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Neuroscience 101

* Neurons
* Axons

e Dendrites
* Synapses
 No clock
e Real time

dendrites

signal

neuron cell body

nucleus



What is the brain’s Llearning algorithm?
Cue: Spike-Timing Dependent Plasticity

e Observed
throughout the
nervous system,
especially in
cortex

e STDP: weight
increases if post-
spike just after
pre-spike,
decreases if just
before.
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Machine Learning Interpretation of
Spike-Timing Dependent Plasticity

e First suggested by Hinton 2007: this corresponds to temporal
derivative filter applied to post-spike, around pre-spike.

* We argue
e (1) this corresponds to
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synaptic pre-spike change in
change post-potential
e (2) which would be SGD on objective J if 0.J
e (3) which corresponds to neural AV} ~

oV

inference wrt J seen as a function of parameters and latent vars

dynamics implementing a form of



STD? and Variational EMm

e Neural dynamics moving towards “improved” objective J and
parameter updates towards the same J corresponds to a
variational EM learning algorithm,

log p(x) > Egp« (12 log p(x, H)]

Approximate inference

e where J =regularized joint likelihood of observed x and latent h

J =logp(z, h) + alog q(h|x)

Generative model Inference initial guess
All interactions between neurons (forward pass)

e Generalizes PSD (Predictive Sparse Decomposition) from
(Kavukcuoglu & LeCun 2008)



Inference Decouples Deep Net Layers

e After inference, no need for back-prop because the joint over
layers decouples the updates of the parameters from the
different layers:
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But Inference Seems to Need Backprop

Iterative inference, e.g. MAP

Initialize h ~ q(h|z)
fort =1to7T do
h < h—+ 5% (¢

Involves 0_] which has terms of the form

oh
8logp(h(k_1) |h(k))
Oh(k)

to change upper layer to make lower layer value more probable (or
the equivalent for q)



But Inference Seems to Need Backprop

How to back-prop through one layer
without explicit derivatives?

DIFFERENCE TARGET-PROP

Result: iterative inference
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Difference Target-Prop Estimator

e If the encoder is f(x)+noise and the decoder is g(h)+noise, then

Ologp(z|h)  f(x) = f(g(h))
Oh o5

which is demonstrated by exploiting

log p(x|h) = log p(x, h) —log p(h)

and the DAE score estimator theorem

r(r) —x  OJlogp(z)
o " Oz

e Considering two DAEs, one with h as “visible” and one with (x,h)




Decomposition of the

gradient into reconstructions
e We want -

Ologp(z|h)  Odlogp(z,h) Ologp(h) fI |g
oh ~  Oh Oh

X

e which we get from two auto-encoders:
1. The (xh)to (hx) AE:  7(z, h) = (g(h), f(x))
> flz)—h _ 9logp(z,h)
o2 Oh

2. The AE with h as « visible » and x as « representation »
> flg(h)) —h _ Ologp(h)
o2 ~ oh

Ologp(z|h)  f(x)— f(g(h))

0 oh o

e Result:




Same Formula us&tis.es Backpro ree
Auto-Encoder based on Targe.&- ro

e If r(x)=f(g(h)) is smooth and makes a small move away from X,
then applying r from

T=x—Ar=x—(9(f(2)) —x) =2z - g(f(2))

e should approximately give x, so g(ib) ~ T
 where -~

h=f(@) = [z — g(f(2)) @<: )

* And the encoder should be trained
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Difference Target-Prop for Inexact

Inverse h; h;
. .

 Make a correction that guarantees to ;’fz hi1)
first order that the projection
estimated target is closer to the
correct target than the original value 9i

) . fi
hi—1=hi—1 — gi(h;) + gi(h;)

e Special case: feedback alignement, if
g,-(h) =Bh ,—"A

2

A A 2 A
hi_fi(hi—l)H < ||h; — h;
if 1 > maz eigen value {(I — fl(him)gi(ha))" (I = fi(hi—1)g}(h:))
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Obligatory MNIST Resulls (supervised

target-prop)
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negative log-likelihood

Targetprop can work for discrete
and/or stochastic activations
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training cost

— diff target-prop
— back-prop
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Work in progress
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Generated model samples



What's Nexk?

e Experiments only involved p terms in J, but if there is going to be
multiple modalities, we need correction signals (target prop)
from above as well as from below

e Using true gradients instead of diff targetprop yielded better
final values of J after each inference iteration but a worse final
value of J after training. Why?

e Proposed theory suggests that using only a few inference
iterations should give a sufficient signal to update weights, but
experiments required 10-15.

e Updates in paper did not follow the STDP framework but used

final inference values as targets
16
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