nets

e Higher-level abstractions require highly non-linear
transformations to be learned

e Sharp non-linearities are difficult to learn by gradient

e Composition of many non-linearities = sharp non-linearity

e Exploding or vanishing gradients

i1 & Eir1
l &1 l 9& l O&t11
Oxt-1 O OXpq1
N Xi-1 - > Xt - > Xty pa—




RNN Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2" order)

e |nitialization (start in right ballpark avoids exploding/vanishing)

e Sparse Gradients (symmetry breaking)
e Gradient propagation regularizer (avoid vanishing gradient)
e LSTM self-loops (avoid vanishing gradient)

0.35
0.30
0.25 o
o
0.20 =
w
0.15
0.10
0.05

eIrror

4.6 ' =
/6
% 5-
Or 3-2 -2.0
> 5.4 -24 722 7%

30 0 “54 58 -26 124



Tem Foral. Coherence and Scales

e Hints from nature about different explanatory factors:
e Rapidly changing factors (often noise)
* Slowly changing (generally more abstract)
e Different factors at different time scales

e Exploit those hints to disentangle better!

(Becker & Hinton 1993, Wiskott & Sejnowski 2002, Hurri &

Hyvarinen 2003, Berkes & Wiskott 2005, Mobahi et al 2009,
Bergstra & Bengio 2009)

e RNNs working at different time scales
(Elhihi & Bengio NIPS’1995), (Koutnik et al ICML 2014)



Long-Term Dependencies
and Clipping Trick

L I
@E') Xt1 X; Xt+1
Trick first introduced by Mikolov is to clip gradients

to a maximum NORM value.

Makes a big difference in Recurrent Nets (Pascanu et al ICML 2013)

Allows SGD to compete with HF optimization on difficult long-term
dependencies tasks. Helped to beat SOTA in text compression,
language modeling, speech recognition.
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Gradient Norm Clipping

8error

g <
if Hg” > threshold then

threshold A
L —
g g S

end if




Combining ctipgi‘.hg to avoid gradient
explosion and Jacobian regularizer to
avold gradient vanishing

e (Pascanu, Mikolov & Bengio, ICML 2013)

basic tanh

1.0 @ @ @i @ i @ i @i o

0.8}
()]
306l
§ : e - MSGD
qg o—e MSGD-C
%0_4_ oo MSGD-CR]|
o

0.2

0.0 O o- -0

5'0 160 1'50 260 2_"50
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Orthogonal Initialization Works Even
Better

e Auto-encoder pre-training tends to yield orthogonal W

e (Saxe, McClelland & Ganguli ICLR 2014) showed that very deep nets

initialized with random orthogonal weights are much easier to
train

N
o
o

e Allsingular values =1

— Glorot
| — Pretrained
| — Orthogonal

-
o
o

)
o

o

Epochs to reach error threshold
—
o
o

50 100
Depth

o
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Increasing the E:xpressi;ve Power of
RNNs m.&h more Depth

e |CLR 2014, How to construct deep recurrent neural networks

+ deep hid-to-out
+ deep hid-to-hid
+deep in-to-hid

t-1 t t+1
Ordinary RNNs Vi Vi
Y 4
Z1 t
+ stacking — hté he
he §
- t

36

+ skip connections for
creating shorter paths



123 Fo, S R
Deep RNN Results '
117 o . ------------------
e Language modeling :
(Penn Treebank perplexity) [ S
107.5 {{-- et e ey
i i e 2 < < ~ o
* Music modeling (Muse, NLL) 2 2 2 2 S
— £ £ £ &£ 2 =
6,990 [y i o AL 7 2 =
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Already Many NLP Applications of DL

e Language Modeling (Speech Recognition, Machine Translation)
e Acoustic Modeling

e Part-Of-Speech Tagging

e Chunking

e Named Entity Recognition
 Semantic Role Labeling

e Parsing

* Sentiment Analysis

e Paraphrasing

* (Question-Answering

e Word-Sense Disambiguation

38



Encoder-Decoder Framework for
Machine Trawnslation

e One encoder and one decoder per language

e Universal intermediate representation

 Encode(French) = Decode(English) = translation model

* Encode(English) = Decode(English) = language model

e Parametrization grows linearly with # languages, not quadratic

English sentence English sentence

For bitext data
For unilingual data

39 French sentence English sentence



RNNs for Machine Translation

(Cho, Merrienboer, Gulcehre, Bougares, Schwenk, Bengio; arxiv 2014)

Encoder-decoder framework:
Decoder

e Encoder = ‘summarizing’ RNN: word
sequence - last-state vector = sequence

representation
e Decoder = ‘generative’ RNN: context C 2 e
distribution over word sequences T
X X, X
Encoder

40



RNNs for Machine Translation

e Decoder = ‘generative’ RNN: context C = distribution over word sequences

« P(Y,.Y; | €)= TUP(Y, | H, C)

where hidden state H, summarizes past seq. Decoder
H, = f(H,.., Y;.1,C)=F(Y,,-.Y,,C)

e Directed graphica] model: ancestral sampling

fromY, to Y.

e Output sequence can be of different length T'2T ? T
X1 X, Xr

not necessarily aligned with input sequence

Encoder

41



RNNs for MT: Resulls

42

English-French
WMT 14 task

Train on both
bilingual
(supervised) and
unilingual
(unsupervised)

Trained on phrases
(phrase table),
added into log-linear
model of MOSES

BLEU
Models dev test
Baseline 27.63 | 29.33
CSLM 28.33 | 29.58
RNN 28.48 | 29.96
CSLM + RNN 28.60 | 30.64
CSLM + RNN + WP | 2893 | 31.18

)

+1.85 BLEU points
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