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Ulktimate Croal

* Understand the principles
giving rise to intelligence



~ocus

» Learning: mathematical
and computational
principles allowing one to
learn from examples in
order to acquire knowledge



Breakthrough

» Deep Learning: machine
learning algorithms inspired
by brains, based on learning
multiple levels of
representation / abstraction.



Deep Learning within ML & AI

Deep learning

Example: Example: Example:
Example: ple. Logistic Knowledge
Autoencoders :
MLPs regression bases

Representation learning

Machine learning



Im Pac&

Deep learning has revolutionized
* Speech recognition
* Object recognition

More coming, including other
areas of computer vision, NLP,
dialogue, reinforcement learning..



The dramatic impact of Dee
Learhing o Speech Recognition

100%A According to Microsoft’s
speech group:

Using DL

10%

4%

Word error rate on Switchboard

2%

1%
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ImagetNet Breakthrough
ad ® Achieves state-of-the-art on many
object recognition tasks.

Ty— v . ' ’
i pickup Jelly fungus elderberry titi

beach wagon glll fungus bullterrier indri
fire engine | dead-man's-fingers currant howler monkey

See: deeplearning.cs.toronto.edu



ImageNet Classification 2012

* Krizhevsky et al. -- 16.4% error (top-5)

e Next best (non-convnet) — 26.2% error

Slide from Rob Fergus, NIPS tutorial, 2012




Object Recognition Worlks

e Try it at http://deeplearning.cs.toronto.edu

Possible tags: Possible tags:
v X chimpanzee, chir _ 4¢  S G man shepherd,
« x “gorilla, Gorilla gorilla « x dingo, warrigal, warragal

« x “ram, tup v x PSEM Norwich terrier

1 0 « x mhippopotamus, hippo, river horse « x Lk 3 Airedale, Airedale terrier

« x Mmask




Mownktreal Deep Neks Win Emotion
Recognition in the Wild Challenge

Predict emotional expression from video (using images + audio)

Dec. 9, 2013
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S 10 BREAKTHROUGH
= TECHNOLOGIES 2013

DeeplLearning Temporary Social Prenatal DNA Adc
Media Sequencing Mai
With massive Reading the DNA of
amounts of ; fetuses will be the
comﬁptatlonal power, Messages that quickly next frontier of the Ske
machines can now self-destruct could genomic revolution. prin
recogrnlze objects and enhance the privacy But do you really want wor
translate speech in of online to know about the mar
real time. Artificial communications and genetic problems or the
intelligence is finally make people freer to musical aptitude of tect
getting smart. be spontaneous. - your unborn child? - jetg
Memoryimplants Smart Watches Ultra-Efficient Solar Big
Power Phc
A maverick
neuroscientist Coll
believes he has Doubling the ana
deciphered the code efficiency of a solar fron
o whircrh the hrain ~rall vwirnild camnlaetahs nhn



A LTivnnAd +~ Aal> AT alitxr W

EXCLUSIVE

Facebook, Google in 'Deep Learning'
Arms Race

NEWS BULLETIN

Google Beat Facebook for DeepMmd

Google Acqulres Artificial Intelllgence Startup DeepMind
For More Than $5ooM

Catherine Shu (@cathe



Challenges

(Bengio, arxiv 1305.0445 Deep learning of representations: looking forward)

e Scaling up Unsupervised Learning &
Structured outputs
* Intractable computations with latent variables

* Key to more adaptable models, exploiting tons
of unlabeled data, and complex output
decisions

e Scaling up Computation
e Scaling up Numerical Optimization
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Potential Outcome: AT

e Computers that can
*see and hear
*understand natural language
*understand human behavior

e Better understanding of human &
animal intelligence

e Personnal assistants, self-driving cars...
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Technical Goals Hiemrckv

To reach Al:

* Needs knowledge
* Needs learning

* Needs generalization

e Needs ways to fight the curse of dimensionality
 Needs disentangling the underlying explanatory factors

16



Easy Learning

learned function: prediction = f(x)




Local Smoothness Prior: Locatty
Capture the Variakions

* = training example

YA

true functjgn: unknbwn

prediction

.-~""learnt = interpolat
f X I , .’ .
(x) oy




ML 101, What We Are Fighting Against:
The Curse of Dimensionality

To generalize locally,
need representative
examples for all
relevant variations!

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting good
features / kernel

1 dimension:
10 positions

2 dimensions:
100 positions
Q

» 3 dimensions:
1000 positions!



Nokt bimensionati&v so much as
Number of Variations ‘

e Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

M
//’\\/\/ \//X/x

e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(2¢)
examples




For Al Tasks: Manifold skructure

e examples concentrate near a lower dimensional “manifold

e Evidence: most input configurations are unlikely

. [shrinking
transformation

4 J'n
a

raw input vector space




Greometlrical view on machine Learning

e Generalization: guessing where probability mass concentrates

e Challenge: the curse of dimensionality (exponentially many
configurations of the variables to consider)

e Representation Learning: mapping to a new space, unfolding

=
iy

%

=
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Putting Probabilit

Structure is Plausible

23

Empirical distribution:
mass at training examples

Smoothness: spread mass around

Insufficient

Guess some ‘structure’ and
generalize accordingly

Equivalent to guessing a good
representation in which distance is
meaningful and relationships are
simple, linear

Mass where



Representation Learhing

e Good features essential for successful ML: 90% of effort

raw represented MACHINE
input > by téreserd ml | | EARNING
data features

 Handcrafting features vs learning them

e Good representation?

* guesses
the features / factors / causes

24



Automating
Feature Discovery

25

Output

\

Mapping
Output Output from
features
A A A
Mapping Mapping Most
Output from from complex
features features features
) A A A
Hand- Hand- Simolest
designed designed Features f P
eatures
program features

\

3

\

Input Input Input Input
Rule-based Classic Representation Deep
systems machine learning learning
learning




Google Image Search:

Different object types represented in the
same space

DDDDDDD

DOLPHIN
— OBAMA
—EIFFEL TOWER

"?Google:

'S. Bengio, J.
Weston & N.
»_ Usunier

Se¢ (1JCAI 2011,
NIPS’2010,
JMLR 2010,
MLJ 2010)

[

4

100-dim
embedding space

Learn ®(+) and 9,-) to optimize precision@k.



Following up on (Bengio et al NIP§2000)
Neural word embeddings - visualizakion

need help
come
go
take
qive keep
make get
meet cee continue
expect want become
think
say remain
are .
Is
be
wergas
being
been
haqmas

27 have



Analogical Representations for Free
(Mirolov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome

28



Breakthroughs in Machine Translation

e (Choetal, EMNLP 2014) Learning Phrase Representations using
RNN Encoder—Decoder for Statistical Machine Translation

Almost 2 BLEU points improvement for English-French

e (Devlin et al, ACL 2014) Fast and Robust Neural Network Joint
Models for Statistical Machine Translation

Best paper award, 6 BLEU points improvement for Arabic-English

Yt y
t— > Decoder

29

Encoder



Encoder-decoder | ST
Framework for Machin
Trav\s"a&m“ Encode

Economic growth has slowed down in recent years .

e One encoder and one decoder per language

e Universal intermediate representation

 Encode(French) = Decode(English) = translation model

* Encode(English) = Decode(English) = language model

e Parametrization grows linearly with # languages, not quadratic

English sentence English sentence

For bitext data
For unilingual data

30 French sentence English sentence



Learning multiple levels of
representation

There is theoretical and empirical evidence in favor of
multiple levels of representation

Exponential gain for some families of functions

Biologically inspired learning
Brain has a deep architecture

Cortex seems to have a
generic learning algorithm

Humans first learn simpler
concepts and compose them

It works! Speech + vision breakthroughs N

31



Learning mut!:ipte levels BN
Qf TQPTEEQV\&Q&I.«OV\ (Lee, Largman, Pham & Ng, NS 209)

) (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
g Layer 3 linguistic representations

Parts combine
to form objects

A AN TN ALV VP
L SIS U SPIAL A b Laverd

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




Composing Features on Features

Higher-level features

Output
(object identity)

are defined in terms of

3rd hidden layer
(object parts)

lower-level

2nd hidden layer
(corners and
contours)

features

1st hidden layer
(edges)

Visible layer
(input pixels)

33



subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



N

bsubsub] subsubsub?

subsubsu //////////fBbS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



Sharing Components in a Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(r179)(XoX3) + (r129) (23224) + (X2X3)2 + (x9x3)(7374)

(X2X3) 9X3) + (r374)
Sum-product
network
X9X3 Ty
2 3

Theorems in
(Bengio & Delalleau, ALT 2011;
T W €Ty

19

Delalleau & Bengio NIPS 2011)



‘De.e.p Architectures are More.
Expresswe.

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal opproximo‘ror
RBF units

RBMs & ou’ro encoders = universal approximat;
Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007,

Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014)

Some functions compactly
represented with k layers may

require exponential size with 2
layers




New theoretical result:
Expressiveness of deep hets with
plecewise-linear activation fns

(Pascanu, Montufar, Cho & Bengio; ICLR 2014)

Deeper nets with rectifier/maxout units are exponentially more
expressive than shallow ones (1 hidden layer) because they can split
the input space in many more (not-independent) linear regions, with
constraints, e.g., with abs units, each unit creates mirror responses,
folding the input space:

38



Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

Unsupervised feature learners:
* RBMs

e  Auto-encoder variants

_ , Montréal
e  Sparse coding variants Torontg R
Hinto p

%8 Le Cun
2127 New York
(Bengio & LeCun 2007), Scaling Learning Algorithms towards Al




Layer-wise Uhsupervised Learning

Input 000 .. O

40



Layer-Wise Unsupervised Pre-training

features O00©® ... @

41



Layer-Wise Unsupervised Pre-training

features O 0®@®

_ ?
reconstruptlon 00 ..0 = 000 O input
of input '\
.\
Input %

42



Layer-Wise Unsupervised Pre-training

features O00©® ... @

43



Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..

44



Layer-wise Unsupervised Learning

reconstruction '
Q0O 09 .. ©

"
of features O »\ T l

More abstract

features ;'

features O0® ... @
input %@y

45



Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..
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Layer-wise Uhsupervised Learning

Even more abstract
features O

® ..
More abstract I/;><
features V o 'ﬁ

features 00©® ... @

Input o0 ..

47



Supervi.sad Fine-Tuning

Output - Target
f(X) six _Y
@
Even more abstract / / \
features O

.. @
More abstract I/;><T
features V 'ﬁ

features WV
iInput o0 ..

e Additional hypothesis: features good for P(x) good for P(y|x)

48



‘Dee.p Supervi.se.d Neural Nets

e Now can train them even without
unsupervised pre-training:
better initialization and non-
linearities (rectifiers, maxout),
generalize well with large labeled
sets and regularizers (dropout)

 Unsupervised pre-training:
rare classes, transfer, smaller

labeled sets, or as extra
regularizer.

49



Machine Learning 1ol

* Family of functions f@
e Tunable parameters 6
e Examples Z ~ unknown data generating distribution P(Z)
* Loss L mapsZand f@ to a scalar
e Regularizer R (typically on depends on 0 but possibly also on 2)
* Training criterion:
0(9) — averagedeatasetL(f97 Z) T R(Q, Z)
e Approximate minimization algorithm to search for good v,

e Supervised learning:

» z=(x,Y)and L = L(fg(X),Y)

50



Log-Likelihood for Neural Nets

e Estimating a conditional probability P(Y‘X)
« Parametrizeitby P(Y|X) = P(Y|w = fo(X))
e lLoss= — lOg P(Y|X)
e E.g.GaussianY, w = (,LL, (7)
typically only [i is the network output, depends on X
Equivalent to MSE criterion:
loss= —log P(Y|X) = logo + || fo(X) — Y[|*/o”
e E.g. Multinoulli Y for classification,
W; — P(Y — Z|CIZ') — fg’z(X) — Softmaxi(a(X))
Loss = — logwy = —log fo v (X)

51



Multiple Outpukt Variables

e If they are conditionally independent (given X), the individual
prediction losses add up:

—log P(Y|X) = —log P(Yy,...Y3| X) = logHP Y| X) = ZlogP
* Likelihood if some Y/s are missing: just ignore those losses

e |f not conditionally independent, need to capture the
conditional joint distribution P(Y7,...Yy|X)

* Example: output = image, sentence, tree, etc.
e Similar to unsupervised learning problem of capturing joint

e Exact likelihood is often similarly intractable
52



Approxima&e. Minimization

50 | | | |
40 -
30 -
20} This local/minimum performs -
poorly, and should be avoided.
10} This local minimum .
Ideally, we would like to performs riearly as well as
arrive at the global )
minimum, but this it is an acceptable
olmight not be possibl ' oint. i

53 —6 —4



Grodient-Based Optimization &
Gradient Descent

Gradient descent

2.0 I I I I
Gradient descent 15} AN Global minimum at z=0. ,’
. N Since f(z) =0, gradient /
paramEter update. 10l . descent halts here. it
0.5} R g
New param = I
Old param — 0-0r For z <0, we have f(z) <0, e For z >0, we have f(z) >0,
StepSize * gradient SO we can decrease f by SO we can decrease f by
—0.5}F moving rightward. moving leftward.
_1.0_
/
r<x—ecf(x)
—-1.5¢ - _ f(:B) :%xz
— fla)=z
-2.0 . : : ' ' ' '
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
X
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A neural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs

But we don’t have to decide

ahead of time what variables
these logistic regressions are
trying to predict!

55



A neural network = running several
Logistic regressions at the same time

... which we can feed into another logistic regression function

and it is the training
criterion that will
decide what those
intermediate binary
target variables should
be, so as to make a
good job of predicting
the targets for the next
layer, etc.

56



A neural network = running several
Logistic regressions at the same time

e Before we know it, we have a multilayer neural network....

57



Back-—?rap

58

Compute gradient of example-wise loss wrt
parameters

Simply applying the derivative chain rule wisely

o
2= fly) y=glx) 5 =55

If computing the loss(example, parameters) is O(n)
computation, then so is computing the gradient




Simn Fl.e. Chain Rule

59

Az = %Ay

Ay = =2 Ax

Az = g; ngx
9z _ 9z dy

Ox ~ Oy Ox



Mut&ipte. Palbths Chain Rule

Oz __ Oz Oy

Oz OYo

X Ox ~ Oy; Ox

60

Oys Ox



Mut&ipta Pabths Chain Rule - General

&

61



Chain Rule in Flow G-'mpk
2

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

{y1, Y2, ... yn}=successors of T

0z 0vy;
Z 0y; Ox

62



Back-?mp TN Mutki‘.-—Lajer Net
NLL = —log P(Y = y|x)

63



Ba«ck'-?rr.ap i Greneral Flow G*mpk

Single scalar output 2

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{yl, Y2, « .. yn} = successors of I

64



Back-Prop in Recurrent & Recursive

Nets

* Replicate a
parameterized function
over different time
steps or nodes of a DAG

* Qutput state at one
time-step / node is used
as input for another
time-step / node

65

Zt—l Zt zt+1
o () o
- ® >® 0L
o () > )
> @ () )
Xi-1 Xe | Xt+1
0000 0000 0000
A small crowd
quietly enters
the historic
eeDes church
VP S
"""" emantic
NP VP ,,,,,,, P Representations
A small quietly N P
crowd enters Det Adj. N.

i J i }
istoric  church




Greneralive RNNs for Machine
Trawnslation

e Decoder = ‘generative’ RNN: context C = distribution over word sequences

- Py, [ c)=TUpPry, | H,C)

where hidden state H, summarizes past seq. Decoder

H, = f(H,, Y, ,C)=F(Y,,..Y,C)

e Directed graphica] model: ancestral sampling

from Y, to Y.

e Output sequence can be of different length T'=2T ? T
X1 X, Xr

not necessarily aligned with input sequence

Encoder

66



RNN Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2" order)

e |nitialization (start in right ballpark avoids exploding/vanishing)

e Sparse Gradients (symmetry breaking)
e Gradient propagation regularizer (avoid vanishing gradient)
e LSTM self-loops (avoid vanishing gradient)

0.35
0.30
0.25 o
o
0.20 =
w
0.15
0.10
0.05

eIrror

4.6 ' =
/6
% 5-
Or 3-2 -2.0
> 5.4 -24 722 7%

67 9 ‘I’ . —28 —2.6va‘ue Of b



Gradient Norm Clipping

8error

g <
if Hg” > threshold then

threshold A
L —
g g S

end if




Backpropagation Through Structure

* Inference - discrete choices
* (e.g., shortest path in HMM, best output configuration in CRF)

E.g. Max over configurations or sum weighted by posterior

The loss to be optimized depends on these choices

The inference operations are flow graph nodes

If continuous, can perform stochastic gradient descent

* Max(a,b) is continuous. o
O______.
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Automatic Differentiation

* The gradient computation can

\ : .

'ﬁ ﬂ. be automatically inferred from
the symbolic expression of the

fprop.

* Each node type needs to know
how to compute its output and
how to compute the gradient
wrt its inputs given the
gradient wrt its output.

\
""Q‘L’ e Easy and fast prototyping

- theano

70



Is there any kape. to
generalize u¢u~tocattv?

Yes! Need good priors!

Depth prior: Abstraction



Bypassing the curse

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently
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Now-distributed representations

e (lustering, Nearest-
Neighbors, RBF SVMs, local
non-parametric density
estimation & prediction,
decision trees, etc.

Clustering

e Parameters for each
distinguishable region

LOCAL PARTITION

e # of distinguishable regions
is linear in # of parameters

- No non-trivial generalization to regions without examples

73



The need for distributed
rapresew&a&iov\s

74

Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

Each parameter influences
many regions, not just local
neighbors

# of distinguishable regions

grows almost exponentially
with # of parameters

GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Multi-
Clustering

C1

artition 1

Cl=1
C2=0
C3=0

Cl1=0
C2=1
C3=0

Sub—partition 3
\

oL, Sub—partition 2
\ Cl= s

\ CjZ:(] .,:‘
\( .‘:I!~

\ C1=0
C2=1
\ C3=1

\

DISTRIBUTED PARTITION \

C2

input

C3

Non-mutually
exclusive features/
attributes create a
combinatorially large
set of distinguiable
configurations



The need for distributed

[ 3
repre.sev\&a&mvxs
Clusterin ultlias
. _partition 3
& Cluste rng Sub \\p::l“O:_l.]Sub—partition 2
AN oo | :,‘,.,

P N ¥

e Sub—partition 1 S o
y ‘
X
P

DISTRIBUTED PARTITION
LOCAL PARTITION

Learning a set of features that are not mutually exclusive
can be exponentially more statistically efficient than
having nearest-neighbor-like or clustering-like models
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Stochastic Neurowns as Regularizer:
Improving neural networks by preventing co-adaptation of

feature detectors (Hinton ek al 2012, arXiv)

e Dropouts trick: during training multiply neuron output by
random bit (p=0.5), during test by 0.5

e Used in deep supervised networks
e Similar to denoising auto-encoder, but corrupting every layer

e Works better with some non-linearities (rectifiers, maxout)
(Goodfellow et al. ICML 2013)

e Equivalent to averaging over exponentially many architectures
* Used by Krizhevsky et al to break through ImageNet SOTA
e Also improves SOTA on CIFAR-10 (18—2>16% err)
* Knowledge-free MNIST with DBMs (.952.79% err)
o TIMIT phoneme classification (22.7219.7% err)
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Temporal & Spatial Inputs:
Convolutional & Recurrent Nets

e Local connectivity across time/space
e Sharing weights across time/space (translation equivariance)

e Pooling (translation invariance, cross-channel pooling for learned invariances)
Input layer (S1) 4 feature maps

(Cl) 4 feature maps (S2) 6 feature maps

(C2) 6 feature maps

l sub-sampling layer l convolution layer l sub-sampling layer | fully connected MLP |

><1048 dense ‘ ‘ ‘
Xt Xt Xt

dense|

Il Recurrent nets (RNNs) can summarize
information from the past

Bidirectional RNNs also summarize
78 information from the future



Cownvolution = sparse connectivitu +

a=—00
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Pooling Layers

e Aggregate to achieve local invariance

NoloIoIO R OIOIoION

Max-pooling Effect of translation

e Subsampling to reduce temporal/spatial scale and computation
() (1) (02) (o) (o0) (01

80



Mutb’.pte. Convolutions: Feature Maps

81



Alternating convolutions & pooling

e |nspired by visual cortex, idea from Fukushima’s Neocognitron,
combined with back-prop and developped by LeCun since 1989

Input layer (S1) 4 feature maps

1 1 (CI) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

convolution layer l sub-sampling layer | convolution layer l sub-sampling layer | fully connected MLP |

e |ncreasing number of features, decreasing spatial resolution

° Top Iayers are fu”y connected Krizhevsky, Sutskever & Hinton 2012
breakthrough in object recognition

128 ><2_4><zm; dense

dense dense)

128 Max

pooling 204 2048
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Scaling up computation:
we still have a long way to 90
A Taw compu&a&i.anat power

~
.

.
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Challenge: Compu&aﬁonat Scaling

e Recent breakthroughs in speech, object recognition and NLP
hinged on faster computing, GPUs, and large datasets

e A 100-fold speedup is possible without waiting another 10 yrs?

e Challenge of distributed training
* Challenge of conditional computation

]
©
=
g
Wi
a
(]
|
™
O
o
(=]




&PUs

e 10-fold to 100-fold speedup makes them unavoidable
e Now 2688 cores (Titan) in parallel
e QOrganized in SIMD blocks
e 2 challenges to take advantage of hardware:
* Parallelization
e Cache usage (memory access is expensive)

GeForce GTX TITAN

7688 1 50( 7/ 4

L0OO 4,500 /.

CUDA Cores Gigaflops Billion
Transistors




Challenge: Computational Scaling

e Recent breakthroughs in speech, object recognition and NLP
hinged on faster computing, GPUs, and large datasets

e In speech, vision and NLP applications we tend to find that

BIGGER IS BETTER

Because deep learning is
EASY TO REGULARIZE while
it is MORE DIFFICULT TO AVOID UNDERFITTING

86



Distributed Training

e Minibatches
e Large minibatches + 2"9 order & natural gradient methods
e Asynchronous SGD (Bengio et al 2003, Le et al ICML 2012, Dean et al NIPS 2012)

* Bottleneck: sharing weights/updates among nodes, to avoid
node-models to move too far from each other

e |deas forward:
* Low-resolution sharing only where needed

 Specialized conditional computation (each computer
specializes in updates to some cluster of gated experts, and
prefers examples which trigger these experts)
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Distributed Training

e Minibatches
e Large minibatches + 2"9 order & natural gradient methods
e Asynchronous SGD (Bengio et al 2003, Le et al ICML 2012, Dean et al NIPS 2012)

* Bottleneck: sharing weights/updates among nodes, to avoid
node-models to move too far from each other

e |deas forward:
* Low-resolution sharing only where needed

 Specialized conditional computation (each computer
specializes in updates to some cluster of gated experts, and
prefers examples which trigger these experts)
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Conditional Computation: only visit a
small fraction o{-P parameters ? example

e We need to improve (reduce) the ratio of
NUMBER OF COMPUTATIONS / NUMBER OF PARAMETERS

e Extreme success story (but poor generalization): decision trees
e Deep nets: O(N) computations for O(N) parameters
* Decision trees: O(N) computations for O(2N) parameters

0




Conditional Computation: only visit a
small fraction o{-P parameters ; example

e Regular mixture of experts (Jacobs et al 1991)
Output = weighted sum of experts outputs 2

Gater partitions input space, chooses gater {.7 SXperts
which expert to listen in each region.
Gater softmax output = weights input

* No computational benefit, but easier optimization (each expert
specializes in its gater-assigned region)

e Hard mixtures of experts (Collobert, Bengio & Bengio 2002)
* Gater takes a hard decision

* No benefit a training time (need to run all experts to tell gater
which one it should have chosen)

* O(K) speedup at test time if K experts



Cownditional Com fputa&iow 1? visik a

small fraction o

pamme.!:ers e.xampte

Conditional computation for deep nets: sparse
distributed gaters selecting combinatorial =
subsets of a deep net —

Challenges: -
* Credit assignment for hard decisions
* Gated architectures exploration

Output softmax

(Bengio, Leonard, Courville 2013): /-: _
Estimating or Propagating Gradients Gated units [experts)
Through Stochastic Neurons for Gater path

Conditional Computation Gating units= ®



Credilt Assignment for Discrete Actions

(Bengio, Leonard, Courville 2013): Estimating or Propagating Gradients
Through Stochastic Neurons for Conditional Computation Output softmax

e Gating units take a hard decision / \
Gated units (experts)

e Gradient through discrete function =0

Gater path

e Solutions in (Bengio, Leonard, Courville 2013

e Heuristic back-prop (straight
through estimator),

Gating units= ¢

also (Gregor et al ICML 2014). noise T

* Noisy rectifier: n——f— _>_/4> x

» Smooth times Stochastic bvp - ™\ main path
with b ~ Bin(Vp) Gating unit

* REINFORCE with variance reduction
baseline, i.e., RL, i.e. correlate with
loss, no back-prop for gaters
* Another option: train a stochastic credit-assignment machine by
0 Reweighted Wake-Sleep (Bornschein & Bengio 2014)



Conditional Compu!:a!:iov\ on the
Ou&pu.l: Lovje.r

e When computing the loss L(f(x),y), we can exploit the knowledge
of y to make the computation of the loss NOT HAVE TO

COMPUTE WITH ALL THE PARAMETERS involved in f(x).

e Example 1:-/og P(y[x) can be decomposed in a tree structure
over the classes y, into super-(super-)categories

e Example 2: a sampling approximation of L(f(x),y) can be
computed that is much cheaper
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Handling Large Output Spaces

e Auto-encoders and RBMs reconstruct the input, which is sparse and high-
dimensional; Language models have a huge output space (1 unit per word).

codes latent features Alternatives to likelihood not

Q.... requiring the compute the
cheap expensive normalization constant, e.g. NCE
(Mnlh&Kavukcuoqu NIPS 2013)
sparse input dense output probabilities

e (Dauphin et al, ICML 2011) Reconstruct the non-zeros in
the input, and reconstruct as many randomly chosen
zeros, + importance weights 1N

« (Collobert & Weston, ICML 2008) sample a ranking loss categories
 Decompose output probabilities hierarchically (Morin
& Bengio 2005; Blitzer et al 2005; Mnih & Hinton Q

n words within each category

2007,2009; Mikolov et al 2011) ﬂﬂ.
94 . s k&
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Exploiting Sparsity

95

If X is sparse, computing Wx only needs to touch the
columns associated with non-zero x;

Unfortunately, it is more difficult to exploit sparsity on
GPUs, especially when the pattern of sparsity is not
the same between examples of the same mini-batch
(due to lack of caching)

Implementations using the sparse matrix
multiplications with CUDA can be 100x slower than
their dense counterparts (on a per-multiply-add basis)
while their CPU equivalents can be 10x slower than
their dense counterparts.



Slmrse. E‘Mpu&s = S-mav connections

* Much larger payoff can be obtained when using 3-way
connections if the input is very sparse e.g. one-hot
code for characters (Sutskever et al ICML 2011)

* E.g. Each input symbol s, selects a different recurrent
weight matrix of an RNN

h.,,=tanh(b + W_h,) 1
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Exponentially Eixptodmg the
#Parameters’for fixed Computation

(Cho & Bengio 2014)

To drastically increase the ratio of parameters to
computation, binarize the pattern of activations of a layer
to select up to 2k weight matrices (n x m) for computing
the next layer.

Gater: k of the n units
Memory = parameters: O(2 n m)
Computation: O(n m)

Many variants are possible (may use different k bits for
each hidden unit, may add prefix-indexed matrices, etc.)
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Scaling up numerical optimization
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Issues with Back—-‘l’rop

e QOver very deep nets or recurrent nets with many
steps, non-linearities compose and yield sharp non-
linearity = gradients vanish or explode

* Training deeper nets: harder optimization

* |n the extreme of non-linearity: discrete functions,
can’t use back-prop

* Not biologically plausible



Effect of Initial Conditions
in Deep Nets

e (Erhan et al 2009, JMLR)

e Supervised deep net with vs w/o
unsupervised pre-training =2»very different minima

Neural net trajectories in w/o unsupervised pre-trainin
function space, visualized by e
t-SNE a o

No two training trajectories - o g @S 2 9 [y
end up in the same place 2 :
huge number of effective

local minima

with unsupervised pre-training
100



Optimization & Underfitting

e On large datasets, major obstacle is underfitting

Marginal utility of wider MLPs decreases quickly below
memorization baseline

e Current limitations: local minima, ill-conditioning or else?
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Marginal utility (MU)
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Good News: Piece~wise Linear
Activation Functions = Easier Training

e The effects are stronger for deeper nets
e Sigmoid non-linearity worse than Tanh
e Rectifier ( max{0,x} ) better than Tanh
e Maxout ( max; (b; + W, x) ) better than Rectifier (ReLU)
e Why?
* Symmetry breaking
* Less interactions between parameters
* See (Glorot et al AISTATS 2010 & 2011, Goodfellow et al ICML’2013)

* Problem: unstable for very deep nets, impossible for RNNs
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Spm*se Represevxka&i.avxs

e Just add a sparsifying penalty on learned representation
(prefer Os in the representation)

e Information disentangling (compare to dense compression)
e More likely to be linearly separable (high-dimensional space)

e Locally low-dimensional representation = local chart
e Hi-dim. sparse = efficient variable size representation
= data structure

Few bits of information Many bits of information

H B I .

Prior: only few concepts and attributes relevant per example
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'De.eor Sparse Re.c&bfie.r Neural Nebworles

Glor and Bengio AISTATS 2011), foIIowmg up on (Nair & Hinton 2010) softplus RBMs

Neuroscience motivations Machine learning motivations

Leaky integrate-and-fire model

mm) Sparse representations
mm) Sparse gradients
mm) Trains deep nets even w/o pretraining

Rectifier mite container ship motor scooter leopard
f(X) =ma X(O ,X) mite container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

Output

Outstanding results by Krizhevsky et al 2012
killing the state-of-the-art on ImageNet 1000:

Hidden layer 2
e 2"d best 27% err
i Previous SOTA  45% err 26% err
Krizhevsky etal 37% err 15% err




Guided Training, Intermediate
Concepts

 In (Gulcehre & Bengio ICLR’2013) we set up a task that seems
almost impossible to learn by shallow nets, deep nets, SVMs,

trees, boosting etc

e Breaking the problem in two sub-problems and pre-training
each module separately, then fine-tuning, nails it

e Need prior knowledge to decompose the task

e Guided pre-training allows to find much better solutions, escape
effective local minima
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E{fQCR\IQ Local Minima

e Itis not clear that actual local minima are a real issue in training
deep nets

* But initial conditions can sometimes matter a lot!

* see evidence suggesting instead that saddle points create
plateaus that act as obstacles:

Pascanu et al, On the saddle point problem for non-convex optimization,
arXiv 2014

e An optimizer like the one in brains may get stuck = effective
local minima




Saddle-Free Optimization
(Pascanu, Dauphin, Ganguli, Bengio 2014)
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Replace eigenvalues A of Hessian by |A|

Training error (%)

10| 8

=
o
o

=
o
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e ® minibatch SGD
¢¢ Damped Newton method
=0 Saddle-Free Newton method
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WH’WWWWWWWWWWWM‘
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Number of hidden units

50



Target ?rof
(Bengio 2014, arXiv 1407,7906)

e Instead of propagating the effect of an
infinitesimal change, propagate a target

that would be < D
* Near the original value
* Yielding to a lower loss T l A
e Can be obtained by maintaining hl - ‘ Dhl
each layer as an auto-encoder: flT lgl ~ fl:1
hi—1C —>hi_

good target h;_1 s.t.

filhi—1) = fi(gi(h)) = hy CT l >

Can potentially deal with highly non-linear or even discrete functions
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Scaling up Unsupervised &
Structured Output Learhing



Why Unsupervised Learning?

e Recent progress mostly in supervised DL

e 1 real challenges for unsupervised DL

e Potential benefits:
* Exploit tons of unlabeled data
* Answer new questions about the variables observed
* Regularizer — transfer learning — domain adaptation
e Easier optimization (local training signal)
 Structured outputs
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Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on

Unsup. &

Transfer Learning:™”|

095

085

curve (AUC)
o

o
< 065

3 layers

Ckal:&_gvxge: ‘Deeﬂgwg,eamm

2 layers

3 4
N umber ot tiaining e xamples)

SYLVESTER VALID: ALC=09316

q 1lst Place

NIPS’2011
Transfer
Learning

Challenge
Paper:
ICML’2012

& 9 & &
4 layers

LogziN umber ot training examples)




Bolkzmann Machines & MRFs

e Boltzmann machines:

- 1 1 1 S oo —
(Hinton 84) P(CE) _ Ze—Energy(m) _ ZecTzz:-{—a:TWm _ Eezz 'L-'L'z'*‘zz.’j z;Wijxj

e Markov Random Fields:
Undirected

graphical

1 i o models
P(x) = Eezi ’Lfi.(\)

Soft constraint / probabilistic statement

® More interesting with latent variables!



Undirected Models:

the Restricted

[Hinton et al 2006]

, Boltzmann Machine

Probabilistic model of the joint distribution of
the observed variables (inputs alone or inputs
and targets) x

hy hy hy

Latent (hidden) variables h model high-order
dependencies

Inference is easy, P(h|x) factorizes into product
of P(h; | x)

X1 X

See Bengio (2009) detailed monograph/review: ﬂ
“Learning Deep Architectures for Al”.

See Hinton (2010)
“A practical guide to training Restricted Boltzmann Machines”



Restricted Boltzmann Machine
(RBMm)

P(m h) — lebTh-i-cT:L’-i-hTWm — lezz bihi+2j Cjil}j-i-zi,j hiW;;x;
) 7 7
e A popular building
block for deep
architectures

O - ¢ n hidden

e Bipartite undirected
graphical model

x Observed



Block Gribbs Sampling in RBMs

h, ~P(h]x) h, ~P(h1X,) hs ~P(h|x;)

N~

C
X, X, ~ P(x|h,) X3~ P(x|h,)

pum—

® Fasy inference

P(h]x) and P(x|h) factorize = ' . p 1\ Gibbs

P(h|x)=T1 P(h,|x) sampling x>h=>x->N...

“—

T T T
P($,h) — %6b h+c” z+h” Wx



RBM with (imaqe, Label) visible uniks

hidden

OCOOO OO0

A
@XXX) 00000

label

Y

(Larochelle & Bengio 2008)



Convolubionally Trained
Spilke & Slab RBMs Samples




ssRBM is not Cheating

Samples from p-ssRBM:

T:
9
o
£
©
(%)
©
Q
)
O
| -
()]
C
()
OF

Nearest examples in CIFAR:
(least square dist.)

Training examples




Stack of RBMs
9 DQQF BQL‘:@.{ NQ‘: (Hinon e\aI2006)

e Stack lower levels RBMs’ P(x| h) along with top-level RBM
° P(X/ h1/ h2/ h3) = P(h2/ h3) P(hllhz) P(X | hl)
e Sample: Gibbs on top RBM, propagate down

119
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Stack of RBMs ll

> Deeﬁ Bolkzmann Machine

(Salakhutdinov &*™Hinton AISTATS 2009)

e Halve the RBM weights because each layer now has inputs from
below and from above

e Positive phase: (mean-field) variational inference = recurrent AE

e Negative phase: Gibbs sampling (stochastic units)
e train by SML/PCD

h;mees e y E— T—
Ya 3 2
h, —— Ms
2 2 2
h, ? A
T

!
2 2VV5

. S s

x‘wzl —ZT 2%

:
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Obstacle: Vicious Circle Bebtween
Learhing and MCMC Sampling

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?

Training updates

Gicious circl§

Mixing

121 A\WUAN



Poor Mixing: Depth to the Rescue

(Bengio et al ICML 2013)

e Sampling from DBNs and stacked Contractive Auto-Encoders:
1. MCMC sampling from top layer model
2. Propagate top-level representations to input-level repr.
e Deeper nets visit more modes (classes) faster
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viassing Normalization Cownstawnts
with Grenerative Black Boxes

e Instead of parametrizing p(x), |
randaom

parametrize a machine which numbers
generates samples > ted
parameters &
samples

® (Goodfellow et al, 2014, Generatlve/ previous state
adversarial nets) for the case of random

ancestral sampling in a deep numbers
generative net parameters

generated
samples

next state

generated

e (Bengio et al, ICML 2014, Generative Z samples

Stochastic Networks), learning the
transition operator of a Markov
_ generated
1,3 chain that generates the data samples



Ancestral Sampling with Learned
Approximate Inference

Trained approximate, = ™ latent

- /’
inference -
Helmholtz machine & Wake-Sleep algorithm

e (Dayan, Hinton, Neal, Zemel 1995)
e Variational Auto-Encoders
e (Kingma & Welling 2013, ICLR 2014)
e (Gregor et al ICML 2014)
e (Rezende et al ICML 2014) visible
e (Mnih & Gregor ICML 2014)
e Reweighted Wake-Sleep
e (Bornschein & Bengio 2014)
 Target Propagation
e (Bengio 2014)
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Sim pte. Aubto-Encoders

125

code= latent features h

MLP whose target output = input CO0000

encoder
Reconstruction= decoder(encoder(mput / Wr
mput X

e.g. O
h = tanh(b + Wx
reconstruction = tanh(c+ W7h)
Loss L(z,reconstruction) = ||reconstruction — z||?

With bottleneck, code = new coordinate system
Encoder and decoder can have 1 or more layers
Training deep auto-encoders notoriously difficult

Ce0 - O

reconstruction

r(x)



(Auto-Encoder) Reconstruction Loss

e Discrete inputs: cross-entropy for binary inputs
* -2 x log r(x) + (1-x.) log(1-r,(x)) (with 0<r,(x)<1)

or log-likelihood reconstruction criterion, e.g., for a
multinomial (one-hot) input

* -2 x logri(x) (where 2.r(x)=1, summing over subset of inputs
associated with this multinomial variable)

e |In general: consider what are appropriate loss functions to
predict each of the input variables,

typically, reconstruction neg. log-likelihood —log P(x | h(x))
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Denoising Auto-Encoder B

(Vincent et al 2008)

e Corrupt the input during training only
e Train to reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)

(OO0

-V W

-
-
-~
-

-
-

RORO Ole— (00000 (OO000)

Corrupted input Raw input reconstruction

e Encoder & decoder: any parametrization
e As good or better than RBMs for unsupervised pre-training



Denoising Auto-Encoder
e Learns a vector field pointing towards

higher probability direction (Alain & Bengio 2013) concentrate near a
r(x)-x o< dlogp(x)/dx lower dimensional
“manifold”

e Some DAEs correspond toa kmd of

Matching (Vincent 2011)
[equivalent when noise—>0]
* Compared to RBM: Corrupted input
No partition function issue, -~ —g_
+ can measure training

. \ 1
criterion .« _ 7

prior: examples



Auto-Encoders Learn Salienk
Variakions, Like a non-linear PCA

..0 .(

* Minimizing reconstruction error forces to

keep variations along manifold. ®
* Regularizer wants to throw away all

variations. 9
e With both: keep ONLY sensitivity to

variations ON the manifold.
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Manifold Learning =
Representation Learning

angext directions

tangent plane
X

Data on a curved manifold
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Non-Parametric Manifold Learning:
hopeless without powerful enough priors

Manifolds estimated out of the
neighborhood graph:

- node = example

- arc = near neighbor

Al-related data manifolds have too many
twists and turns, not enough examples
to cover all the ups & downs & twists

-
-
1J.I.



First Theoretical Results on
Probabilistic Interpretation of Auto-

Eut;ode_rs (Vincent 2011, Alain & Bengio 2013)

* Continuous X

* @Gaussian corruption

e Noiseoc—=>0

 Squared reconstruction error | |r(X+noise)-X| |2

(r(X)-X)/o? estimates the score d log p(X) / dX

e Langevin + Metropolis-Hastings can be used to approximately
sample from such a model, but mixing was poor
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Reqularized Auto-Ewncoders Learn a
Vector Field or a Markov Chai
Transition Distribution

AAAAAAA

vy v v

B e A SR TN A
R NS

(Alain & Bengio ICLR 2013; Bengio et al, arxiv 2013)

e (Bengio, Vincent & Courville, TPAMI 2013) review paper

[ ]
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Denoising Auto-Encoders Learn a
Small Move Towards Higher
Probability

e Reconstruction L. points in direction of higher probability

a log P(Qj) / gradient
Ox

T — 1 X

e Trained with input/target pair =
(corrupted X' > clean dataXl’)




Denoising Auto-Encoder Markov Chain
(Bengio et al NIP$§2013)

* P(X): true data-generating distribution
« C(X|X): corruption process

o Py, (X|X)i denoising auto-encoder trained with n examples X, X
from C(X|X)P(X) , probabilistically “inverts” corruption

o I : Markov chain over X alternating X ~ C(X|X) X ~Pp, (X|X)

corrupt

C(X|X)

<2

t+2

Xt X t+1 X t+2

e Theorem: stationary distribution of 1, estimates P(X)N,
converges to it for 7 — OO if DAE converges to P(X|X)
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How do humans generalize
from very few examples?

* They transfer knowledge from previous learning:
* Representations

*  Explanatory factors

* Previous learning from: unlabeled data
+ labels for other tasks

* Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)
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Transfer Learning &
Multi-Task Learning

e Generalizing better to new tasks
(tens of thousands!) is crucial to
approach Al

e Deep architectures learn good
intermediate representations that
can be shared across tasks

(Collobert & Weston ICML 2008,
Bengio et al AISTATS 2011)

e Good representations that
disentangle underlying factors of
variation make sense for many tasks  E.g. dictionary, with intermediate
because each task concerns a concepts re-used across many definitions
subset of the factors

Prior: shared underlying explanatory factors between tasks
138



Combining Multiple Sources of Evidence
with Shared Representations

T e

e Traditional ML: data = matrix

e Relational learning: multiple sources,
different tuples of variables

* Share representations of same types
across data sources
* Shared learned representations help event _url  person

propagate information among data " history words__url
sources: e.g., WordNet, XWN,

Wikipedia, FreeBase, ImageNet... '

(Bordes et al AISTATS 2012, |V»|‘L J. 2013)
* FACTS = DATA P(person,url event)
e Deduction = Generalization ®%%

P(url,words,history)
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Invariance and Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality
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Emergence of msenkavxgtmg

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot et al. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)
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Tem Forod. Coherence and Scales

* Hints from nature about different explanatory factors:
e Rapidly changing factors (often noise)
* Slowly changing (generally more abstract)
e Different factors at different time scales

e Exploit those hints to disentangle better!

e (Becker & Hinton 1993, Wiskott & Sejnowski 2002, Hurri &
Hyvarinen 2003, Berkes & Wiskott 2005, Mobahi et al
2009, Bergstra & Bengio 2009)



Broad Priors as Hints to Disentangle
the Factors of Variation

e Multiple factors: distributed representations

e Multiple levels of abstraction: depth

e Semi-supervised learning: Y is one of the factors explaining X
e Multi-task learning: different tasks share some factors

e Manifold hypothesis: probability mass concentration

e Natural clustering: class = manifold, well-separated manifolds
e Temporal and spatial coherence

e Sparsity: most factors irrelevant for particular X

e Simplicity of factor dependencies (in the right representation)
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Space-Filling n Representation-Space
 Deeper representations = abstractions = disentangling
e Manifolds are expanded and flattened

- X-space
4 Pixel space A Representation space
" 3 magifls q symantol e htod X
Lmenr interpolation at Iayer 2 3’s manifold
. 3
o} ®
9’s mahifold B -
Pe_Linear interpolation at layer 1 ®

1 E

Linear mterpolatlon in pixel space

9|




Extracting Structure By Gradual

Disentangling and Manifold Unfolding
(Bengio 2014, arXiv 1407,7906) 3
ahy) 1=
Each level transforms the D 114 | g
data into a representation TfL T
in which it is easier to
model, unfolding it more,
contracting the noise ah,/h,) |f, 9270011
dimensions and mapping
the signal dimensions to a a(h,)

factorized (uniform-like) g, P(x/h,)
Q(h, [x) sz l

P(

distribution.

min K L(Q(x,h)||P(x, h))

Q(x)
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Target ?rof
(Bengio 2014, arXiv 1407,7906)

e Instead of propagating the effect of an
infinitesimal change, propagate a target

that would be < D
* Near the original value
* Yielding to a lower loss T l A
e Can be obtained by maintaining hl - ‘ Dhl
each layer as an auto-encoder: flT lgl ~ fl:1
hi—1C —>hi_

good target h;_1 s.t.

filhi—1) = fi(gi(h)) = hy CT l >

Can potentially deal with highly non-linear or even discrete functions
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Learning Multiple Levels of
Abstraction

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and

transfer

Organizational Maturity
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Conclusions

e Deep Learning has become a crucial machine learning tool:
e Int. Conf. on Learning Representation 2013 & 2014 a huge success!
Conference & workshop tracks, open to new ideas ©

e Industrial applications (Google, IBM, Microsoft, Baidu, Facebook,
Samsung, Yahoo, Intel, Apple, Nuance, BBN, ...)

e Potential for more breakthroughs and approaching the
“understanding” part of Al by

* Scaling computation
* Numerical optimization (better training much deeper nets, RNNs)

* Bypass intractable marginalizations and exploit broad priors and
layer-wise training signals to learn more disentangled
abstractions for unsupervised & structured output learning
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