Neural Networks & AI: Underlying Assumption

- There are principles giving rise to intelligence (machine, human or animal) via learning, simple enough that they can be described compactly, similarly to the laws of physics, i.e., our intelligence is not just the result of a huge bag of tricks and pieces of knowledge, but of general mechanisms to acquire knowledge.
Learning Multiple Levels of Abstraction

(Bengio & LeCun 2007)

• The big payoff of deep learning is to facilitate learning higher levels of abstraction

• Higher-level abstractions can **disentangle the factors of variation**, which allows much easier generalization and transfer.
Deep Learning AI Breakthroughs

Computers have made huge strides in perception, manipulating language, playing games, reasoning, ...
2010-2012: breakthrough in speech recognition

Source: Microsoft
2012-2015: breakthrough in computer vision

- Graphics Processing Units (GPUs) + 10x more data
- 1,000 object categories,
- Facebook: millions of faces
- **2015: human-level performance**

![Graph showing the improvement in ImageNet accuracy from 2011 to 2015. The accuracy increases from approximately 74.2% in 2011 to 96.4% in 2015.]
DEEP LEARNING REVOLUTIONIZING MEDICAL RESEARCH

Detecting Mitosis in Breast Cancer Cells
— IDSIA

Predicting the Toxicity of New Drugs
— Johannes Kepler University

Understanding Gene Mutation to Prevent Disease
— University of Toronto
Medical Image Classification
Clinical Validation: Optical Colonoscopy

World’s first real-time colon polyp malignancy determination from unmodified endoscope raw video with deep learning

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imagia</td>
<td>> 90%, real time</td>
</tr>
<tr>
<td>GI Experts (Key Opinion Leaders)*</td>
<td>~ 90%</td>
</tr>
<tr>
<td>GI Doctors Trained by KOLs*</td>
<td>~ 75%</td>
</tr>
</tbody>
</table>

*(D. Rex, 2015)

Well received by expert clinicians and industry at many conferences, including Digestive Disease Week 2016
GAN: Adversarial generative framework between D and G
• Goal: generate from samples from noise, z, transformed by a function G, such that $p_g(x)$ is close (equal) to a target distribution $p_d(x)$.
• Introduce a discriminator D
 (Original) D maximizes the value function (min-max game):
 • At the optimal discriminator (maximizing V), minimizing V amounts to minimizing JSD between $p_g(x)$ and $p_d(x)$.
 • Train purely through back-prop
 • Produces highly realistic data compared to MLE methods
 • Does not work naturally with discrete data

Separately Controlling Style & Content

[Luan et. al., 2017]
Computers become Creative with Deep Generative Models

- Progress in unsupervised generative neural nets allows them to synthesize a diversity of images, sounds, and text, imitating unlabeled images, sounds, or text.

![Diagram of Generative Adversarial Networks (GANs)](Karras et al 2017)

- Predict a multi-modal future.

(Karras et al 2017)

(Nguyen et al 2016)
Intelligence Needs Knowledge

• Learning:
 powerful way to transfer knowledge to intelligent agents

• Failure of classical symbolic AI: a lot of knowledge is intuitive, difficult to put in rules & facts, not consciously accessible

• Solution: get knowledge from data & experience
Machine Learning, AI & No Free Lunch

- Five key ingredients for ML towards AI
 1. Lots & lots of data
 2. Very flexible models
 3. Enough computing power
 4. Computationally efficient inference
 5. Powerful priors that can defeat the curse of dimensionality
ML 101. What We Are Fighting Against: The Curse of Dimensionality

To generalize locally, need representative examples for all relevant variations!

Classical solution: hope for a smooth enough target function, or make it smooth by handcrafting good features / kernel
Bypassing the curse of dimensionality

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give representations and meanings to complex ideas

Exploiting compositionality can give an exponential gain in representational power

Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior assumption: compositionality is useful to describe the world around us efficiently
Distributed Representations: The Power of Compositionality – Part 1

- Distributed (possibly sparse) representations, learned from data, can capture the **meaning** of the data and state

- Parallel composition of features: can be exponentially advantageous
Each feature can be discovered without the need for seeing the exponentially large number of configurations of the other features

- Consider a network whose hidden units discover the following features:
 - Person wears glasses
 - Person is female
 - Person is a child
 - Etc.

If each of \(n \) feature requires \(O(k) \) parameters, need \(O(nk) \) examples

Non-parametric methods would require \(O(n^d) \) examples
Hidden Units Discover Semantically Meaningful Concepts

- Network trained to recognize places, not objects
Deep Learning: Learning an Internal Representation

- Unlike other ML methods with either
 - no intermediate representation (linear)
 - or fixed (generally very high-dimensional) intermediate representations (SVMs, kernel machines)

- What is a good representation? Makes other tasks easier.
Automating Feature Discovery

Hand-designed program

Output

Mapping from features

Output

Mapping from features

Output

Mapping from features

Most complex features

Features

Simplest features

Input

Rule-based systems

Input

Classic machine learning

Input

Representation learning

Input

Deep learning
Learning multiple levels of representation

Successive model layers learn deeper intermediate representations

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction

(Lee, Largman, Pham & Ng, NIPS 2009)
(Lee, Grosse, Ranganath & Ng, ICML 2009)
Why Multiple Layers? The World is Compositional

- Hierarchy of representations with increasing level of abstraction
- Each stage is a kind of trainable feature transform
- **Image recognition**: Pixel → edge → texton → motif → part → object
- **Text**: Character → word → word group → clause → sentence → story
- **Speech**: Sample → spectral band → sound → ... → phone → phoneme → word
Deep Representations: The Power of Compositionality – Part 2

- Learned function seen as a composition of simpler operations, e.g. inspired by neural computation
- Hierarchy of features, concepts, leading to more abstract factors enabling better generalization
- Again, theory shows this can be exponentially advantageous

Why multiple layers? The world is compositional
Exponential advantage of depth

- Expressiveness of deep networks with piecewise linear activation functions: exponential advantage for depth
 - *(Montufar et al & Bengio, NIPS 2014)*
- Number of pieces distinguished for a network with depth L and n_i units per layer is at least

 $$
 \left(\prod_{i=1}^{L-1} \left[\frac{n_i}{n_0} \right]^{n_0} \right) \sum_{j=0}^{n_0} \left(\begin{array}{c} n_L \\ j \end{array} \right)
 $$

 or, if hidden layers have width n and input has size n_0

 $$
 \Omega \left(\left(\frac{n}{n_0} \right)^{(L-1)n_0} \right) n^{n_0}
 $$
Myth busted:
• Local minima dominate in low-D, but saddle points dominate in high-D
• Most local minima are relatively close to the bottom (global minimum error)

(Dauphin et al NIPS’2014, Choromanska et al AISTATS’2015)
Recap: Machine Learning 101

- Family of functions f_θ
- Tunable parameters θ
- Examples (x,y) sampled from unknown data generating distribution $P(x,y)$
- Loss fn L compares target y and output $f_\theta(x)$, returns a number
- Regularizer R (typically depends on θ but possibly also on x & y)
- Training criterion for supervised learning:

$$C(\theta) = \text{average}_{(x,y) \sim \text{dataset}} L(f_\theta(x), y) + R(\theta, x, y)$$

- Approximate minimization algorithm to search for good θ
Logistic Regression

• Predict the probability of a category \(y \), given input \(x \)
 • \(P(Y=y \mid X=x) \)

• Simple extension of linear regression (binary case):
 • \(P(Y=1 \mid X=x) = \text{sigmoid}(b + w \cdot x) \)

• Train by tuning \((b, w)\) to maximize average log-likelihood

 \[\text{Average} \left(\log P(Y=y \mid X=x) \right) \]
 over training pairs \((x, y)\), by gradient-based optimization

• This is a very shallow neural network (no hidden layer)
Hidden units

(from Hugo Larochelle)

- Neuron pre-activation (or input activation):
 \[a(x) = b + \sum_i w_i x_i = b + w^T x \]

- Neuron (output) activation
 \[h(x) = g(a(x)) = g(b + \sum_i w_i x_i) \]

- \(w \) are the connection weights
- \(b \) is the neuron bias
- \(g(\cdot) \) is called the activation function
A neural network = running several logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression functions, then we get a vector of outputs

But we don’t have to decide ahead of time what variables these logistic regressions are trying to predict!
A neural network = running several logistic regressions at the same time

... which we can feed into another logistic regression function

and it is the training criterion that will decide what those intermediate binary target variables should be, so as to make a good job of predicting the targets for the next layer, etc.
A neural network = running several logistic regressions at the same time

- Before we know it, we have a multilayer neural network....
Multilayer network as universal approximator

A series of non-linear transformations of the same type but different parameters
A single but large enough hidden layer yields a universal approximator

More layers allow representing more complex functions with less parameters

Universal approximator property does not guarantee

1. easy optimization (low training error is found)
2. good generalization
Non-linearity = activation function

- Stacking linear layers: like one (factorized) linear layer
- Universal approximator: stack linear+nonlinear transformations
- Many types of non-linearities are possible: activation function
 - E.g. linear, sigmoid, tanh, rectifier (ReLU), softmax

- **Breakthrough in 2011:** it is much easier to train a deep multilayer network with rectifiers (ReLU) than with sigmoid or tanh, making it possible to train deep nets in a purely supervised way for the first time *(Glorot & Bengio AISTATS 2011)*
Topics: sigmoid activation function

- Squashes the neuron’s pre-activation between 0 and 1
- Always positive
- Bounded
- Strictly increasing

\[g(a) = \text{sigmoid}(a) = \frac{1}{1 + \exp(-a)} \]

Topics: softmax activation function

- For multi-class classification:
 - we need multiple outputs (1 output per class)
 - we would like to estimate the conditional probability \(p(y = c | x) \)
- We use the softmax activation function at the output:

\[o(a) = \text{softmax}(a) = \left[\frac{\exp(a_1)}{\sum_c \exp(a_c)} \cdots \frac{\exp(a_C)}{\sum_c \exp(a_c)} \right]^T \]

 - strictly positive
 - sums to one
- Predicted class is the one with highest estimated probability

Topics: hyperbolic tangent (“tanh”) activation function

- Squashes the neuron’s pre-activation between -1 and 1
- Can be positive or negative
- Bounded
- Strictly increasing

\[g(a) = \tanh(a) = \frac{\exp(a) - \exp(-a)}{\exp(a) + \exp(-a)} = \frac{\exp(2a) - 1}{\exp(2a) + 1} \]

Topics: rectified linear activation function

- Bounded below by 0 (always non-negative)
- Not upper bounded
- Strictly increasing
- Tends to give neurons with sparse activities

\[g(a) = \text{recln}(a) = \max(0, a) \]
Supervised training of an MLP by backpropagation

\[\text{Requires}(X,Y) = (\text{input}, \text{target}) \text{ pairs as training data} \]
Iterative training by SGD

Topics: stochastic gradient descent (SGD)

- Algorithm that performs updates after each example
 - initialize θ ($\theta \equiv \{W^{(1)}, b^{(1)}, \ldots, W^{(L+1)}, b^{(L+1)}\}$)
 - for N iterations
 - for each training example $(x^{(t)}, y^{(t)})$
 \[
 \Delta = -\nabla_{\theta} l(f(x^{(t)}; \theta), y^{(t)}) - \lambda \nabla_{\theta} \Omega(\theta)
 \]
 \[
 \theta \leftarrow \theta + \alpha \Delta
 \]
 - training epoch = iteration over all examples

- To apply this algorithm to neural network training, we need
 - the loss function $l(f(x^{(t)}; \theta), y^{(t)})$
 - a procedure to compute the parameter gradients $\nabla_{\theta} l(f(x^{(t)}; \theta), y^{(t)})$
 - the regularizer $\Omega(\theta)$ (and the gradient $\nabla_{\theta} \Omega(\theta)$)
 - initialization method
Motivation for backpropagation: gradient-based optimization

- Knowing how a small change of parameters influences loss L tells us how to change the parameters θ

$$\frac{\partial L}{\partial \theta}$$

- The gradient $\frac{\partial L}{\partial \theta}$ measures the ratio of error change due to a small parameter change.

- Indicates the best local descent direction!
Why backprop is powerful

• With n parameters need $O(n)$ computations to obtain L
• Also need only $O(n)$ computations to obtain gradient by backprop

• Dumb alternative, by finite differences:

$$\frac{\partial L(\theta_i, \theta_{-i})}{\partial \theta_i} \approx \frac{L(\theta_i + \epsilon, \theta_{-i}) - L(\theta_i, \theta_{-i})}{\epsilon}$$

• But that would cost $O(n^2)$ instead of $O(n)$ by backprop!
Confusion on the word BACKPROP

• **Backprop**: the backward accumulation procedure to compute gradients efficiently wrt a scalar (the loss)

• NOT THE SAME THING AS *gradient descent*, nor the MLP architecture.

• Backprop is **not just used for supervised learning**: also for unsupervised learning and RL, with different losses
Back-Prop & Chain Rule

• Compute gradient of example-wise loss wrt parameters, by considering intermediate values such as the outputs of neurons

• Simply applying the derivative chain rule wisely

\[z = f(y) \quad y = g(x) \quad \frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \]
Chain Rule

Also works if all these quantities are tensors, using the appropriate tensor products

\[
\Delta z = \frac{\partial z}{\partial y} \Delta y \\
\Delta y = \frac{\partial y}{\partial x} \Delta x \\
\Delta z = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \Delta x \\
\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x}
\]
Multiple Paths Chain Rule

\[\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y_1} \frac{\partial y_1}{\partial x} + \frac{\partial z}{\partial y_2} \frac{\partial y_2}{\partial x} \]
Multiple Paths Chain Rule - General

\[
\frac{\partial z}{\partial x} = \sum_{i=1}^{n} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}
\]
Chain Rule in Flow Graph

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

\{y_1, y_2, \ldots, y_n\} = \text{successors of } x

\[
\frac{\partial z}{\partial x} = \sum_{i=1}^{n} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}
\]
Back-Prop in Multi-Layer Net

\[NLL = -\log P(Y = y|x) \]

\[P(Y = .|x) = \text{softmax}(Wh) \]

\[h = \text{tanh}(Vx) \]

\[x \rightarrow y \]
Forward-Prop in Multi-Layer Net
Backprop in Multi-Layer Net:
How outputs could change to make error smaller
Backprop in Multi-Layer Net:

How \(h_2 \) could change to make error smaller
Backprop in Multi-Layer Net:

How h_1 could change to make error smaller
Backprop in Multi-Layer Net:

How W_1 could change to make error smaller
Back-Prop in General Flow Graph

1. Fprop: visit nodes in topo-sort order
 - Compute value of node given predecessors
2. Bprop:
 - initialize output gradient = 1
 - visit nodes in reverse order:
 Compute gradient wrt each node using gradient wrt successors

\[
\{y_1, y_2, \ldots, y_n\} = \text{successors of } x
\]

\[
\frac{\partial z}{\partial x} = \sum_{i=1}^{n} \frac{\partial z}{\partial y_i} \frac{\partial y_i}{\partial x}
\]
Back-Prop in Recurrent & Recursive Nets

• Replicate a parameterized function over different time steps or nodes of a DAG

• Output state at one time-step / node is used as input for another time-step / node
Automatic Differentiation

- The gradient computation can be automatically inferred from the symbolic expression of the fprop.
- Each node type needs to know how to compute its output and how to compute the gradient wrt its inputs given the gradient wrt its output.

Easy and fast prototyping
Batch Normalization
(Ioffe & Szegedy 2015)

• Helps training by reparametrization which improves condition number, helps generalization by acting as a regularizer

• Other normalization methods proposed since then

\[
\mu_B \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i \quad \text{// mini-batch mean}
\]

\[
\sigma_B^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_B)^2 \quad \text{// mini-batch variance}
\]

\[
\hat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad \text{// normalize}
\]

\[
y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma, \beta}(x_i) \quad \text{// scale and shift}
\]
Log-likelihood as loss function

Topics: loss function for classification

- Neural network estimates \(f(x)_c = p(y = c|x) \)
 - we could maximize the probabilities of \(y^{(t)} \) given \(x^{(t)} \) in the training set

- To frame as minimization, we minimize the negative log-likelihood

\[
l(f(x), y) = - \sum_c 1_{(y=c)} \log f(x)_c = - \log f(x)_y
\]

 - we take the log to simplify for numerical stability and math simplicity
 - sometimes referred to as cross-entropy
Log-Likelihood for Neural Nets

- Estimating a conditional probability \(P(Y|X) \)
- Parametrize it by \(P(Y|X) = P(Y|\omega = f_\theta(X)) \)
- Loss = \(-\log P(Y|X)\)
- E.g. Gaussian \(Y \), \(\omega = (\mu, \sigma) \)
 typically only \(\mu \) is the network output, depends on \(X \)

Equivalent to MSE criterion:

\[
\text{Loss} = - \log P(Y|X) = \log \sigma + \|f_\theta(X) - Y\|^2 / \sigma^2
\]

- E.g. Multinoulli \(Y \) for classification,

\[
\omega_i = P(Y = i|x) = f_{\theta,i}(X) = \text{softmax}_i(a(X))
\]

\[
\text{Loss} = - \log \omega_Y = - \log f_{\theta,Y}(X)
\]
Multiple Output Variables

• If they are conditionally independent (given X), the individual prediction losses add up:

$$- \log P(Y|X) = - \log P(Y_1, \ldots Y_k|X) = - \log \prod_i P(Y_i|X) = - \sum_i \log P(Y_i|X)$$

• Likelihood if some Y_i’s are missing: just ignore those losses

• If not conditionally independent, need to capture the conditional joint distribution

$$P(Y_1, \ldots Y_k|X)$$

• Example: output = image, sentence, tree, etc.
• Similar to unsupervised learning problem of capturing joint
• Exact likelihood may similarly be intractable, depending on model
Neural Language Models

 - Each word represented by a distributed continuous-valued code vector = embedding
 - Generalizes to sequences of words that are semantically similar to training sequences

\[
P(w_1, w_2, w_3, \ldots, w_T) = \prod_t P(w_t | w_{t-1}, w_{t-2}, \ldots, w_1)
\]

\[
i\text{-th output } = P(w_t = i | \text{context})
\]

Softmax:
 normalized exponential

decomposition here

\[
W
\]

\[
tanh
\]

\[
V
\]

Table look-up in \(C\)

\[
C_{w_{t-n+1}} \ldots \quad C_{w_{t+2}} \quad C_{w_{t-1}}
\]

Matrix \(C\)

shared parameters across words

\[
w_{t-n+1} \quad w_{t-2} \quad w_{t-1}
\]
Neural word embeddings - visualization
Analogical Representations for Free (Mikolov et al, ICLR 2013)

- Semantic relations appear as linear relationships in the space of learned representations
- King – Queen ≈ Man – Woman
- Paris – France + Italy ≈ Rome
Google Image Search: Different object types represented in the same space

Google:
S. Bengio, J. Weston & N. Usunier

Learn $\Phi_1(\cdot)$ and $\Phi_w(\cdot)$ to optimize precision@k.
Maps Between Representations

\(x \) and \(y \) represent different modalities, e.g., image, text, sound...

Can provide 0-shot generalization to new categories (values of \(y \))

(Larochelle et al AAAI 2008)
Multi-Task Learning

• Generalizing better to new tasks (tens of thousands!) is crucial to approach AI

• Deep architectures learn good intermediate representations that can be shared across tasks
 (Collobert & Weston ICML 2008, Bengio et al AISTATS 2011)

• Good representations that disentangle underlying factors of variation make sense for many tasks because each task concerns a subset of the factors

Prior: shared underlying explanatory factors between tasks

E.g. dictionary, with intermediate concepts re-used across many definitions
Combining Multiple Sources of Evidence with Shared Representations

- Traditional ML: data = matrix
- Relational learning: multiple sources, different tuples of variables
- Share representations of same types across data sources
- Shared learned representations help propagate information among data sources: e.g., WordNet, XWN, Wikipedia, FreeBase, ImageNet...
 (Bordes et al AISTATS 2012, ML J. 2013)

- FACTS = DATA
- Deduction = Generalization
Hyper-parameters & validation set

- Parameters: optimized by gradient-based optimization on the training set
- Hyper-parameters: design decisions and settings of the optimization procedure
 - Optimized based on performance on a validation set disjoint from training set.
- Choosing hyper-parameters based on training set would lead to high-capacity choices with overfitting (hence need a validation set)
- A disjoint test set is used to obtain final unbiased estimation of generalization performance.
- Training, validation and test sets are subsets of randomized (shuffled) data, to mimic iid assumption
Hyper-parameters of MLPs

- **Global learning rate**
- Number of training epochs (passes over training set)
- Number of neurons per layer
- Depth (number of layers)
- Choice of activation function(s)
- Regularization coefficients (L1, L2, etc.)
- Noise injection & dropout
- Loss function and output non-linearity
- Minibatch size (with parallel computation within minibatch)
- Weight normalization method (e.g. batch normalization)
- Input and targets normalization
- Data deformations
- Etc.
Nested optimisation of parameters and hyper-parameters

- For each considered configuration of hyper-parameters
 - Train parameters with this configuration (optimize train loss)
 - Measure resulting model’s validation error
 - Keep this configuration if it’s the best seen up to now
- An old form of *meta-learning*: two nested optimisations

- Optionally: Retrain with training+validation set
- Measure resulting model’s test error
Hyper-Optimization

• Manual search
 • Don’t use test error!
 • Slow and sequential, but trained humans still generally do it.
 • Not systematic, harder to reproduce
• Grid search: inefficient with more than 2 hyper-parameters
• Random search (Bergstra & Bengio, 2012, JMLR)
 • Simple, robust & parallelizable
• Bayesian optimisation (sequential, automated), reinforcement learning
Random Sampling of Hyperparameters
(Bergstra & Bengio 2012)

- Random search: simple & efficient
 - Independently sample each HP, e.g.
 \(l.\text{rate} \sim \exp(U[\log(0.1), \log(0.001)]) \)
 - Each training trial is iid
 - If a HP is irrelevant grid search is wasteful
 - More convenient: ok to early-stop, continue

![Grid Layout](image1)

![Random Layout](image2)
L1 regularisation to remove weights and inputs

Add a term that pushes weights or groups of weights to 0

\[
\text{prediction error} + \lambda \sum_{ij} |W_{ij}|
\]

pushes individual weights to 0, whereas

\[
\text{prediction error} + \lambda \sum_i \sqrt{\sum_j W_{ij}^2}
\]

is trying to make all the weights in the group \(W_i\) go to 0.
Topics: initialization

- For biases
 - initialize all to 0

- For weights
 - Can’t initialize weights to 0 with tanh activation
 - we can show that all gradients would then be 0 (saddle point)
 - Can’t initialize all weights to the same value
 - we can show that all hidden units in a layer will always behave the same
 - need to break symmetry
 - Recipe: sample \(W_{i,j}^{(k)} \) from \(U[-b, b] \) where
 \[
 b = \frac{\sqrt{6}}{\sqrt{H_k + H_{k-1}}}
 \]
 - the idea is to sample around 0 but break symmetry
 - other values of \(b \) could work well (not an exact science) (see Glorot & Bengio, 2010)

Attempts to be invariant to the size of the layers
Early Stopping: free lunch († jobs for the price of 1)

Topics: early stopping

- To select the number of epochs, stop training when validation set error increases (with some look ahead)
Regularizing by injecting noise: dropout

Topics: dropout

- Idea: «cripple» neural network by removing hidden units stochastically
 - each hidden unit is set to 0 with probability 0.5
 - hidden units cannot co-adapt to other units
 - hidden units must be more generally useful

- Could use a different dropout probability, but 0.5 usually works well
Topics: why training is hard

• Depending on the problem, one or the other situation will tend to prevail

• If first hypothesis (underfitting): use better optimization
 ‣ this is an active area of research

• If second hypothesis (overfitting): use better regularization or collect more data
 ‣ unsupervised learning or semi-supervised
 ‣ stochastic «dropout» training
How to know if you are overfitting or underfitting?

Overfitting: if you increase capacity (number of parameters, training time, better optimizer, smaller regularization coefficient, etc.), test or validation error error increase.
Injecting Noise in a Nonsmooth Net

• Injecting noise corresponds to convolving the objective function with the noise kernel:

\[C(\theta) \ast \mathcal{N}(\epsilon) = \int_{\epsilon} C(\theta - \epsilon) \mathcal{N}(\epsilon) d\epsilon \]

\[\approx \text{mean}_{\epsilon \sim \mathcal{N}(\epsilon)} C(\theta - \epsilon) \]

• Same thing for the gradient, so we get a stochastic gradient on a smooth of the original objective function, which should be easier to optimize.

• Gradually reducing the noise level = simulated annealing
Continuation Methods and Simulated Annealing

- Gradually consider less easy versions of the objective of interest, tracking the local minima found along the way.
Order & Selection of Examples Matters
(Bengio, Louradour, Collobert & Weston, ICML’2009)

• Curriculum learning
(Bengio et al 2009, Krueger & Dayan 2009)
is a form of continuation method

• Start with easier examples

• Faster convergence to a better solutions in deep architectures
Guided Training, Intermediate Concepts

• Breaking the problem in two sub-problems and pre-training each module separately, then fine-tuning, nails it
• *Need prior knowledge to decompose the task*
• Guided pre-training allows to find much better solutions, escape effective local minima

(Gulcehre & Bengio ICLR’2013)
Debugging

- Instrument the code to make experiments reproducible

- Use tools to verify gradients (finite differences)

- **Train on a small dataset**: verify can reach 0 training error

- Track error curves during training (training error, validation error); training error should roughly go down

- Track distribution statistics of weights and gradients during training
Validate and Analyze

- Vary capacity and observe error curves to identify if the system is rather overfitting or rather underfitting
- Compare with simpler reference models (logistic regression, SVMs, random forests)
- Track several relevant metrics
- Look at the training and validation examples which give the worse error (input, output and target)
- Measure effect of changing the number of training examples
- Make sure you have enough test examples to be able to conclude with statistical significance
Anything New with Deep Learning since the Neural Nets of the 90s?

- Rectified linear units instead of sigmoids, enable training much deeper networks by backprop (Glorot & Bengio AISTATS 2011)
- Some forms of noise (like dropout) are powerful regularizers yielding superior generalization abilities
- Success of deep convnets trained on large labeled image datasets, success of skip connections (ResNets)
- Success of recurrent nets with more memory, with gating units
- Success of word embedding, neural machine translation, deep NLP
- Attention mechanisms liberate neural nets from fixed-size inputs
- Autoencoders, adversarial training, generating images & sounds
- Transfer learning, meta-learning, deep reinforcement learning
2012-2015: breakthrough in computer vision

- Graphics Processing Units (GPUs) + 10x more data
- 1,000 object categories
- Facebook: millions of faces
Approaching Human Accuracy

Top-5 Classification task, ImageNet

~ level of human accuracy

Use of Deep Learning over Conventional Computer Vision
Convolutional Networks

- Scale up neural networks to process very large images / video sequences
 - Sparse connections
 - Parameter sharing
- Automatically generalize across spatial translations of inputs
- Applicable to any input that is laid out on a grid (1-D, 2-D, 3-D, ...)

Convolutional Networks
Convnets: Key Idea

• Replace matrix multiplication in ordinary neural nets with convolution
• Everything else stays the same
 - Maximum likelihood
 - Back-propagation
 - etc.
Convolutional Neural Networks

- A special kind of deep learning tailored for images
- Exploits the invariance to translations
- Exploits multi-scale hierarchy

Convolutional neural network for imaging data
2D Convolution

Figure 9.1, Deep Learning book, Goodfellow et al 2016
Sparse Connectivity

Sparse connections due to small convolution kernel

Dense connections

Figure 9.2
Sparse Connectivity

Sparse connections due to small convolution kernel

Dense connections

Figure 9.3
Growing Receptive Fields

Figure 9.4
Parameter Sharing

Convolution shares the same parameters across all spatial locations.

Traditional matrix multiplication does not share any parameters.

Figure 9.5
Cross-Channel Pooling and Invariance to Learned Transformations

Figure 9.9
Pooling with Downsampling

Figure 9.10
Convolution with Stride

Figure 9.12
Major ConvNet Architectures

- Spatial Transducer Net: input size scales with output size, all layers are convolutional
- All Convolutional Net: no pooling layers, just use strided convolution to shrink representation size
- Inception: complicated architecture designed to achieve high accuracy with low computational cost
- ResNet: blocks of layers with same spatial size, with each layer’s output added to the same buffer that is repeatedly updated. Very many updates = very deep net, but without vanishing gradient.
ResNets: Skip Connections

- Identity paths make it possible for gradients to flow through deeper networks (He et al 2015), SOTA on object recognition
Deep Data Fusion

• Deep nets are very good at combining multiple sources of data, multiple sensors or modalities
• Can have separate pre-processing stages for each modality, then CONCATENATE the representations before continuing processing

Need to map to the same spatial scale, or ‘copy’ a non-spatial modality at all positions.
Generating Text from Images

- (Kiros et al., 2014; Mao et al., 2014; Donahue et al., 2014; Vinyals et al., 2014; Fang et al., 2014; Chen and Zitnick, 2014; Karpathy and Li, 2014; Venugopalan et al., 2014).

- Convolutional net → generative RNN

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.

A close up of a child holding a stuffed animal

(GT: A young girl asleep on the sofa cuddling a stuffed bear.)

Two pizzas sitting on top of a stove top oven.

(GT: Three different types of pizza on top of a stove.)
U-Net Architecture for CNNs with Pixel-Wise Outputs

(a) FC-ResNet

(b) Bottleneck block

(c) Simple block
Recurrent Neural Networks

- Can produce an output at each time step: unfolding the graph tells us how to back-prop through time.
Recurrent Neural Networks

- Selectively summarize an input sequence in a fixed-size state vector via a recursive update

\[s_t = F_\theta(s_{t-1}, x_t) \]

Generalizes naturally to new lengths not seen during training
Generative RNNs

- An RNN can represent a fully-connected directed generative model: every variable predicted from all previous ones.

\[P(x) = P(x_1, \ldots, x_T) = \prod_{t=1}^{T} P(x_t|x_{t-1}, x_{t-2}, \ldots, x_1) \]

\[L_t = -\log P(x_t|x_{t-1}, x_{t-2}, \ldots, x_1) \]
Neural word embeddings - visualization
Conditional Distributions

- Sequence to vector
- Sequence to sequence of the same length, aligned
- Vector to sequence
- Sequence to sequence
Maximun Likelihood = Teacher Forcing. \(\hat{y}_t \sim P(y_t \mid h_t) \)

- During training, past \(y \) in input is from training data.
- At generation time, past \(y \) in input is generated.
- Mismatch can cause “compounding error”

\((x_t, y_t) : \) next input/output training pair.
Ideas to reduce the train/generate mismatch in teacher forcing

- Scheduled sampling *(S. Bengio et al, NIPS 2015)*

- Backprop through open-loop sampling recurrence & minimize long-term cost (but which one? GAN would be most natural → Professor Forcing)

Related to
SEARN (Daumé et al 2009)
DAGGER (Ross et al 2010)

Gradually increase the probability of using the model’s samples vs the ground truth as input.
Increasing the Expressive Power of RNNs with more Depth

• ICLR 2014, *How to construct deep recurrent neural networks*

![Diagram of RNNs with various layers and connections](image)

Ordinary RNNs

+ stacking

+ deep hid-to-out
+ deep hid-to-hid
+ deep in-to-hid

+ skip connections for creating shorter paths
Bidirectional RNNs, Recursive Nets, Multidimensional RNNs, etc.

- The unfolded architecture needs not be a straight chain

Bidirectional RNNs (Schuster and Paliwal, 1997)

Recursive (tree-structured) Neural Nets:
- Frasconi et al. 97
- Socher et al. 2011

Multidimensional RNNs, Graves et al. 2007

See Alex Graves’s work, e.g., 2012
Multiplicative Interactions

(Wu et al, 2016, arXiv:1606.06630)

- Multiplicative Integration RNNs:
 - Replace $\phi(Wx + Uz + b)$
 - By $\phi(Wx \odot Uz + b)$
 - Or more general:
 $\phi(\alpha \odot Wx \odot Uz + \beta_1 \odot Uz + \beta_2 \odot Wx + b)$

![Graph showing validation BPC across different models](image)
Multiscale or Hierarchical RNNs

(Bengio & Elhihi, NIPS 1995)

- **Motivation**:
 - Gradients can propagate over longer spans through slow time-scale paths

- **Approach**:
 - Introduce a network architecture that update the states of its hidden layers with different speeds in order to capture multiscale representation of sequences.
Learning Long-Term Dependencies with Gradient Descent is Difficult

How to store 1 bit? Dynamics with multiple basins of attraction in some dimensions

• Some subspace of the state can store 1 or more bits of information if the dynamical system has multiple basins of attraction in some dimensions

Note: gradients MUST be high near the boundary
Robustly storing 1 bit in the presence of bounded noise

- With spectral radius > 1, noise can kick state out of attractor

- Not so with radius < 1

\[|M'| > 1 \Rightarrow \text{UNSTABLE} \]

\[|M'| < 1 \Rightarrow \text{CONTRACTIVE} \rightarrow \text{STABLE} \]
Storing Reliably \(\Rightarrow\) Vanishing gradients

- Reliably storing bits of information requires spectral radius < 1
- The product of T matrices whose spectral radius is < 1 is a matrix whose spectral radius converges to 0 at exponential rate in T

\[
L = L(s_T(s_{T-1}(\ldots s_{t+1}(s_t, \ldots))))
\]

\[
\frac{\partial L}{\partial s_t} = \frac{\partial L}{\partial s_T} \frac{\partial s_T}{\partial s_{T-1}} \ldots \frac{\partial s_{t+1}}{\partial s_t}
\]

- If spectral radius of Jacobian is < 1 \(\Rightarrow\) propagated gradients vanish
Vanishing or Exploding Gradients

- Hochreiter’s 1991 MSc thesis (in German) had independently discovered that backpropagated gradients in RNNs tend to either vanish or explode as sequence length increases.
Why it hurts gradient-based learning

- Long-term dependencies get a weight that is exponentially smaller (in T) compared to short-term dependencies

$$\frac{\partial C_t}{\partial W} = \sum_{\tau \leq t} \frac{\partial C_t}{\partial a_\tau} \frac{\partial a_\tau}{\partial W} = \sum_{\tau \leq t} \frac{\partial C_t}{\partial a_t} \frac{\partial a_t}{\partial a_\tau} \frac{\partial a_\tau}{\partial W}$$

Becomes exponentially smaller for longer time differences, when spectral radius < 1
Vanishing Gradients in Deep Nets are Different from the Case in RNNs

- If it was just a case of vanishing gradients in deep nets, we could just rescale the per-layer learning rate, but that does not really fix the training difficulties.

- Can’t do that with RNNs because the weights are shared, & total true gradient = sum over different “depths”

\[
\frac{\partial C_t}{\partial W} = \sum_{\tau \leq t} \frac{\partial C_t}{\partial a_{\tau}} \frac{\partial a_{\tau}}{\partial W} = \sum_{\tau \leq t} \frac{\partial C_t}{\partial a_t} \frac{\partial a_t}{\partial a_{\tau}} \frac{\partial a_{\tau}}{\partial W}
\]
To store information robustly the dynamics must be contractive

- The RNN gradient is a product of Jacobian matrices, each associated with a step in the forward computation. To store information robustly in a finite-dimensional state, the dynamics must be contractive [Bengio et al 1994].

\[
L = L(s_T(s_{T-1}(\ldots s_{t+1}(s_t, \ldots))))
\]

\[
\frac{\partial L}{\partial s_t} = \frac{\partial L}{\partial s_T} \frac{\partial s_T}{\partial s_{T-1}} \ldots \frac{\partial s_{t+1}}{\partial s_t}
\]

- Problems:
 - e-values of Jacobians > 1 \(\rightarrow\) gradients explode
 - or e-values < 1 \(\rightarrow\) gradients shrink & vanish
 - or random \(\rightarrow\) variance grows exponentially

Storing bits robustly requires e-values<1

Gradient clipping
Dealing with Gradient Explosion by Gradient Norm Clipping

(Mikolov thesis 2012; Pascanu, Mikolov, Bengio, ICML 2013)
RNN Tricks
(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

• Clipping gradients (avoid exploding gradients)
• Leaky integration (propagate long-term dependencies)
• Momentum (cheap 2nd order)
• Initialization (start in right ballpark avoids exploding/vanishing)
• Sparse Gradients (symmetry breaking)
• Gradient propagation regularizer (avoid vanishing gradient)
• Gated self-loops (LSTM & GRU, reduces vanishing gradient)
Delays & Hierarchies to Reach Farther

- How to do this right?
- How to automatically and adaptively do it?

Hierarchical RNNs (words / sentences): *Sordoni et al CIKM 2015, Serban et al AAAI 2016*
Fighting the vanishing gradient: LSTM & GRU

(Hochreiter 1991); first version of the LSTM, called Neural Long-Term Storage with self-loop

- Create a path where gradients can flow for longer with a self-loop
- Corresponds to an eigenvalue of Jacobian slightly less than 1
- LSTM is now heavily used (Hochreiter & Schmidhuber 1997)
- GRU light-weight version (Cho et al 2014)
Gating for Attention-Based Neural Machine Translation

Related to earlier Graves 2013 for generating handwriting

• (Bahdanau, Cho & Bengio, arXiv sept. 2014)
• (Jean, Cho, Memisevic & Bengio, arXiv dec. 2014)

\[f = (\text{La, croissance, économique, s'est, ralentie, ces, dernières, années, .}) \]

\[e = (\text{Economic, growth, has, slowed, down, in, recent, years, .}) \]
What’s New with Deep Learning?

• Incorporating the idea of attention, using GATING units, has unlocked a breakthrough in machine translation:

 Neural Machine Translation (ICLR’2015)

 Softmax over lower locations conditioned on context at lower and higher locations

• Now in Google Translate:

 n-gram translation current neural net translation human translation

 Human evaluation
Graph Attention Networks
Velickovic et al, ICLR 2018

- Handle variable-size neighborhood of each node using the same neural net by using an attention mechanism to aggregate information from the neighbors
- Use multiple attention heads to collect different kinds of information
What's New with Deep Learning?

- Attention has also opened the door to neural nets which can write to and read from a memory
 - 2 systems:
 - Cortex-like (state controller and representations)
 - System 1, intuition, fast heuristic answer
 - Hippocampus-like (memory) + prefrontal cortex
 - System 2, slow, logical, sequential
 - Memory-augmented networks gave rise to
 - Systems which reason
 - Sequentially combining several selected pieces of information (from the memory) in order to obtain a conclusion
 - Systems which answer questions
 - Accessing relevant facts and combining them
Attention Mechanisms for Memory Access

- Neural Turing Machines \((Graves\ et\ al\ 2014)\)
- and Memory Networks \((Weston\ et\ al\ 2014)\)
- Use a content-based attention mechanism \((Bahdanau\ et\ al\ 2014)\) to control the read and write access into a memory
- The attention mechanism outputs a softmax over memory locations

\[
\alpha = \frac{e^{f_i(h)}}{\sum_i e^{f_i(h)}}
\]

\[
r = \sum_i \alpha_i c_i
\]

Read = weighted average of attended contents
Large Memory Networks: Sparse Access Memory for Long-Term Dependencies

- Memory = part of the state
- Memory-based networks are special RNNs
- A mental state stored in an external memory can stay for arbitrarily long durations, until it is overwritten (partially or not)
- Forgetting = vanishing gradient.
- Memory = higher-dimensional state, avoiding or reducing the need for forgetting/vanishing
Pointing the Unknown Words
Based on ‘Pointer Networks’, Vinyals et al 2015

The next word generated can either come from vocabulary or is copied from the input sequence.

<table>
<thead>
<tr>
<th>Machine Translation</th>
<th>BLEU-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMT</td>
<td>20.19</td>
</tr>
<tr>
<td>NMT + PS</td>
<td>23.76</td>
</tr>
</tbody>
</table>

Table 3: Results on Gigaword Corpus for modeling UNK’s with pointers in terms of recall.

<table>
<thead>
<tr>
<th></th>
<th>Rouge-1</th>
<th>Rouge-2</th>
<th>Rouge-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMT + lvt</td>
<td>36.45</td>
<td>17.41</td>
<td>33.90</td>
</tr>
<tr>
<td>NMT + lvt + PS</td>
<td>37.29</td>
<td>17.75</td>
<td>34.70</td>
</tr>
</tbody>
</table>

Text summarization
Variational Hierarchical RNNs for Dialogue Generation (Serban et al 2016)

- Lower level = words of an utterance (turn of speech)
- Upper level = state of the dialogue
- Inject high-level choices
Other Fully-Observed Neural Directed Graphical Models
Neural Auto-Regressive Models

\[P(x) = P(x_1, \ldots x_T) = \prod_{t=1}^{T} P(x_t | x_{t-1}, x_{t-2}, \ldots x_1) \]

- Decomposes the joint of a fully observed directed model in terms of conditionals
- Logistic auto-regressive: (Frey 1997)

\[P(x_1) \quad P(x_2 | x_1) \quad P(x_3 | x_2, x_1) \quad P(x_4 | x_3, x_2, x_1) \]

- First neural version: (Bengio&Bengio NIPS’99)
NADE: Neural AutoRegressive Density Estimator

(Larochelle & Murray AISTATS 2011)

- Introduces smart sharing between some weights so that the different hidden groups use the same weights to the same input but look at more and more of the inputs.
Pixel RNNs

- Similar to NADE and RNNs but for 2-D images
- Surprisingly sharp and realistic generation
- Gets texture right but not necessarily global structure

(van den Oord et al ICML 2016, best paper)
Still Far from Human-Level AI

• Industrial successes mostly based on *supervised* learning

• Learning superficial clues, not generalizing well outside of training contexts, easy to fool trained networks:
 – Current models cheat by picking on surface regularities

• Still unable to discover higher-level abstractions
Humans outperform machines at unsupervised learning

- Humans are very good at unsupervised learning, e.g. a 2 year old knows intuitive physics.
- Babies construct an approximate but sufficiently reliable model of physics, how do they manage that? Note that they interact with the world, not just observe it.
Unsupervised Learning of Representations: Simple Auto-Encoders

- MLP whose target output = input
- Reconstruction=decoder(encoder(input)), e.g.

\[h = \tanh(b + Wx) \]
\[\text{reconstruction} = \tanh(c + WT h) \]
\[\text{Loss } L(x, \text{reconstruction}) = ||\text{reconstruction} - x||^2 \]

- Code = new coordinate system
- Encoder and decoder can have more layers
- Reconstruction can be probability distribution
Denoising Auto-Encoder
(Vincent et al 2008)

- Corrupt the input during training only
- Train to reconstruct the uncorrupted input

- Encoder & decoder: any parametrization
- As good or better than RBMs for unsupervised pre-training
Denoising Auto-Encoder

- Learns a vector field pointing towards high probability direction (Alain & Bengio 2013)
 \[r(x) - x \propto \frac{d\log p(x)}{dx} \]
- Some DAEs correspond to a kind of Gaussian RBM with regularized Score Matching (Vincent 2011)
 [equivalent when noise \(\rightarrow 0 \)]
- Compared to RBM:
 No partition function issue, can measure training criterion

prior: examples concentrate near a lower dimensional “manifold”
Auto-Encoders Learn Salient Variations, like a non-linear PCA

- Minimizing reconstruction error forces to keep variations along manifold.
- Regularizer wants to throw away all variations.
- With both: keep ONLY sensitivity to variations ON the manifold.
Manifold Learning = Representation Learning

Data on a curved manifold

tangent directions
tangent plane
Space-Filling in Representation-Space

- Deeper representations \rightarrow abstractions \rightarrow disentangling
- Manifolds are expanded and flattened

(Bengio et al ICML 2013)
Interpolating in Latent Space

If the model is good (unfolds the manifold), interpolating between latent values yields plausible images.
Deep Unsupervised Generative Models

Texture

Shakespeare

Why, Salisbury must find his flesh and thought
That which I am not ans, not a man and in fire,
To show the reining of the raven and the wars
To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father’s world;
When I was heaven of presence and our fleets,
We spare with hours, but cut thy council I am great,
Murdered and by thy master’s ready there
My power to give thee but so much as hell:
Some service in the noble bondman here,
Would show him to her wine.

Hand-writing

Chinese characters

Bedrooms
Latent Variables and Abstract Representations

- Encoder/decoder view: maps between low & high-levels
- Encoder does inference: interpret the data at the abstract level
- Decoder can generate new configurations
- Encoder flattens and disentangles the data manifold
Extracting Structure By Gradual Disentangling and Manifold Unfolding (Bengio 2014, arXiv 1407.7906)

Each level transforms the data into a representation in which it is easier to model, unfolding it more, contracting the noise dimensions and mapping the signal dimensions to a factorized (uniform-like) distribution.

\[
\min KL(Q(x, h) \| P(x, h))
\]

for each intermediate level \(h \)
Helmholtz Machines (Hinton et al 1995) and Variational Auto-Encoders (VAEs)

(Kingma & Welling 2013, ICLR 2014)
(Gregor et al ICML 2014; Rezende et al ICML 2014)
(Mnih & Gregor ICML 2014; Kingma et al, NIPS 2014)

- Parametric approximate inference
- Successors of Helmholtz machine (Hinton et al ‘95)
- Maximize variational lower bound on log-likelihood:
\[
\min KL(Q(x, h) \| P(x, h))
\]
where \(Q(x) = \text{data distr.} \)
or equivalently
\[
\sum_{x, h} Q(x)Q(h|x) \log \frac{P(x, h)}{Q(h|x)} = \sum_{x, h} Q(x)Q(h|x) \log P(x|h) + KL(Q(h|x) \| P(h))
\]
GAN: Generative Adversarial Networks
A radical alternative to max. likelihood

Goodfellow et al NIPS 2014
Early Days of GAN Samples

MNIST

CIFAR-10 (fully connected)

TFD

CIFAR-10 (convolutional)
Convolutional GANs

(Radford et al, arXiv 1511.06343)

Strided convolutions, batch normalization, only convolutional layers, ReLU and leaky ReLU

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model could learn to memorize training examples, but this is experimentally unlikely as we train with a small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating memorization with SGD and a small learning rate in only one epoch.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual under-fitting via repeated textures across multiple samples.

4.3 MAGENET

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We train on \(32 \times 32\) min-resized center crops. No data augmentation was applied to the images.
Generative Adversarial Networks
Image 2 Image

Isola et al. 2016
This bird is red and brown in color, with a stubby beak.

The bird is short and stubby with yellow on its body.

A bird with a medium orange bill white body gray wings and webbed feet.

This small black bird has a short, slightly curved bill and long legs.

A small bird with varying shades of brown with white under the eyes.

A small yellow bird with a black crown and a short black pointed beak.

This small bird has a white breast, light grey head, and black wings and tail.

Zhang et al. 2017

Lucy Li
Horse 2 Zebra: matching 2 domains by analogy of their distribution structure

Input video

CycleGANs: Zhu et al. 2017

Output video

2-way auto-encoder

Looks like a horse?

Looks like a zebra?
Hypothesis: Deep CNNs have a tendency to learn superficial statistical regularities in the dataset rather than high level abstract concepts.

From the perspective of learning high level abstractions, Fourier image statistics can be superficial regularities, not changing object category.
Measuring the Tendency of CNNs to Learn Surface Statistical Regularities

• Different Fourier filters, same high level abstractions (objects) but different surface statistical regularities (Fourier image statistics).

• **Experiment**: Train on one training set and evaluate the test sets.
• A generalization gap: max difference in test accuracies

• Large generalization gap: CNN exploits too much of low level regularities, as opposed to learning the abstract high level concepts.
Rare & Dangerous States

- Example: autonomous vehicles in near-accident situations
- Current supervised learning may not handle well these cases because they are too rare (not enough data)
- It would be even worse with current RL (statistical inefficiency)
- Long-term objective: develop better predictive models of the world able to generalize in completely unseen scenarios
- Example of similar human ability: figuring out intuitive physics, no need to die a thousand deaths
What’s Missing with Deep Learning?

Deep Understanding
Learning « How the world ticks »

- So long as our machine learning models « cheat » by relying only on superficial statistical regularities, they remain vulnerable to out-of-distribution examples.

- Humans generalize better than other animals thanks to a more accurate internal model of the **underlying causal relationships**.

- To predict future situations (e.g., the effect of planned actions) far from anything seen before while involving known concepts, an essential component of reasoning, intelligence and science.
How to Discover Good Disentangled Representations

• How to discover abstractions?
• What is a good representation? (*Bengio et al 2013*)
• Need clues (= priors) to help **disentangle** the underlying factors, such as
 – Spatial & temporal scales
 – Marginal independence
 – Simple dependencies between factors
 • *Consciousness prior*
 – Causal / mechanism independence
 • *Controllable factors*
Acting to Guide Representation Learning & Disentangling

(E. Bengio et al, 2017; V. Thomas et al, 2017)

• Some factors (e.g. objects) correspond to ‘independently controllable’ aspects of the world

• Can only be discovered by acting in the world
 – Control linked to notion of objects & agents
 – Causal but agent-specific & subjective: affordances
Reinforcement Learning

- In general the full state of the environment is not observed, leading to the partially observable setting. When it is fully observed we have a Markov decision process.
- Objective: maximize the return = weighted sum of future rewards.

Policy: maps state or history of observations to a distribution over the next action.
Model-free vs Model-based RL

- Model-free: directly learn a policy or a value function (which associates a state or a state-action pair Q with an estimated return), trying to maximize returns.
 - Policy-gradient methods: estimate the stochastic gradient of the expected return wrt the policy itself, to update it.
- Model-based:
 - Unsupervisedly learn to model the environment (state transition, rewards)
 - Use planning (approximate search/optimization) to choose actions
- Dyna: combine both → internal simulations from estimated model trains a policy
Deep Reinforcement Learning

- Map state or observation sequence to a learned representation to better generalize to new states
- Use neural nets to learn policy, value function, Q-function, estimated reward function, estimated transition operator, etc.
- Share representation across different networks
- Use offline training or replay buffer (memory of past state-action-nextstate-reward tuples) to avoid catastrophic forgetting
- Task rewards are like supervision, use intrinsic rewards (e.g. curiosity, discovery) as unsupervised objectives
Playing all 50 Atari games @ DeepMind

Simulator from U. Alberta’s Sutton’s group. First DRL breakthrough.

2013: Deep RL

http://arxiv.org/abs/1312.5602
March 2016: World Go Champion Beaten by Machine
Coming Deep Learning Revolution in Robotics (& Mobile Robotics)
Groups of Pieter Abbeel & Sergey Levine @ Berkeley
The Deep Learning way of training autonomous agents

• Distributed representations everywhere
• Shared representations across all forms of predictions (value, policy, rewards, transitions)
• Learn how to represent goals, subgoals, policies (skills), manipulate distributions over them and share the same network
• Model the future and plan in latent space
• Partially observed setting + recurrence to estimate state internally
• Combine unsupervised learning, task rewards, intrinsic (exploratory) rewards, and imitation (supervised), all sharing the same networks
• Use an associative memory to handle short and long-term memory and associate events across long time spans
Combining Model-Based and Model-Free RL

- Simulate possible futures (given current state and actions) in order to train the policy (which can act quickly, without having to perform expensive planning)
- Need a good generative model
- Better to generate future abstract states rather than future perceptions
What's Missing

- More autonomous learning, better unsupervised learning
- Discovering the underlying causal factors
- Model-based RL which extends to completely new situations by unrolling powerful predictive models which can help reason about rarely observed dangerous states
- Deep learning to expand from perception & system 1 cognition to reasoning & system 2 cognition
What's Missing

- Autonomously discovering **multiple time scales to handle very long-term dependencies**
- Actually **understanding language** (also solves generating), requiring enough world knowledge / commonsense
 - Grounded language learning: learn both world model and how to talk about it
 - Neural nets which really understand the notions of object, agent, action, etc.
The Future of Deep AI

- Scientific progress is slow and continuous, but social and economic impact can be disruptive.
- Many fundamental research questions are in front of us, with much uncertainty about when we will crack them, but we will.
- Importance of continued investment in basic & exploratory AI research, for both practical (recruitment) short-term and long-term reasons.
- Let us continue to keep the field open and fluid, be mindful of social impacts, and make sure AI will bloom for the benefit of all.