Challenges for deep learning

Yoshua Bengio
U. Montreal

November 6", 2013
ICONIP’2013
Plenary talk

Université l'”\

de Montréal LISA 7=




OLkimate Groals
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Needs knowledge
Needs Iearning

Needs generalization

Needs ways to fight the curse of dimensionality

Needs disentangling the underlying explanatory factors




DEQP Representation Learning

Learn multiple levels of representation

of increasing complexity/abstraction i
* theory: exponential gain h, e—
X

* brains are deep

e cognition is compositional

e Better mixing (Bengio et al, ICML 2013)

 They work! SOTA on industrial-scale Al tasks
(object recognition, speech recognition,
language modeling, music modeling)

Includes many approaches, not all neural, not just
RBMs, many inspired by Fukushima 1980.



Google Image Search:

Different object types represented in the
same space

DDDDDDD

DOLPHIN
— OBAMA
—EIFFEL TOWER

"?Google:

'S. Bengio, J.
Weston & N.
»_ Usunier

Se¢ (1JCAI 2011,
NIPS’2010,
JMLR 2010,
MLJ 2010)

[

4

100-dim
embedding space

Learn ®(+) and 9,-) to optimize precision@k.



Following up on (Bengio et al NIPS'2000)
Neural word embeddings
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Analogical Representations for Free
(Mc.kotov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
France

S

Paris

e Paris — France + Italy = Rome

Rome
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The dramatic impact of Dee
Learhing o Speech Recognition

100%a

Using DL
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Train deep nets by layer-wise
unsupervised pre-training, whereas

previous purely supervised attempts
had failed

Unsupervised feature learners:
e RBMs
*  Auto-encoder variants
Sparse coding variants

.o New York



‘Dee.p Supervi.se.d Neural Nets

e Now can train them even without
unsupervised pre-training:
better initialization and non-
linearities (rectifiers, maxout),
generalize well with large labeled
sets and regularizers (dropout)

 Unsupervised pre-training:
rare classes, transfer, smaller

labeled sets, or as extra
regularizer.

11



Current State-of-the-Art for Paktern

Recoghition Agrtica&ions
(Krizhevsky et al NIPS 2012; Goodfellow et al ICML 2013)

* Deep conv. nets

e Rectifiers or (even better) maxout

e Noise injection (denoising AE, dropout)

e Use unsupervised pre-training if small labeled set or rare classes
e Deep (5 to 8 layers) + good initialization

e Supervised fine-tuning

Input layer (S1) 4 feature maps

(Cl1) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

| convolution layer I sub-sampling layer l convolution layer I sub-sampling layer Ifully connected MLPI
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Industrial-scale object recognition

¢ O, snake X &)

e Krizhevsky, Sutskever & Hinton NIPS 2012

______ |1ichoice Top5

2nd hest 27% err
Previous SOTA 45% err 26% err
Krizhevsky etal  37% err 15% err

e Google incorporates DL in Google+ photo
search, “A step across the semantic
gap” (Google Research blog, June 12, 2013)

* Baidu now offers with similar services = =0 e




Deep Learning Tricks of the Trade

* Y.Bengio (2013), “Practical Recommendations for Gradient-
Based Training of Deep Architectures”

* Unsupervised pre-training -
* Stochastic gradient descent and setting learning rates

* Main hyper-parameters
e Learning rate schedule
e Early stopping
* Minibatches
e Parameter initialization
e Number of hidden units
e L1 and L2 weight decay
e Sparsity regularization

* Debugging

How to efficiently search for hyper-parameter configurations
14



How do humans generalize

from very few examples?

* They transfer knowledge from previous learning:
Abstract (i.e. deep) representations

Explanatory factors
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Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on
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Deea Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Disentangling Factors of Variation
e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Reasoning & One-Shot Learning of Facts
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Challenge: Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality
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Emergence of 'Dusev\&avxgthg

e (Goodfellow et al. 2009)
e (Glorotetal.2011)

e different features specialize on different aspects
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Broad Priors as Hinks to Disentangle
the Factors of Variakion

e Multiple factors: distributed representations

e Multiple levels of abstraction: depth

e Semi-supervised learning: Y is one of the factors explaining X
e Multi-task learning: different tasks share some factors

e Manifold hypothesis: probability mass concentration

e Natural clustering: class = manifold, well-separated manifolds
e Temporal and spatial coherence

e Sparsity: most factors irrelevant for particular X

e Simplicity of factor dependencies (in the right representation)
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Challenge: Compu&a&mnat Scaling

e Recent breakthroughs in speech, object recognition and NLP
hinged on faster computing, GPUs, and large datasets

e A 100-fold speedup is possible without waiting another 10yrs?

e Challenge of distributed training
* Challenge of conditional computation
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Conditional Computation: only visit a
small fraction of parameters 7 example

e Deep nets vs decision trees - -
£
* sparse distributed gaters selecting : -

combinatorial subsets of a deep net

 Challenges:

Output softmax

e Back-prop through hard decisions

Gated units (experts)

¢ ArCh iteCtu re? Gater path . |
‘/—4—/ Gating units= @

<~
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Challenge: Optimization &
Underfitting

e On large datasets, major obstacle is underfitting

e Marginal utility of wider MLLPs decreases quickly below
memorization baseline o

B Baseline
100

Marginal utility (MU)
o

\

1000 3000 5000 7000 9000

Nb. of hidden units

e Current limitations: local minima or ill-conditioning?
e Adaptive learning rates and stochastic 2"® order methods

e Conditional comp. & sparse gradients = better conditioning:

when some gradients are 0, many cross-derivatives are also 0.
23



Challenge: Distributed Training

e Minibatches (too large = slow down)
e Large minibatches + 2"9 order methods

® Asynchronous SGD (Bengio et al 2003, Le et al ICML 2012, Dean et al NIPS
2012)

e Bottleneck: communicating weights between nodes
e New ideas:

* Low-resolution sharing only where needed

* Specialized conditional computation

24



Basic Challenge with Probabilistic
Models: marginalization

e Joint and marginal likelihoods involve intractable sums over
configurations of random variables (inputs x, latent h), e.g.

P(x) = 2, P(x,h)

P(X,h) = @-energy(x,h) /Z

7 = zx ) e-energy(x,h)

e MCMC methods approximate these sums

25



Two Fundamenktal Problems
with Probabilistic Models
with Many Random Variables

1. MCMC mixing between modes
(manifold hypothesis)

2. Many non-negligeable modes
(both in posterior & joint distributions)
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For AI Tasks: Manifold skructure

III

e examples concentrate near a lower dimensional “manifold”

e Evidence: most input configurations are unlikely

. [shrinking
transformation

4 J'n
a

raw input vector space




Mixing Between Well-Separated Modes
is Fundamentally Hard

e MCMC steps local

e Chances of going from manifold A to manifold B =
prob. accepting a long string of improbable moves =
exponentially small



Mixing Belween Modes: Vicious Circle
Between Learning and MCMC Sampling

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?

Training updates

Gicious circl§

Mixing

2 A\WUAN



Poor Mixing: Depth to the Rescue

(Bengio et al ICML 2013)

e MCMOC at top level visit more modes (classes) faster! WHY?

:iW.i.\E

(o

2-layer
(CAE)

1-layer
(RBM)

30



Space-Filling n Representation-Space
High-probability samples fill space between them when viewed in the learned

representatlon space, making the distribution more uniform manifolds

X-space
Pixel space

4 Representation space

ifold 3’s manifold

Linear mterpolatlon at laje

9’s mahifold B

Linear mterpolatlon in pixel space

9|



Poor Mixing: Depth to the Rescue

* Deeper representations =» abstractions =» disentangling

e E.g.reverse video bit, class bits in learned representations: easy
to Gibbs sample between modes at abstract level

e Some units may directly indicate manifold
* Easier mixing between modes

A Ppixel space A Representation space

9’s ifold 3’s manifold * 9'sy 3 fold
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Potentially Number of
Modes in the Posterior P(h|x)

33

Human hears foreign speech x,
y=answer to question:

* 10 word segments

* 100 plausible candidates per word

* 10° possible segmentations

* Most configurations (999999/1000000) implausible
* =» 10%° high-probability modes

Humans probably don’t consider all these in their mind

All known approximate inference scheme break down if the
posterior has a huge number of modes (fails MAP & MCMC)
and not respecting a variational approximation (fails variational)



Instead of Learning P(x) directly,
learn Markov chain operator P(x; | xpq)

e P(x) may have many modes, making the normalization constant
intractable, and MCMC approximations poor

* P(x, | x;4) could be much simpler because most of the time a

local move, might even be well approximated by unimodal
0.30 ‘ ‘

0.25F

0.20

probability
o
o

0.10

0.05F

0.00
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How ko Erain the Erawnsikion opera&m‘?

e One solution was recently discovered, based on the denoising
auto-encoder research

* The transition operator is decomposed in two steps:
* Corruption process C(X|X)
» Reconstruction (denoising) distribution Fs,, (X|X)

* The parameters can be trained by maximum likelihood over the
pairs X,X

corrupt

C(X|X)

2

t+2

X t X t+1 X t+2
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Denoising Auto-Encoder B

(Vincent et al 2008)

e Corrupt the input during training only
e Train to reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)

(OO0

-V W

-
-
-~
-

-
-

RORO Ole— (00000 (OO000)

Corrupted input Raw input reconstruction

e Encoder & decoder: any parametrization
e As good or better than RBMs for unsupervised pre-training
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Learning wikth a si.mpl.er normalization
constant, a nearly unimodal
conditional diskra)u&ioh instead of a
compiica&ed multimodal one
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Leariing with a simpl.er normalization
constant, a nearly unimodal
conditional distribution instead of a
complicated multimodal one

Thanks:
Jason Yosinski
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Leariing with a simpl.er normalization
constant, a nearly unimodal
conditional distribution instead of a
complicated multimodal one

Thanks:
Jason Yosinski
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Grenerative Sktochastic Nebworlks

* Generalizes the denoising auto-encoder training scheme
* Introduce latent variables in the Markov chain (over X,H)

 |nstead of a fixed corruption process, have a deterministic
function with parameters 6, and a noise source Z as input

Ht—l—l — f@l (Xta Zta Ht)

H, > H, > H,
NSNS
Hipw ~ P, (H|H, Xy)
Xey1 ~ Po,(X|Heyq)

41




Cownsistent Estimatbtor Theorem

Theorem:

If the parametrization is rich enough to have P(X|H) a consistent
estimator and the Markov chain is ergodic, then maximizing the
expected log of Py, (X | fo, (X, Z;_1, H¢_1)) makes the
stationary distribution of the Markov chain a consistent estimator
of the true data generating distribution.
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&SN Eixpercmev\!:s' validating the
theorem in a conkinuous non-

pamme&m: setting

43

Continuous data,
X in R0 Gaussian
corruption

Reconstruction
distribution =
Parzen (mixture of
Gaussians)
estimator

5000 training
examples, 5000
samples

Visualize a pair of
dimensions
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GSN Experiments: validating the theorem in
a continuous non-parametric setting
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&SN Emulating a Deep Boltzmann
Machine, TRAINED BY BACK-PRO?!

* Noise injected in input and hidden layers
e Trained to max. reconstruction prob. of example at each step
e Structure inspired from the DBM Gibbs chain:

h, noise

MWWVJ\\
hy noise\W \
M;e;l/ W sample X,

2d steps

h,
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Experimav\!:s: Shallow vs ‘Dee.p

les
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Etxpe.rime.u&s: Structured Cownditionals

e Stochastically fill-in missing inputs, sampling from the chain that
generates the conditional distribution of the missing inputs
given the observed ones (notice the fast burn-in!)
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Nobt Just MNIST: e.xpe.ri‘.mev\!:s on TFD

e 3 hidden layer model, consecutive samples:
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Cownclusions

e Several important challenges ahead for deep learning:
computational scaling, numerical optimization, and
marginalization, all important for the final goal of
disentangling the underlying factors of variation

e GSN: radically different approach to probabilistic unsupervised
learning of generative models through learning a transition
operator

e Can address mode mixing with depth (deep representation)
* Avoid marginalization during training

* Consistent estimator

e Can be used to handle missing inputs or structured outputs

e Easy to train and sample from, hard to compute P(x)
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