
Towards	 Biologically	
Plausible	 Deep	 Learning	

	 	
	
	

Yoshua	 Bengio	 	
February	 20,	 2015	

MILA,	 U.	 Montreal	

Yoshua	 Bengio,	 Dong-‐Hyun	 Lee,	 Jorg	 Bornschein,	 and	 Zhouhan	 Lin,	
ICML	 2015	 Submission,	 arXiv	 1502.04156	

Neuroscience 101

•  Neurons	
•  Axons	
•  Dendrites	
•  Synapses	
•  No	 clock	
•  Real	 Cme	

2	

What is the brain’s learning algorithm?
Cue: Spike-Timing Dependent Plasticity

•  Observed	
throughout	 the	
nervous	 system,	
especially	 in	
cortex	

•  STDP:	 weight	
increases	 if	 post-‐
spike	 just	 aPer	
pre-‐spike,	
decreases	 if	 just	
before.	

3	

Machine Learning Interpretation of
Spike-Timing Dependent Plasticity

•  First	 suggested	 by	 Hinton	 2007:	 this	 corresponds	 to	 temporal	
derivaCve	 filter	 applied	 to	 post-‐spike,	 around	 pre-‐spike.	

•  We	 argue	 	
•  (1)	 this	 corresponds	 to	

•  (2)	 which	 would	 be	 SGD	 on	 objecCve	 J	 if	
•  (3)	 which	 corresponds	 to	 neural	
	 	 	 	 	 	 dynamics	 implemenCng	 a	 form	 of	
	 	 	 	 	 	 inference	 wrt	 J	 seen	 as	 a	 funcCon	 of	 parameters	 and	 latent	 vars	 	
4	

Towards Biologically Plausible Deep Learning

here.

Note that back-propagation is used not just for classical su-
pervised learning but also for many unsupervised learning
algorithms, including all kinds of auto-encoders: sparse
auto-encoders (Ranzato et al., 2007; Goodfellow et al.,
2009), denoising auto-encoders (Vincent et al., 2008),
contractive auto-encoders (Rifai et al., 2011), and more
recently, variational auto-encoders (Kingma & Welling,
2014). Other unsupervised learning algorithms exist which
do not rely on back-propagation, such as the various Boltz-
mann machine learning algorithms (Hinton & Sejnowski,
1986; Smolensky, 1986; Hinton et al., 2006; Salakhutdinov
& Hinton, 2009). Boltzmann machines are probably the
most biologically plausible learning algorithms for deep ar-
chitectures that we currently know, but they also face sev-
eral question marks in this regard, such as the weight trans-
port problem ((3) above) to achieve symmetric weights, and
the positive-phase vs negative-phase synchronization ques-
tion (similar to (5) above).

Our starting point (Sec. 2) proposes an interpretation of the
main learning rule observed in biological synapses: Spike-
Timing-Dependent Plasticity (STDP). Following up on the
ideas presented in Hinton’s 2007 talk (Hinton, 2007), we
first argue that STDP could be seen as stochastic gradient
descent if only the neuron was driven by a feedback signal
that either increases or decreases the neuron’s firing rate
in proportion to the gradient of an objective function with
respect to the neuron’s voltage potential.

In Sec. 3 we then argue that the above interpretation
suggests that neural dynamics (which creates the above
changes in neuronal activations thanks to feedback and lat-
eral connections) correspond to inference towards neural
configurations that are more consistent with each other and
with the observations (inputs, targets, or rewards). This
view extends Hinton’s supervised learning proposal to the
unsupervised generative setting. It naturally suggests that
the training procedure corresponds to a form of variational
EM (Neal & Hinton, 1999) (see Sec.3), possibly based on
MAP (maximum a posteriori) or MCMC (Markov Chain
Monte-Carlo) approximations. In Sec. 4 we show how this
mathematical framework suggests a training procedure for
a deep generative network with many layers of latent vari-
ables. However, the above interpretation would still require
to compute some gradients. Another contribution (Sec. 6)
is to show that one can estimate these gradients via an ap-
proximation that only involves ordinary neural computa-
tion and no explicit derivatives, following previous work
on target propagation (Bengio, 2014; Lee et al., 2014).

Although our primary justification for the proposed learn-
ing algorithm corresponds to a deep directed graphical
model, it turns out that the proposed learning mechanism
can be interpreted as training a denoising auto-encoder. As

discussed in Sec. 5 these alternative interpretations of the
model provide different ways to sample from it, and we
found that better samples could be obtained.

2. STDP as Stochastic Gradient Descent
Spike-Timing-Dependent Plasticity or STDP is believed to
be the main form of synaptic change in neurons (Markram
& Sakmann, 1995; Gerstner et al., 1996) and it relates the
expected change in synaptic weights to the timing differ-
ence between post-synaptic spikes and pre-synaptic spikes.
Although it is the result of experimental observations in
biological neurons, its interpretation as part of a learning
procedure that could explain learning in deep networks re-
mains unclear. This paper aims at proposing such an in-
terpretation, starting from the proposal made by Hinton
(2007), but extending these ideas towards unsupervised
generative modeling of the data.

What has been observed in STDP is that the weights change
if there is a pre-synaptic spike in the temporal vicinity of
a post-synaptic spike: that change is positive if the post-
synaptic spike happens just after the pre-synaptic spike,
negative if it happens just before. As suggested in Hin-
ton’s talk, this also corresponds to a temporal derivative fil-
ter applied to the post-synaptic firing rate, at the time of the
pre-synaptic spike. To illustrate this, consider the situation
in which two neurons Ni and Nk impinge on neuron Nj ,
and each neuron, say Ni, has a voltage potential Vi which,
when above threshold, makes the neuron send out a spike
Si with probability (called rate) Ri. If Rk increases after a
spike Si, in average (over Sk), that will increase Vj and Rj

and thus the probability of Nj’s post-synaptic spike. That
will come right after the Ni spike, yielding an increase in
the synaptic weight Wij as per STDP. However, if Rk de-
creases after a spike Si, this decreases the probability of Nj

spiking after Ni’s spike, or equivalently, making the prob-
ability of Nj’s spike occuring before Ni’s spike larger than
the probability of Nj’s spike occuring after Ni’s spike, i.e.,
making Vj and Rj smaller. According to STDP, this situ-
ation would then correspond to a decrease in the synaptic
weight. In conclusion, these arguments suggest that STDP
can be interpreted as follows:

�Wij / Si�Vj , (1)

where � indicates the temporal change, Si indicates the
pre-synaptic spike (from neuron i), and Vj indicates the
post-synaptic voltage potential (of neuron j).

Clearly, the consequence is that if the change �Vj cor-
responds to improving some objective function J , then
STDP corresponds to approximate stochastic gradient
descent in that objective function. With this view, STDP
would implement the delta rule (gradient descent on a one-
layer network) if the post-synaptic activation changes in the
direction of the gradient.

pre-‐spike	 change	 in	
post-‐potenCal	

synapCc	
change	

�Vj ⇡
@J

@Vj

STDP and Variational EM

•  Neural	 dynamics	 moving	 towards	 “improved”	 objecCve	 J	 and	
parameter	 updates	 towards	 the	 same	 J	 corresponds	 to	 a	
variaConal	 EM	 learning	 algorithm,	 	

•  where	 J	 =	 regularized	 joint	 likelihood	 of	 observed	 x	 and	 latent	 h	

•  Generalizes	 PSD	 (PredicCve	 Sparse	 DecomposiCon)	 from	
(Kavukcuoglu	 &	 LeCun	 2008)	

Towards Biologically Plausible Deep Learning

3. Variational EM with Learned Approximate
Inference

To take advantage of the above statement, the dynamics of
the neural network must be such that neural activities move
towards better values of some objective function J . Hence
we would like to define such an objective function in a way
that is consistent with the actual neural computation be-
ing performed (for fixed weights W), in the sense that the
expected temporal change of the voltage potentials approx-
imately corresponds to increases in J . In this paper, we
are going to consider the voltage potentials as the central
variables of interest which influence J and consider them
as latent variables V (denoted h below to keep machine
learning interpretation general), while we will consider the
actual spike trains S as non-linear noisy corruptions of V ,
a form of quantization (with the “noise level” controlled
either by the integration time or the number of redundant
neurons in an ensemble (Legenstein & Maass, 2014). This
view makes the application of the denoising auto-encoder
theorems discussed in Sec. 5 more straightforward.

The main contribution of this paper is to propose and give
support to the hypothesis that J comes out of a variational
bound on the likelihood of the data. Variational bounds
have been proposed to justify various learning algorithms
for generative models (Hinton et al., 1995) (Sec. 7). To
keep the mapping to biology open, consider such bounds
and the associated criteria that may be derived from them,
using an abstract notation with observed variable x and la-
tent variable h. If we have a model p(x, h) of their joint
distribution, as well as some approximate inference mech-
anism defining a conditional distribution q⇤(H|x), the ob-
served data log-likelihood log p(x) can be decomposed as

log p(x) = log p(x)
X

h

q⇤(h|x)

=

X

h

q⇤(h|x) log p(x, h)q⇤(h|x)
p(h|x)q⇤(h|x)

=Eq⇤(H|x)[log p(x,H)] +H[q⇤(H|x)]
+KL(q⇤(H|x)||p(H|x)), (2)

where H[] denotes entropy and KL(||) the Kullback-
Leibler (KL) divergence, and where we have used sums but
integrals should be considered when the variables are con-
tinuous. Since both the entropy and the KL-divergence are
non-negative, we can either bound the log-likelihood via

log p(x) � Eq⇤(H|x)[log p(x,H)] +H[q⇤(H|x)], (3)

or if we care only about optimizing p,
log p(x) � Eq⇤(H|x)[log p(x,H)]. (4)

The idea of variational bounds as proxies for the log-
likelihood is that as far as optimizing p is concerned, i.e.,
dropping the entropy term which does not depend on p,

the bound becomes tight when q⇤(H|x) = p(H|x). This
suggests that q⇤(H|x) should approximate p(H|x). Fix-
ing q⇤(H|x) = p(H|x) and optimizing p with q fixed is
the EM algorithm. Here (and in general) this is not possi-
ble so we consider variational methods in which q⇤(H|x)
approximates but does not reach p(H|x).

We propose to decompose q⇤(H|x) in two components:
parametric initialization q

0

(H|x) = q(H|x) and iterative
inference, implicitly defining q⇤(H|x) = qT (H|x) via a
deterministic or stochastic update, or transition operator

qt(H|x) = A(x) qt�1

(H|x). (5)

The variational bound suggests that A(x) should gradu-
ally bring qt(H|x) closer to p(H|x). At the same time,
to make sure that a few steps will be sufficient to approach
p(H|x), one may add a term in the objective function to
make q

0

(H|x) closer to p(H|x), as well as to encourage
p(x, h) to favor solutions p(H|x) that can be easily approx-
imated by qt(H|x) even for small t.

For this purpose, consider as training objective a regular-
ized variational MAP-EM criterion (for a given x):

J = log p(x, h) + ↵ log q(h|x), (6)

where h is a free variable (for each x) initialized from
q(H|x) and then iteratively updated to approximately max-
imize J . The total objective function is just the average
of J over all examples after having performed inference
(the approximate maximization over h for each x). A
reasonable variant would not just encourage q = q

0

to
generate h (given x), but all the qt’s for t > 0 as well.
Alternatively, the iterative inference could be performed
by stochastically increasing J , i.e., via a Markov chain
which may correspond to probabilistic inference with spik-
ing neurons (Pecevski et al., 2011). The corresponding
variational MAP or variational MCMC algorithm would be
as in Algorithm 1. For the stochastic version one would in-
ject noise when updating h. Variational MCMC (de Freitas
et al., 2001) can be used to approximate the posterior, e.g.,
as in the model from Salimans et al. (2014). However, a re-
jection step does not look very biologically plausible (both
for the need of returning to a previous state and for the need
to evaluate the joint likelihood, a global quantity). On the
other hand, a biased MCMC with no rejection step, such as
the stochastic gradient Langevin MCMC of Welling & Teh
(2011) can work very well in practice.

4. Training a Deep Generative Model
There is strong biological evidence of a distinct pattern of
connectivity between cortical areas that distinguishes be-
tween “feedforward” and “feedback” connections (Douglas
et al., 1989) at the level of the microcircuit of cortex (i.e.,
feedforward and feedback connections do not land in the
same type of cells). Furthermore, the feedforward connec-

Inference	 iniCal	 guess	
(forward	 pass)	

GeneraCve	 model	
All	 interacCons	 between	 neurons	

Towards Biologically Plausible Deep Learning

3. Variational EM with Learned Approximate
Inference

To take advantage of the above statement, the dynamics of
the neural network must be such that neural activities move
towards better values of some objective function J . Hence
we would like to define such an objective function in a way
that is consistent with the actual neural computation be-
ing performed (for fixed weights W), in the sense that the
expected temporal change of the voltage potentials approx-
imately corresponds to increases in J . In this paper, we
are going to consider the voltage potentials as the central
variables of interest which influence J and consider them
as latent variables V (denoted h below to keep machine
learning interpretation general), while we will consider the
actual spike trains S as non-linear noisy corruptions of V ,
a form of quantization (with the “noise level” controlled
either by the integration time or the number of redundant
neurons in an ensemble (Legenstein & Maass, 2014). This
view makes the application of the denoising auto-encoder
theorems discussed in Sec. 5 more straightforward.

The main contribution of this paper is to propose and give
support to the hypothesis that J comes out of a variational
bound on the likelihood of the data. Variational bounds
have been proposed to justify various learning algorithms
for generative models (Hinton et al., 1995) (Sec. 7). To
keep the mapping to biology open, consider such bounds
and the associated criteria that may be derived from them,
using an abstract notation with observed variable x and la-
tent variable h. If we have a model p(x, h) of their joint
distribution, as well as some approximate inference mech-
anism defining a conditional distribution q⇤(H|x), the ob-
served data log-likelihood log p(x) can be decomposed as

log p(x) = log p(x)
X

h

q⇤(h|x)

=

X

h

q⇤(h|x) log p(x, h)q⇤(h|x)
p(h|x)q⇤(h|x)

=Eq⇤(H|x)[log p(x,H)] +H[q⇤(H|x)]
+KL(q⇤(H|x)||p(H|x)), (2)

where H[] denotes entropy and KL(||) the Kullback-
Leibler (KL) divergence, and where we have used sums but
integrals should be considered when the variables are con-
tinuous. Since both the entropy and the KL-divergence are
non-negative, we can either bound the log-likelihood via

log p(x) � Eq⇤(H|x)[log p(x,H)] +H[q⇤(H|x)], (3)

or if we care only about optimizing p,
log p(x) � Eq⇤(H|x)[log p(x,H)]. (4)

The idea of variational bounds as proxies for the log-
likelihood is that as far as optimizing p is concerned, i.e.,
dropping the entropy term which does not depend on p,

the bound becomes tight when q⇤(H|x) = p(H|x). This
suggests that q⇤(H|x) should approximate p(H|x). Fix-
ing q⇤(H|x) = p(H|x) and optimizing p with q fixed is
the EM algorithm. Here (and in general) this is not possi-
ble so we consider variational methods in which q⇤(H|x)
approximates but does not reach p(H|x).

We propose to decompose q⇤(H|x) in two components:
parametric initialization q

0

(H|x) = q(H|x) and iterative
inference, implicitly defining q⇤(H|x) = qT (H|x) via a
deterministic or stochastic update, or transition operator

qt(H|x) = A(x) qt�1

(H|x). (5)

The variational bound suggests that A(x) should gradu-
ally bring qt(H|x) closer to p(H|x). At the same time,
to make sure that a few steps will be sufficient to approach
p(H|x), one may add a term in the objective function to
make q

0

(H|x) closer to p(H|x), as well as to encourage
p(x, h) to favor solutions p(H|x) that can be easily approx-
imated by qt(H|x) even for small t.

For this purpose, consider as training objective a regular-
ized variational MAP-EM criterion (for a given x):

J = log p(x, h) + ↵ log q(h|x), (6)

where h is a free variable (for each x) initialized from
q(H|x) and then iteratively updated to approximately max-
imize J . The total objective function is just the average
of J over all examples after having performed inference
(the approximate maximization over h for each x). A
reasonable variant would not just encourage q = q

0

to
generate h (given x), but all the qt’s for t > 0 as well.
Alternatively, the iterative inference could be performed
by stochastically increasing J , i.e., via a Markov chain
which may correspond to probabilistic inference with spik-
ing neurons (Pecevski et al., 2011). The corresponding
variational MAP or variational MCMC algorithm would be
as in Algorithm 1. For the stochastic version one would in-
ject noise when updating h. Variational MCMC (de Freitas
et al., 2001) can be used to approximate the posterior, e.g.,
as in the model from Salimans et al. (2014). However, a re-
jection step does not look very biologically plausible (both
for the need of returning to a previous state and for the need
to evaluate the joint likelihood, a global quantity). On the
other hand, a biased MCMC with no rejection step, such as
the stochastic gradient Langevin MCMC of Welling & Teh
(2011) can work very well in practice.

4. Training a Deep Generative Model
There is strong biological evidence of a distinct pattern of
connectivity between cortical areas that distinguishes be-
tween “feedforward” and “feedback” connections (Douglas
et al., 1989) at the level of the microcircuit of cortex (i.e.,
feedforward and feedback connections do not land in the
same type of cells). Furthermore, the feedforward connec-

Approximate	 inference	

Inference Decouples Deep Net Layers

•  APer	 inference,	 no	 need	 for	 back-‐prop	 because	 the	 	 joint	 over	
layers	 decouples	 the	 updates	 of	 the	 parameters	 from	 the	
different	 layers:	

	
•  So	 J	 is	 of	 the	 form	

6	

Towards Biologically Plausible Deep Learning

Algorithm 1 Variational MAP (or MCMC) SGD algorithm
for gradually improving the agreement between the values
of the latent variables h and the observed data x. q(h|x) is
a learned parametric initialization for h, p(h) is a paramet-
ric prior on the latent variables, and p(x|h) specifies how to
generate x given h. Objective function J is defined in Eq. 6
Learning rates � and ✏ respectively control the optimization
of h and of parameters ✓ (of both q and p).

Initialize h ⇠ q(h|x)
for t = 1 to T do

h h+ � @J
@h (optional: add noise for MCMC)

end for
✓ ✓ + ✏@J@✓

tions form a directed acyclic graph with nodes (areas) up-
dated in a particular order, e.g., in the visual cortex (Felle-
man & Essen, 1991). So consider Algorithm 1 with h de-
composed into multiple layers, with the conditional inde-
pendence structure of a directed graphical model structured
as a chain, both for p (going down) and for q (going up):

p(x, h) = p(x|h(1)

)

M�1Y

k=1

p(h(k)|h(k+1)

)

!
p(h(M)

)

q(h|x) = q(h(1)|x)
M�1Y

k=1

q(h(k+1)|h(k)
). (7)

This clearly decouples the updates associated with each
layer, for both h and ✓, making these updates “local” to
the layer k, based on “feedback” from layer k � 1 and
k + 1. Nonetheless, thanks to the iterative nature of the
updates of h, all the layers are interacting via both feedfor-
ward (q(h(k)|h(k�1)

)) and feedback (p(h(k)|h(k�1)

) paths.
Denoting x = h(0) to simplify notation, the h update would
thus consist in moves of the form

h(k) h(k)
+ �

@

@h(k)

⇣
log(p(h(k�1)|h(k)

)p(h(k)|h(k+1)

))

+ ↵ log(q(h(k)|h(k�1)

)q(h(k+1)|h(k)
))

⌘
,

(8)

where ↵ is as in Eq. 6. No back-propagation is needed
for the above derivatives when h(k) is on the left hand side
of the conditional probability bar. Sec. 6 deals with the
right hand side case. For the left hand side case, e.g.,
p(h(k)|h(k+1)

) a conditional Gaussian with mean µ and
variance �2, the gradient with respect to h(k) is simply
µ�h(k)

�2 . Note that there is an interesting interpretation of
such a deep model: the layers above h(k) provide a com-
plex implicitly defined prior for p(h(k)

).

5. Alternative Interpretations as Denoising
Auto-Encoder

By inspection of Algorithm 1, one can observe that this al-
gorithm trains p(x|h) and q(h|x) to form complementary

pairs of an auto-encoder (since the input of one is the tar-
get of the other and vice-versa). Note that from that point
of view any of the two can act as encoder and the other
as decoder for it, depending on whether we start from h
or from x. In the case of multiple latent layers, each pair
of conditionals q(h(k+1)|h(k)

) and p(h(k)|h(k+1)

) forms a
symmetric auto-encoder, i.e., either one can act as the en-
coder and the other as the corresponding decoder, since
they are trained with the same (h(k), h(k+1)

) pairs (but with
reversed roles of input and target).

In addition, if noise is injected, e.g., in the form of the
quantization induced by a spike train, then the trained
auto-encoders are actually denoising auto-encoders, which
means that both the encoders and decoders are contractive:
in the neighborhood of the observed (x, h) pairs, they map
neighboring “corrupted” values to the “clean” (x, h) val-
ues.

5.1. Joint Denoising Auto-Encoder with Latent
Variables

This suggests considering a special kind of “joint” denois-
ing auto-encoder which has the pair (x, h) as “visible” vari-
able, an auto-encoder that implicitly estimates an underly-
ing p(x, h). The transition operator3 for that joint visible-
latent denoising auto-encoder is the following in the case
of a single hidden layer:

(x̃, ˜h) corrupt(x, h)

h ⇠ q(h|x̃) x ⇠ p(x|˜h), (9)

where the corruption may correspond to the stochastic
quantization induced by the neuron non-linearity and spik-
ing process. In the case of a middle layer h(k) in a deeper
model, the transition operator must account for the fact that
h(k) can either be reconstructed from above or from below,
yielding, with probability say 1

2

,

h(k) ⇠ p(h(k)|˜h(k+1)

), (10)

and with one minus that probability,

h(k) ⇠ q(h(k)|˜h(k�1)

). (11)

Since this interpretation provides a different model, it also
provides a different way of generating samples. Especially
for shallow, we have found that better samples could be
obtained in this way, i.e., running the Markov chain with
the above transition operator for a few steps.

There might be a geometric interpretation for the improved
quality of the samples when they are obtained in this way,

3See Theorem 1 from Bengio et al. (2013) for the generative
interpretation of denoising auto-encoders: it basically states that
one can sample from the model implicitly estimated by a denois-
ing auto-encoder by simply alternating noise injection (corrup-
tion), encoding and decoding, these forming each step of a gener-
ative Markov chain.

Towards Biologically Plausible Deep Learning

Algorithm 1 Variational MAP (or MCMC) SGD algorithm
for gradually improving the agreement between the values
of the latent variables h and the observed data x. q(h|x) is
a learned parametric initialization for h, p(h) is a paramet-
ric prior on the latent variables, and p(x|h) specifies how to
generate x given h. Objective function J is defined in Eq. 6
Learning rates � and ✏ respectively control the optimization
of h and of parameters ✓ (of both q and p).

Initialize h ⇠ q(h|x)
for t = 1 to T do

h h+ � @J
@h (optional: add noise for MCMC)

end for
✓ ✓ + ✏@J@✓

tions form a directed acyclic graph with nodes (areas) up-
dated in a particular order, e.g., in the visual cortex (Felle-
man & Essen, 1991). So consider Algorithm 1 with h de-
composed into multiple layers, with the conditional inde-
pendence structure of a directed graphical model structured
as a chain, both for p (going down) and for q (going up):

p(x, h) = p(x|h(1)

)

M�1Y

k=1

p(h(k)|h(k+1)

)

!
p(h(M)

)

q(h|x) = q(h(1)|x)
M�1Y

k=1

q(h(k+1)|h(k)
). (7)

This clearly decouples the updates associated with each
layer, for both h and ✓, making these updates “local” to
the layer k, based on “feedback” from layer k � 1 and
k + 1. Nonetheless, thanks to the iterative nature of the
updates of h, all the layers are interacting via both feedfor-
ward (q(h(k)|h(k�1)

)) and feedback (p(h(k)|h(k�1)

) paths.
Denoting x = h(0) to simplify notation, the h update would
thus consist in moves of the form

h(k) h(k)
+ �

@

@h(k)

⇣
log(p(h(k�1)|h(k)

)p(h(k)|h(k+1)

))

+ ↵ log(q(h(k)|h(k�1)

)q(h(k+1)|h(k)
))

⌘
,

(8)

where ↵ is as in Eq. 6. No back-propagation is needed
for the above derivatives when h(k) is on the left hand side
of the conditional probability bar. Sec. 6 deals with the
right hand side case. For the left hand side case, e.g.,
p(h(k)|h(k+1)

) a conditional Gaussian with mean µ and
variance �2, the gradient with respect to h(k) is simply
µ�h(k)

�2 . Note that there is an interesting interpretation of
such a deep model: the layers above h(k) provide a com-
plex implicitly defined prior for p(h(k)

).

5. Alternative Interpretations as Denoising
Auto-Encoder

By inspection of Algorithm 1, one can observe that this al-
gorithm trains p(x|h) and q(h|x) to form complementary

pairs of an auto-encoder (since the input of one is the tar-
get of the other and vice-versa). Note that from that point
of view any of the two can act as encoder and the other
as decoder for it, depending on whether we start from h
or from x. In the case of multiple latent layers, each pair
of conditionals q(h(k+1)|h(k)

) and p(h(k)|h(k+1)

) forms a
symmetric auto-encoder, i.e., either one can act as the en-
coder and the other as the corresponding decoder, since
they are trained with the same (h(k), h(k+1)

) pairs (but with
reversed roles of input and target).

In addition, if noise is injected, e.g., in the form of the
quantization induced by a spike train, then the trained
auto-encoders are actually denoising auto-encoders, which
means that both the encoders and decoders are contractive:
in the neighborhood of the observed (x, h) pairs, they map
neighboring “corrupted” values to the “clean” (x, h) val-
ues.

5.1. Joint Denoising Auto-Encoder with Latent
Variables

This suggests considering a special kind of “joint” denois-
ing auto-encoder which has the pair (x, h) as “visible” vari-
able, an auto-encoder that implicitly estimates an underly-
ing p(x, h). The transition operator3 for that joint visible-
latent denoising auto-encoder is the following in the case
of a single hidden layer:

(x̃, ˜h) corrupt(x, h)

h ⇠ q(h|x̃) x ⇠ p(x|˜h), (9)

where the corruption may correspond to the stochastic
quantization induced by the neuron non-linearity and spik-
ing process. In the case of a middle layer h(k) in a deeper
model, the transition operator must account for the fact that
h(k) can either be reconstructed from above or from below,
yielding, with probability say 1

2

,

h(k) ⇠ p(h(k)|˜h(k+1)

), (10)

and with one minus that probability,

h(k) ⇠ q(h(k)|˜h(k�1)

). (11)

Since this interpretation provides a different model, it also
provides a different way of generating samples. Especially
for shallow, we have found that better samples could be
obtained in this way, i.e., running the Markov chain with
the above transition operator for a few steps.

There might be a geometric interpretation for the improved
quality of the samples when they are obtained in this way,

3See Theorem 1 from Bengio et al. (2013) for the generative
interpretation of denoising auto-encoders: it basically states that
one can sample from the model implicitly estimated by a denois-
ing auto-encoder by simply alternating noise injection (corrup-
tion), encoding and decoding, these forming each step of a gener-
ative Markov chain.

J =

X

k

log p(h(k)|h(k+1)
) + log q(h(k+1)|h(k)

)

But Inference Seems to Need Backprop

IteraCve	 inference,	 e.g.	 MAP	 	
	
	
	
	
	
Involves	 	 	 	 	 	 	 	 which	 has	 terms	 	 of	 the	 form	
	
	
	
to	 change	 upper	 layer	 to	 make	 lower	 layer	 value	 more	 probable	 (or	
the	 equivalent	 for	 q)	
	 7	

Towards Biologically Plausible Deep Learning

Algorithm 1 Variational MAP (or MCMC) SGD algorithm
for gradually improving the agreement between the values
of the latent variables h and the observed data x. q(h|x) is
a learned parametric initialization for h, p(h) is a paramet-
ric prior on the latent variables, and p(x|h) specifies how to
generate x given h. Objective function J is defined in Eq. 6
Learning rates � and ✏ respectively control the optimization
of h and of parameters ✓ (of both q and p).

Initialize h ⇠ q(h|x)
for t = 1 to T do

h h+ � @J
@h (optional: add noise for MCMC)

end for
✓ ✓ + ✏@J@✓

tions form a directed acyclic graph with nodes (areas) up-
dated in a particular order, e.g., in the visual cortex (Felle-
man & Essen, 1991). So consider Algorithm 1 with h de-
composed into multiple layers, with the conditional inde-
pendence structure of a directed graphical model structured
as a chain, both for p (going down) and for q (going up):

p(x, h) = p(x|h(1)

)

M�1Y

k=1

p(h(k)|h(k+1)

)

!
p(h(M)

)

q(h|x) = q(h(1)|x)
M�1Y

k=1

q(h(k+1)|h(k)
). (7)

This clearly decouples the updates associated with each
layer, for both h and ✓, making these updates “local” to
the layer k, based on “feedback” from layer k � 1 and
k + 1. Nonetheless, thanks to the iterative nature of the
updates of h, all the layers are interacting via both feedfor-
ward (q(h(k)|h(k�1)

)) and feedback (p(h(k)|h(k�1)

) paths.
Denoting x = h(0) to simplify notation, the h update would
thus consist in moves of the form

h(k) h(k)
+ �

@

@h(k)

⇣
log(p(h(k�1)|h(k)

)p(h(k)|h(k+1)

))

+ ↵ log(q(h(k)|h(k�1)

)q(h(k+1)|h(k)
))

⌘
,

(8)

where ↵ is as in Eq. 6. No back-propagation is needed
for the above derivatives when h(k) is on the left hand side
of the conditional probability bar. Sec. 6 deals with the
right hand side case. For the left hand side case, e.g.,
p(h(k)|h(k+1)

) a conditional Gaussian with mean µ and
variance �2, the gradient with respect to h(k) is simply
µ�h(k)

�2 . Note that there is an interesting interpretation of
such a deep model: the layers above h(k) provide a com-
plex implicitly defined prior for p(h(k)

).

5. Alternative Interpretations as Denoising
Auto-Encoder

By inspection of Algorithm 1, one can observe that this al-
gorithm trains p(x|h) and q(h|x) to form complementary

pairs of an auto-encoder (since the input of one is the tar-
get of the other and vice-versa). Note that from that point
of view any of the two can act as encoder and the other
as decoder for it, depending on whether we start from h
or from x. In the case of multiple latent layers, each pair
of conditionals q(h(k+1)|h(k)

) and p(h(k)|h(k+1)

) forms a
symmetric auto-encoder, i.e., either one can act as the en-
coder and the other as the corresponding decoder, since
they are trained with the same (h(k), h(k+1)

) pairs (but with
reversed roles of input and target).

In addition, if noise is injected, e.g., in the form of the
quantization induced by a spike train, then the trained
auto-encoders are actually denoising auto-encoders, which
means that both the encoders and decoders are contractive:
in the neighborhood of the observed (x, h) pairs, they map
neighboring “corrupted” values to the “clean” (x, h) val-
ues.

5.1. Joint Denoising Auto-Encoder with Latent
Variables

This suggests considering a special kind of “joint” denois-
ing auto-encoder which has the pair (x, h) as “visible” vari-
able, an auto-encoder that implicitly estimates an underly-
ing p(x, h). The transition operator3 for that joint visible-
latent denoising auto-encoder is the following in the case
of a single hidden layer:

(x̃, ˜h) corrupt(x, h)

h ⇠ q(h|x̃) x ⇠ p(x|˜h), (9)

where the corruption may correspond to the stochastic
quantization induced by the neuron non-linearity and spik-
ing process. In the case of a middle layer h(k) in a deeper
model, the transition operator must account for the fact that
h(k) can either be reconstructed from above or from below,
yielding, with probability say 1

2

,

h(k) ⇠ p(h(k)|˜h(k+1)

), (10)

and with one minus that probability,

h(k) ⇠ q(h(k)|˜h(k�1)

). (11)

Since this interpretation provides a different model, it also
provides a different way of generating samples. Especially
for shallow, we have found that better samples could be
obtained in this way, i.e., running the Markov chain with
the above transition operator for a few steps.

There might be a geometric interpretation for the improved
quality of the samples when they are obtained in this way,

3See Theorem 1 from Bengio et al. (2013) for the generative
interpretation of denoising auto-encoders: it basically states that
one can sample from the model implicitly estimated by a denois-
ing auto-encoder by simply alternating noise injection (corrup-
tion), encoding and decoding, these forming each step of a gener-
ative Markov chain.

@ log p(h(k�1)|h(k)
)

@h(k)

@J

@h

But Inference Seems to Need Backprop

How	 to	 back-‐prop	 through	 one	 layer	
without	 explicit	 derivaCves?	
	

	 	 DIFFERENCE	 TARGET-‐PROP	
	
Result:	 itera3ve	 inference	
climbs	 J	 even	 though	 no	
gradients	 were	 ever	 computed	
and	 no	 animal	 was	 harmed!	

8	 0 5 10 15 20
MAP iteration

55

50

45

40

35

30

av
er

ag
e

lo
g

p(
x,

 h
)

Difference Target-Prop Estimator

•  If	 the	 encoder	 is	 f(x)+noise	 and	 the	 decoder	 is	 g(h)+noise,	 then	

•  which	 is	 demonstrated	 by	 exploiCng	

•  and	 the	 DAE	 score	 esCmator	 theorem	

•  Considering	 two	 DAEs,	 one	 with	 h	 as	 “visible”	 and	 one	 with	 (x,h)	 	 	
9	

@ log p(x|h)
@h

⇡ f(x)� f(g(h))

�

2
h

log p(x|h) = log p(x, h)� log p(h)

Towards Biologically Plausible Deep Learning

compared to the directed generative model that was defined
earlier. Denote q⇤(x) the empirical distribution of the data,
which defines a joint q⇤(h, x) = q⇤(x)q⇤(h|x). Consider
the likely situation where p(x, h) is not well matched to
q⇤(h, x) because for example the parametrization of p(h)
is not powerful enough to capture the complex structure in
the empirical distribution q⇤(h) obtained by mapping the
training data through the encoder and inference q⇤(h|x).
Typically, q⇤(x) would concentrate on a manifold and the
encoder would not be able to completely unfold it, so that
q⇤(h) would contain complicated structure with pockets or
manifolds of high probability. If p(h) is a simple factorized
model, then it will generate values of h that do not corre-
spond well to those seen by the decoder p(x|h) when it
was trained, and these out-of-manifold samples in h-space
are likely to be mapped to out-of-manifold samples in x-
space. One solution to this problem is to increase the ca-
pacity of p(h) (e.g., by adding more layers on top of h).
Another is to make q(h|x) more powerful (which again can
be achieved by increasing the depth of the model, but this
time by inserting additional layers below h). Now, there
is a cheap way of obtaining a very deep directed graphical
model, by unfolding the Markov chain of an MCMC-based
generative model for a fixed number of steps, i.e., consid-
ering each step of the Markov chain as an extra “layer”
in a deep directed generative model, with shared parame-
ters across these layers. As we have seen that there is such
an interpretation via the joint denoising auto-encoder over
both latent and visible, this idea can be immediately ap-
plied. We know that each step of the Markov chain opera-
tor moves its input distribution closer to the stationary dis-
tribution of the chain. So if we start from samples from a
very broad (say factorized) prior p(h) and we iteratively en-
code/decode them (injecting noise appropriately as during
training) by successively sampling from p(x|h) and then
from q(h|x), the resulting h samples should end up look-
ing more like those seen during training (i.e., from q⇤(h)).

5.2. Latent Variables as Corruption
There is another interpretation of the training procedure,
also as a denoising auto-encoder, which has the advantage
of producing a generative procedure that is the same as the
inference procedure except for x being unclamped.

We return again to the generative interpretation of the de-
noising criterion for auto-encoders, but this time we con-
sider the non-parametric process q⇤(h|x) as a kind of cor-
ruption of x that yields the h used as input for reconstruct-
ing the observed x via p(x|h). Under that interpretation,
a valid generative procedure consists at each step in first
performing inference, i.e., sampling h from q⇤(h|x), and
second sampling from p(x|h). Iterating these steps gener-
ates x’s according to the Markov chain whose stationary
distribution is an estimator of the data generating distribu-
tion that produced the training x’s (Bengio et al., 2013).

This view does not care about how q⇤(h|x) is constructed,
but it tells us that if p(x|h) is trained to maximize recon-
struction probability, then we can sample in this way from
the implicitly estimated model.

We have also found good results using this procedure (Al-
gorithm 2 below), and from the point of view of biological
plausibility, it would make more sense that “generating”
should involve the same operations as “inference”, except
for the input being observed or not.

6. Targetprop instead of Backprop
In Algorithm 1 and the related stochastic variants Eq. 8
suggests that back-propagation (through one layer) is still
needed when h(k) is on the right hand side of the con-
ditional probability bar, e.g., to compute @p(h(k�1

)|h(k)
)

@h(k) .
Such a gradient is also the basic building block in back-
propagation for supervised learning: we need to back-prop
through one layer, e.g. to make h(k) more “compatible”
with h(k�1). This provides a kind error signal, which in
the case of unsupervised learning comes from the sensors,
and in the case of supervised learning, comes from the layer
holding the observed “target”.

Based on recent theoretical results on denoising auto-
encoders, we propose the following estimator (up to a scal-
ing constant) of the required gradient, which is related to
previous work on “target propagation” (Bengio, 2014; Lee
et al., 2014) or targetprop for short. To make notation sim-
pler, we focus below on the case of two layers h and x with
“encoder” q(h|x) and “decoder” p(x|h), and we want to
estimate @ log p(x|h)

@h . We start with the special case where
p(x|h) is a Gaussian with mean g(h) and q(h|x) is Gaus-
sian with mean f(x), i.e., f and g are the deterministic
components of the encoder and decoder respectively. The
proposed estimator is then

c
�h =

f(x)� f(g(h))

�2

h

, (12)

where �2

h is the variance of the noise injected in q(h|x).

Let us now justify this estimator. Theorem 2 by Alain
& Bengio (2013) states that in a denoising auto-encoder
with reconstruction function r(x) = decode(encode(x)),
a well-trained auto-encoder estimates the log-score via the
difference between its reconstruction and its input:

r(x)� x

�2

! @ log p(x)

@x
,

where �2 is the variance of injected noise, and p(x) is the
implicitly estimated density. We are now going to con-
sider two denoising auto-encoders and apply this theorem
to them. First, we note that the gradient @ log p(x|h)

@h that we
wish to estimate can be decomposed as follows:

@ log p(x|h)
@h

=

@ log p(x, h)

@h
� @ log p(h)

@h
.

Decomposition of the
gradient into reconstructions
•  We	 want	

•  which	 we	 get	 from	 two	 auto-‐encoders:	
1.  The	 (x,h)	 to	 (h,x)	 AE:	
	 	 	 	 	 	 	 	 à	
	
2.  	 The	 AE	 with	 h	 as	 «	 visible	 »	 and	 x	 as	 «	 representaCon	 »	
	 	 	 	 	 	 	 	 	 à	

•  Result:	
	

10	

@ log p(x|h)
@h

=

@ log p(x, h)

@h

� @ log p(h)

@h

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Towards Biologically Plausible Deep Learning

Hence it is enough to estimate @ log p(x,h)
@h as well as

@ log p(h)
@h . The second one can be estimated by consider-

ing the auto-encoder which estimates p(h) implicitly and
for which g is the encoder (with g(h) the “code” for h) and
f is the decoder (with f(g(h)) the “reconstruction” of h).
Hence we have that f(g(h))�h

�2
h

is an estimator of @ log p(h)
@h .

The other gradient can be estimated by considering the joint
denoising auto-encoder over (x, h) introduced in the previ-
ous section. The (noise-free) reconstruction function for
that auto-encoder is

r(x, h) = (g(h), f(x)).

Hence f(x)�h
�2
h

is an estimator of @ log p(x,h)
@h . Combining the

two estimators, we get
(f(x)� h)

�2

h

� (f(g(h))� h)

�2

h

=

f(x)� f(g(h))

�2

h

,

which corresponds to Eq. 12.

Figure 1. The optimal h for maximizing p(x|h) is ˜

h s.t. g(

˜

h) =

x. Since the encoder f and decoder g are approximate inverses
of each other, their composition makes a small move �x. Eq. 12
is obtained by assuming that by considering an x̃ at x � � and
applying f �g, one would approximately recover x, which should
be true if the changes are small and the functions smooth (see Lee
& Bengio (2014) for a detailed derivation).

Another way to obtain the same formula from a geomet-
ric perspective is illustrated in Figure 1. It was introduced
in Lee & Bengio (2014) in the context of a backprop-free
algorithm for training a denoising auto-encoder.

7. Related Work

The main inspiration for the proposed framework is the
biological implementation of back-propagation proposed
by Hinton (2007). In that talk, Hinton suggests that STDP
corresponds to a gradient update step with the gradient on
the voltage potential corresponding to its temporal deriva-
tive. To obtain the supervised back-propagation update in
the proposed scenario would require symmetric weights
and synchronization of the computations in terms of feed-
forward and feedback phases.

Our proposal extends these ideas to include unsupervised
learning, avoids the need for symmetric weights, and ex-
ploits inference to obtain targets and a probabilistic inter-
pretation as the optimization of a variational bound on the

Algorithm 2 Inference, training and generative procedures
used in Experiment 1, for a model with three layers x, h

1

,
h
2

. fi() is the feedforward map from layer i � 1 to layer
i and gi() is the feedback map from layer i to layer i � 1,
with x = h

0

being layer 0.
Define INFERENCE(x, N=15, �=0.1, ↵=0.001):
Feedforward pass: h

1

 f
1

(x), h
2

 f
2

(h
1

)

for t = 1 to N do

h
2

 h
2

+ �(f
2

(h
1

)� f
2

(g
2

(h
2

)))

h
1

 h
1

+ �(f
1

(x)� f
1

(g
1

(h
1

))) + ↵(g
2

(h
2

)� h
1

)

end for

Return h
1

, h
2

Define TRAIN()
for x in training set do

do INFERENCE(x)
train each layer (both fl and gl) by taking Gaussian-
corrupted value of other layer as input and the clean
inferred value as target (i.e. applying the delta rule).
For the top sigmoid layer, we sample 3 binary values
and average them as a spike-like corruption.

end for

Compute the mean and variance of the h
2

values inferred
in the training set. Multiply the variances by 4. Define
p(h

2

) as sampling from this Gaussian.

Define GENERATE():
Sample h

2

from p(H
2

)

for t = 1 to 3 do

h
1

, h
2

 INFERENCE(x,↵ = 0.3)
x g

1

(h
1

)

end for

Return x

likelihood. There is also an interesting connection with an
earlier proposal for a more biologically plausible imple-
mentation of supervised back-propagation (Xie & Seung,
2003) which also relies on iterative inference (a determin-
istic relaxation in that case), but needs symmetric weights.

Another important inspiration is Predictive Sparse Decom-
position (PSD) (Kavukcuoglu et al., 2008). PSD is a spe-
cial case of Algorithm 1 when there is only one layer and
the encoder q(h|x), decoder p(x|h), and prior p(h) have a
specific form which makes p(x, h) a sparse coding model
and q(h|x) a fast parametric approximation of the correct
posterior. Our proposal extends PSD by providing a justi-
fication for the training criterion as a variational bound, by
generalizing to multiple layers of latent variables, and by
providing associated generative procedures.

The combination of a parametric approximate inference
machine (the encoder) and a generative decoder (each with
possibly several layers of latent variables) is an old theme

f	 g	

h	

x	

f(x)� h

�

2
⇡ @ log p(x, h)

@h

f(g(h))� h

�2
⇡ @ log p(h)

@h

@ log p(x|h)
@h

⇡ f(x)� f(g(h))

�

2
h

Same Formula justifies Backprop-free
Auto-Encoder based on Target-Prop
•  If	 r(x)=f(g(h))	 is	 smooth	 and	 makes	 a	 small	 move	 away	 from	 x,	

then	 applying	 r	 from	 	

•  should	 approximately	 give	 x,	 so	
•  where	

•  And	 the	 encoder	 should	 be	 trained	
on	 the	 pair	
	

11	

x̃ = x��x = x� (g(f(x))� x) = 2x� g(f(x))

g(h̃) ⇡ x

h̃ = f(x̃) = f(2x� g(f(x)))

(x̃, h̃)

Difference Target Propagation
hi ĥi

hi�1 ĥi�1

fi
gi

ĥi�1 = hi�1 � gi(hi) + gi(ĥi)

fi(ĥi�1) = fi(hi�1 � gi(hi) + gi(ĥi))

⇡ fi(hi�1 + g0i(hi)(ĥi � hi))

⇡ fi(hi�1) + f 0
i(hi�1)g

0
i(hi)(ĥi � hi)

���ĥi � fi(ĥi�1)
���
2
<

���ĥi � hi

���
2

if 1 > max eigen value

h
(I � f

0
i(hi�1)g

0
i(hi))

T
(I � f

0
i(hi�1)g

0
i(hi))

i

g don’t need to be inverse mapping ! !
if this condition is satisfied

fi(ĥi�1)

But we can get exact target if

if ĥi ⇡ hi

ĥi � fi(ĥi�1) ⇡ [I � f 0
i(hi�1)g

0
i(hi)] (ĥi � hi)

fi(gi(ĥi)) = ĥi

•  Make	 a	 correcCon	 that	 guarantees	 to	
first	 order	 that	 the	 projecCon	
esCmated	 target	 is	 closer	 to	 the	
correct	 target	 than	 the	 original	 value	

•  Special	 case:	 feedback	 alignement,	 if	
gi(h)	 =	 B	 h	

12	

Difference Target-Prop for Inexact
Inverse

Difference Target Propagation
hi ĥi

hi�1 ĥi�1

fi
gi

ĥi�1 = hi�1 � gi(hi) + gi(ĥi)

fi(ĥi�1) = fi(hi�1 � gi(hi) + gi(ĥi))

⇡ fi(hi�1 + g0i(hi)(ĥi � hi))

⇡ fi(hi�1) + f 0
i(hi�1)g

0
i(hi)(ĥi � hi)

���ĥi � fi(ĥi�1)
���
2
<

���ĥi � hi

���
2

if 1 > max eigen value

h
(I � f

0
i(hi�1)g

0
i(hi))

T
(I � f

0
i(hi�1)g

0
i(hi))

i

g don’t need to be inverse mapping ! !
if this condition is satisfied

fi(ĥi�1)

But we can get exact target if

if ĥi ⇡ hi

ĥi � fi(ĥi�1) ⇡ [I � f 0
i(hi�1)g

0
i(hi)] (ĥi � hi)

fi(gi(ĥi)) = ĥi

Obligatory MNIST Results (supervised
target-prop)

Blah	

13	

Experimental Result

• We used hyper-parameters for the best valid error respectively

• Test error :  
1.73% : target prop with high regression  
1.62% : difference target prop,  
1.44% : back-prop, respective learning rates

↵ = 0.99

Experimental Result

• Left graph : Hyper-parameters for the best valid error

• Right graph : Hyper-parameters for the best training cost at
100 epoch

• Target prop is sometimes faster than back-prop though it is
usually overfitting, but it can solve under-fitting problem (ex -
very deep net, highly non-linear net and discrete net)

Hyper-‐opCmizing	 for	
validaCon	 error	

Hyper-‐opCmizing	 for	
validaCon	 error	

Hyper-‐opCmizing	 for	
validaCon	 error	

Hyper-‐op;mizing	 for	
training	 error	

Targetprop can work for discrete
and/or stochastic activations

Work	 in	 progress	

14	

Experimental Result

• We used hyper-parameters for the best valid error

• Test error :  
~2.5% (discrete networks with 3 hidden layers),  
~2.5% (discrete networks with 2 hidden layers),  
 5~6% (just training top classifier with 2 hidden : back-prop)

Iterated Target-Prop Generative Deep
Learning Experiments on MNIST

Generated	 model	 samples	

15	

InpainCng	 missing	
values	 (starCng	
from	 noise)	

Original	 examples	 InpainCng	
starCng	 point	

Inpainted	

What’s Next?
•  Experiments	 only	 involved	 p	 terms	 in	 J,	 but	 if	 there	 is	 going	 to	 be	

mulCple	 modaliCes,	 we	 need	 correcCon	 signals	 (target	 prop)	
from	 above	 as	 well	 as	 from	 below	

•  Using	 true	 gradients	 instead	 of	 diff	 targetprop	 yielded	 beker	
final	 values	 of	 J	 aPer	 each	 inference	 iteraCon	 but	 a	 worse	 final	
value	 of	 J	 aPer	 training.	 Why?	

•  Proposed	 theory	 suggests	 that	 using	 only	 a	 few	 inference	
iteraCons	 should	 give	 a	 sufficient	 signal	 to	 update	 weights,	 but	
experiments	 required	 10-‐15.	

•  Updates	 in	 paper	 did	 not	 follow	 the	 STDP	 framework	 but	 used	
final	 inference	 values	 as	 targets	

16	

MILA: Montreal Institute for Learning Algorithms

