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AI & Knowledge
• Putting knowledge into computers 
• Much knowledge is intuitive, uncommunicable
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Still	Far	from	Human-Level	AI

• Industrial	successes	mostly	based	on	
supervised learning

• Learning	superficial	clues,	not	generalizing	
well	enough	outside	of	training	contexts,	
easy	to	fool	trained	networks:	
– Current	models	cheat	by	picking	on	surface	
regularities
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Measuring the Tendency of CNNs to 
Learn Surface Statistical Regularities
Jason Jo and Yoshua Bengio 2017, arXiv:1711.11561

• Hypothesis:	Deep	CNNs	have	a	tendency	to	learn	superficial	statistical	
regularities	in	the	dataset	rather	than	high	level	abstract	concepts.

• From	the	perspective	of	learning	high	level	abstractions,	Fourier	image	
statistics	can	be	superficial regularities,	not	changing	object	category,	
but	changing	them	leads	CNNs	to	make	mistakes
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Learning	Multiple	Levels	of	Abstraction

• The	big	payoff	of	deep	learning	is	to	allow	learning	
higher	levels	of	abstraction

• Higher-level	abstractions	disentangle	the	
factors	of	variation,	which	allows	much	easier	
generalization	and	transfer
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(Bengio	&	LeCun	2007)

New	concern:
Also	disentangle	the	computation	(modules)
and	the	hypothesized	causal	mechanisms



How	to	Discover	Good	
Disentangled	Representations

• How	to	discover	abstractions?	
• What	is	a	good	representation?	(Bengio	et	al	2013)
• Dependencies	are	simple	in	the	right	representation
• Need	clues	(=	priors)	to	help	disentangle the	
underlying	factors,	such	as
– Spatial	&	temporal	scales
– Marginal	independence
– Simple	dependencies	between	factors

• Consciousness	prior
– Causal	/	mechanism	independence

• Controllable	factors
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System 1 vs System 2 Cognition
Two systems (and categories of cognitive tasks): 

• System 1

• Intuitive, fast heuristic, UNCONSCIOUS, non-linguistic

• What current deep learning does quite well 

• System 2

• Slow, logical, sequential, CONSCIOUS, linguistic, algorithmic

• What classical symbolic AI was trying to do 

• Grounded language learning: combine both language learning and world modeling 
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The Consciousness Prior
Bengio 2017, arXiv:1709.08568

• Focus	on	representation	learning	and	one	aspect	of	consciousness:
• Conscious	thoughts	are	very	low-dimensional	objects	compared	to	the	full	state	of	the	

(unconscious)	brain	=	analogous	to	a	sentence	or	a	rule	in	rule-based	systems
• Yet	they	have	unexpected	predictive	value	or	usefulness

à strong	constraint	or	prior	on	the	underlying	representation
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• Thought:	composition	of	few	selected	factors	/	concepts	
at	the	highest	level	of	abstraction	of	our	brain

• Richer	than	but	closely	associated	with	short	verbal	
expression	such	as	a	sentence or	phrase,	a	rule or	fact
(link	to	classical	symbolic	AI	&	knowledge	representation)

• Variables	in	rule	ó features	in	representation	space
• Rules	ó causal	mechanisms

Need	to	
disentangle	
both



On the Relation between Abstraction and 
Attention

• Attention	allows	to	focus	on	a	few	elements	out	of	a	large	set
• Soft-attention	allows	this	process	to	be	trainable	with	gradient-based	optimization	and	

backprop

• Different	from	sparse	auto-encoders:
controller	chooses	focus,	conditionally

Attention	focuses	on	a	few	
appropriate	abstract	or	concrete	
elements	of	mental	
representation	
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• 2	levels	of	representation:	
• High-dimensional	abstract	representation	space	(all	known	concepts	and	factors)	h
• Low-dimensional	conscious	thought	c,	extracted	from	h

• c	includes	names	(keys)	and	values	of	factors

The Consciousness Prior
Bengio 2017, arXiv:1709.08568

conscious	state	c

input	x

unconscious	state	h

attention
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What Training Objective?

• How	to	train	the	attention	mechanism	which
selects	which	variables	to	predict?	
• Representation	learning	without	reconstruction:
• Maximize	entropy	of	code
• Maximize	mutual	information	between	past	and	future	representations	(Becker	&	Hinton	1992),	
between	intentions	(policies)	and	changes	in	representations	(affordances,	independently	
controllable	factors)

• Objective	function	completely	in	abstract	space,	higher-level	parameters	model	
dependencies	in	abstract	space

• Usefulness	of	thoughts:	as	conditioning	information	for	action,	i.e.,	a	particular	form	
of	planning	for	RL

11



Using a discriminator to 
optimize independence, 

mutual information or entropy
• Train a discriminator to separate 

between pairs (A,B) coming from P(A,B) 
and pairs coming from P(A) P(B)

• Generalize this to measuring 
independence of all the outputs of a 
representation function (encoder). 
Maximize independence by 
backpropagating the independence 
score into the encoder 

à NON-LINEAR ICA.

Brakel & Bengio ArXiv:1710.05050

Nonlinear 
ICA 

encoder

Minibatch 
per-

variable 
shuffle

Discriminator
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(a) Anica PNL reconstructions ⇢max = .997. (b) Anica MLP reconstructions ⇢max = .968.

Figure 7: Reconstructions for the post-nonlinear mixture and MLP mixture of the synthetic sources.

(a) Audio source signals. (b) Anica PNL audio reconstructions ⇢max = .996.

Figure 8: Sources and reconstructions for the post-nonlinear mixture of audio signals.
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Non-Linear Independent 
Component Analysis Results
• Sources were either mixed linearly or non-linearly, 

independent components recovered in both cases

APPENDIX

A SYNTHETIC SIGNALS

The synthetic signals were defined as follows:

s1(t) = sign(cos(310⇡t)),
s2(t) = sin(1600⇡t),

s3(t) = sin(600⇡t+ 6 cos(120⇡t)),

s4(t) = sin(180⇡t),

s5(t) ⇠ uniform(x|[�1, 1]),

s6(t) ⇠ laplace(x|µ = 0, b = 1).

The experiments were done using the first 4000 samples with t linearly spaced between [0, 0.4].

B FIGURES

(a) Source signals. (b) Anica reconstructions ⇢max = .997.

Figure 6: Sources and reconstructions for the linear synthetic source ICA task. The predictions
have been rescaled to lie within the range [�1, 1] for easier comparison with the source signals.
This causes the laplacian samples to appear scaled down. The scores ⇢max represent the maximum
absolute correlation over all possible permutations of the signals.
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Using a discriminator to 
optimize independence, 

mutual information or entropy

• Same architecture, but with a twist in 
the training objective which provides 
an asymptotically consistent estimator 
of mutual independence

MINE: Mutual Information Neural Estimator
Belghazi et al ArXiv:1801.04062
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Mutual information, KL divergence and Donsker-
Varadhan Representation [Belghazi et. al., 2018]

Mutual information: measure of dependence btwn 2 variables

MINE: Mutual Information Neural Estimation

assumptions about the underlying distribution of the data. One perspective on these works is that,
given the correct constraints on a neural network, the network can be used to compute a variational
lower-bound on the distance or divergence of implicit probability measures.

In this paper we look to extend this estimation strategy to mutual information as given in equation 1,
which we note corresponds to the Kullback-Leibler (KL-) divergence Kullback (1997) between the
joint, P

XZ

and the product of the marginal distributions, P
X

⌦ P
Z

, i.e., D
KL

(P
XZ

|| P
X

⌦ P
Z

).
This observation can be used to help formulate variational Bayes in terms of implicit distribu-
tions (Mescheder et al., 2017) or INFOMAX (Brakel & Bengio, 2017).

We introduce an estimator for the mutual information based on the Donsker-Varadhan representa-
tion of the KL-divergence (Ruderman et al., 2012). As with those introduced by Nowozin et al.
(2016), our estimator is scalable, flexible, and is completely trainable via back-propagation. The
contributions of this paper are as follows.

• We introduce the mutual information neural estimator (MINE), providing its theoretical
bases and generalizability to other information metrics.

• We illustrate that our estimator can be used to train a model with improved support coverage
and richer learned representation for training adversarial models (such as adversarially-
learned inferences, ALI, Dumoulin et al., 2016).

• We demonstrate how to use MINE to improve reconstructions and inference in Adversari-
ally Learned Inference Dumoulin et al. (2016) on large scale Datasets.

• We show that our estimator provides a method of performing the Information Bottleneck
method Tishby et al. (2000) in a continuous setting, and that this approach outperforms
variational bottleneck methods (Alemi et al., 2016).

2 BACKGROUND

2.1 MUTUAL INFORMATION

Mutual information is a Shannon entropy-based measure of dependence between random variables.
Following the definition in Equation 1, the mutual information can be understood as the decrease in
the uncertainty of X given Z:

I(X;Z) := H(X)�H(X | Z) = H(Z)�H(Z | X), (2)

where H is the Shannon entropy and H(Z | X) is the conditional entropy of Z given X (the amount
of information in Z not given from X). Using simple manipulation, we write the mutual information
as the Kullback-Leibler (KL-) divergence between the joint, P

XZ

, and the product of the marginals
P
X

⌦ P
Z

:

I(X;Z) = H(X) +H(Z)�H(X,Z) = D
KL

(P
XZ

|| P
X

⌦ P
Z

), (3)

where H(X,Z) is the joint entropy of X and Z. It can be noted here that the mutual information is
zero exactly when the KL-divergence is zero. The intuitive meaning is immediately clear: the larger
the divergence between the joint and the product of the marginals, the stronger the dependence
between X and Z.

There is also a strong connection between the mutual information and the structure between random
variables. We briefly touch upon this subject in Appendix 6.1.

2.2 THE DONSKER-VARADHAN BOUND

MINE relies on the Donsker-Varadhan representation of the KL-divergence, which provides a tight
lower-bound on the mutual information. The KL-divergence between two probability distributions
P and Q on a measure space ⌦, with P absolutely continuous with respect to Q, is defined as

D
KL

(P || Q) :=

Z

⌦
log

✓
dP
dQ

◆
dP = EP


log

dP
dQ

�
(4)

2
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where the argument of the log is the density ratio2 and EP denotes the expectation with respect to
P. It follows from Jensen’s inequality that the KL-divergence is always non-negative and vanishes
if and only if P = Q.

The following theorem gives a variational representation of the KL-divergence:
Theorem 1 (Donsker-Varadhan representation). The KL divergence between any two distributions

P and Q, with P ⌧ Q, admits the following dual representation (Donsker & Varadhan, 1983):

D
KL

(P || Q) = sup

T :⌦!R
EP[T ]� log(EQ[e

T

]) (5)

where the supremum is taken over all functions T such that the two expectations are finite. Given

any subclass F of such functions, this yields the lower bound:

D
KL

(P || Q) � sup

T2F
EP[T ]� log(EQ[e

T

]) (6)

The bound in Equation 6 is known as the compression lemma in the PAC-Bayes literature (Banerjee,
2006). A simple proof goes as follows. Given T 2 F , consider the Gibbs distribution G defined by
dG =

1
Z

eT dQ, where Z = EQ[eT ]. By construction,

EP[T ]� logZ = EP


log

dG
dQ

�
(7)

The gap � between left and right hand sides of Equation 6 can then be written as:

� = EP


log

dP
dQ � log

dG
dQ

�
= EP log

dP
dG = D

KL

(P || G) � 0 (8)

and we conclude by the positivity of the KL-divergence. The identity (8) also shows that the bound
is tight whenever G = P, namely for optimal functions T ⇤ taking the form

T ⇤
= log

dP
dQ + C (9)

for some constant C 2 R.

It is interesting to compare the Donsker-Varadhan bound with other variational bounds proposed in
the literature. The variational divergence estimation proposed in (Nguyen et al., 2010) and used in
Nowozin et al. (2016) and Mescheder et al. (2017), leads to the following bound:

D
KL

(P || Q) � sup

T2F
EP[T ]� EQ[e

T�1
] (10)

Although both bounds are tight for sufficiently large families F , the Donsker-Varadhan bound is
stronger in the sense that for any fixed T , the right hand side of Equation 6 is larger than the right
hand side3 of Equation 10. We perform numerical comparisons in Section 4.1.

We refer to the work by Ruderman et al. (2012) for a derivation of both representations (6) and (10)
from unifying point of view of Fenchel duality, in the more general context of f -divergences.

3 THE MUTUAL INFORMATION NEURAL ESTIMATOR

3.1 DEFINITION

We are interested in the case of a joint random variable (X,Z) on a joint probability space ⌦ =

X ⇥Z , and where P = P
XZ

is the joint distribution, Q = P
X

⌦P
Z

is the product distribution. P is
then absolutely continuous with respect to Q. Using the expression (3) for the mutual information
in terms of a KL-divergence, we obtain the following representation:

I(X;Z) � sup

T2F
EPXZ [T (x, z)]� log(EPX⌦PZ [e

T (x,z)
]). (11)

2Although the discussion is more general, we can think of P and Q as being distributions on some compact
domain ⌦ ⇢ Rd, with density p and q respect the Lebesgue measure �, so that DKL =

R
p log

p
q d�.

3To see this, just apply the identity x � e log x with x = EQ[e
T
].

3

(Donsker & Varadhan, 1983):

Optimal T:                           With suboptimal T:  
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MINE: Estimator of MI

Given two r.v. X & Z and samples of their 
joint & marginals:

where discriminator T is optimized to 
maximize the rhs

MINE: Mutual Information Neural Estimation

The inequality in Equation 11 is intuitive in terms of deep learning optimization. The idea is to
parametrize the functions T : X ⇥ Z ! R in F by a deep neural network with parameters ✓ 2 ⇥,
turning the infinite dimensional problem into a much easier parametric optimization problem. In
the following we call T

✓

the statistic network. The expectations in the above lower-bound can then
be estimated by Monte-Carlo (MC) sampling using empirical samples (x, z) ⇠ P

XZ

. Samples
x̄ ⇠ P

X

and z̄ ⇠ P
Z

from the marginals are obtained by simply dropping x, z from samples (x̄, z)
and (x, z̄) ⇠ P

XZ

. The objective can be maximized by gradient ascent.

In what follows we use the notation ˆP(n)
X

for the empirical distribution associated to a given set of n
iid samples drawn for P

X

. If we denote

ˆ✓
n

= arg sup

✓2⇥
EP̂(n)

XZ
[T

✓

(x, z)]� log(EP̂(n)
X ⌦P̂(n)

Z
[eT✓(x,z)

]) (12)

as the optimal set of parameters under the above conditions, we obtain the Mutual Information

Neural Estimator (MINE):
Definition 3.1 (Mutual information neural estimator (MINE)).

\I(X;Z)

n

= EP̂(n)
XZ

[T
✓̂n
(x, z)]� log(EP̂(n)

X ⌦P̂(n)
Z

[eT✓̂n
(x,z)

]). (13)

Algorithm 1 presents details of the implementation of MINE.

Algorithm 1 . Mutual Information Estimation
✓  initialize network parameters
repeat

(x(1), z(1)), . . . , (x(n), z(n)) ⇠ P
XZ

. Draw n samples from the joint distribution
z̄(1), . . . , z̄(n) ⇠ P

Z

. Draw n samples from the Z marginal distribution
V(✓) 1

n

P
n

i=1 T✓

(x(i), z(i))� log(

1
n

P
n

i=1 e
T✓(x

(i)
,z̄

(i)

)

. Evaluate the lower-bound
✓  ✓ +r

✓

V(✓) . Update the statistic network parameters
until convergence

We will also use an adaptive gradient clipping method to ensure stability whenever MINE is used in
conjunction with another adversarial objective. The details of this are provided in Appendix 6.3.

3.2 CONSISTENCY

In this section we discuss the consistency of MINE. The estimator relies on (i) a neural network
architecture and (ii) a choice of n samples from the data distribution P

XZ

. We define consistency
in the following way:

Definition 3.2 (Consistency). The estimator \I(X;Z)

n

is (strongly) consistent if for all ✏ > 0, then
there exists a positive integer N and a choice of neural network architecture such that:

8n � N, |I(X,Z)� \I(X;Z)

n

|  ✏ with probability one

In other words, the estimator converges to the true mutual information as n ! 1, almost surely
over the choice of samples. The question of consistency breaks into two problems: an approxima-

tion problem related to the size of the family F , and inducing the gap in the inequality (11) ; and an
estimation problem related to the use of empirical measures in (12). The first problem is addressed
by the universal approximation theorem for neural networks (Hornik, 1989). For the second prob-
lem, classical consistency theorems for extremum estimators apply (Van de Geer, 2000), under mild
conditions on the parameter space.

This leads to the two lemmas below. The proofs are given in Appendix 6.2. In what follows we use
the notation ˆI[T ] for the argument of the supremum in Equation (11):

ˆI[T ] := EPXZ [T ]� log(EPX⌦PZ [e
T

])
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MINE: Consistency

Theorem: there exists a neural net architecture such that for 
all            there exists an integer N s.t.

MINE: Mutual Information Neural Estimation
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as the optimal set of parameters under the above conditions, we obtain the Mutual Information

Neural Estimator (MINE):
Definition 3.1 (Mutual information neural estimator (MINE)).
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Algorithm 1 presents details of the implementation of MINE.

Algorithm 1 . Mutual Information Estimation
✓  initialize network parameters
repeat
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V(✓) . Update the statistic network parameters
until convergence

We will also use an adaptive gradient clipping method to ensure stability whenever MINE is used in
conjunction with another adversarial objective. The details of this are provided in Appendix 6.3.

3.2 CONSISTENCY

In this section we discuss the consistency of MINE. The estimator relies on (i) a neural network
architecture and (ii) a choice of n samples from the data distribution P

XZ

. We define consistency
in the following way:

Definition 3.2 (Consistency). The estimator \I(X;Z)

n

is (strongly) consistent if for all ✏ > 0, then
there exists a positive integer N and a choice of neural network architecture such that:
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In other words, the estimator converges to the true mutual information as n ! 1, almost surely
over the choice of samples. The question of consistency breaks into two problems: an approxima-

tion problem related to the size of the family F , and inducing the gap in the inequality (11) ; and an
estimation problem related to the use of empirical measures in (12). The first problem is addressed
by the universal approximation theorem for neural networks (Hornik, 1989). For the second prob-
lem, classical consistency theorems for extremum estimators apply (Van de Geer, 2000), under mild
conditions on the parameter space.

This leads to the two lemmas below. The proofs are given in Appendix 6.2. In what follows we use
the notation ˆI[T ] for the argument of the supremum in Equation (11):

ˆI[T ] := EPXZ [T ]� log(EPX⌦PZ [e
T

])
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Demonstration of estimation

[Belghazi et. al., 2018]

MI between 2 
Gaussians
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Demonstration of estimation

19 [Belghazi et. al., 2018]

MI between 2 
Gaussians
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since  H(X|Z)=0
I(X;Z)=H(X)

GAN GAN+MINE

Maximizing ENTROPY: avoid GAN mode 
dropping by max MI(X,Z)
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MINE: Mutual Information Neural Estimation

assumptions about the underlying distribution of the data. One perspective on these works is that,
given the correct constraints on a neural network, the network can be used to compute a variational
lower-bound on the distance or divergence of implicit probability measures.

In this paper we look to extend this estimation strategy to mutual information as given in equation 1,
which we note corresponds to the Kullback-Leibler (KL-) divergence Kullback (1997) between the
joint, P

XZ

and the product of the marginal distributions, P
X

⌦ P
Z

, i.e., D
KL

(P
XZ

|| P
X

⌦ P
Z

).
This observation can be used to help formulate variational Bayes in terms of implicit distribu-
tions (Mescheder et al., 2017) or INFOMAX (Brakel & Bengio, 2017).

We introduce an estimator for the mutual information based on the Donsker-Varadhan representa-
tion of the KL-divergence (Ruderman et al., 2012). As with those introduced by Nowozin et al.
(2016), our estimator is scalable, flexible, and is completely trainable via back-propagation. The
contributions of this paper are as follows.

• We introduce the mutual information neural estimator (MINE), providing its theoretical
bases and generalizability to other information metrics.

• We illustrate that our estimator can be used to train a model with improved support coverage
and richer learned representation for training adversarial models (such as adversarially-
learned inferences, ALI, Dumoulin et al., 2016).

• We demonstrate how to use MINE to improve reconstructions and inference in Adversari-
ally Learned Inference Dumoulin et al. (2016) on large scale Datasets.

• We show that our estimator provides a method of performing the Information Bottleneck
method Tishby et al. (2000) in a continuous setting, and that this approach outperforms
variational bottleneck methods (Alemi et al., 2016).

2 BACKGROUND

2.1 MUTUAL INFORMATION

Mutual information is a Shannon entropy-based measure of dependence between random variables.
Following the definition in Equation 1, the mutual information can be understood as the decrease in
the uncertainty of X given Z:

I(X;Z) := H(X)�H(X | Z) = H(Z)�H(Z | X), (2)

where H is the Shannon entropy and H(Z | X) is the conditional entropy of Z given X (the amount
of information in Z not given from X). Using simple manipulation, we write the mutual information
as the Kullback-Leibler (KL-) divergence between the joint, P

XZ

, and the product of the marginals
P
X

⌦ P
Z

:

I(X;Z) = H(X) +H(Z)�H(X,Z) = D
KL

(P
XZ

|| P
X

⌦ P
Z

), (3)

where H(X,Z) is the joint entropy of X and Z. It can be noted here that the mutual information is
zero exactly when the KL-divergence is zero. The intuitive meaning is immediately clear: the larger
the divergence between the joint and the product of the marginals, the stronger the dependence
between X and Z.

There is also a strong connection between the mutual information and the structure between random
variables. We briefly touch upon this subject in Appendix 6.1.

2.2 THE DONSKER-VARADHAN BOUND

MINE relies on the Donsker-Varadhan representation of the KL-divergence, which provides a tight
lower-bound on the mutual information. The KL-divergence between two probability distributions
P and Q on a measure space ⌦, with P absolutely continuous with respect to Q, is defined as

D
KL

(P || Q) :=

Z

⌦
log

✓
dP
dQ

◆
dP = EP


log

dP
dQ

�
(4)
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Maximizing entropy at the output of a neural net 
(stacked MNIST)

21 [Belghazi et. al., 2018]

Modes (max 1000)

DCGAN 99 3,4

ALI 16 5,4

Unrolled GAN 48,7 4,32

VEEGAN 150 2,96

PacGAN 1000 0,6

DCGAN+MINE 1000 0,5

21



Back to the consciousness prior: 
joining System 1 and System 2

22



Most statistical  NLP uses only natural language corpora & annotations

• Most NLP tasks currently dealt with using only text + labels

• Speech recognition, language modeling, text 
compression, machine translation

• Parsing

• Question Answering, reading comprehension

• Document classification

• Disambiguation

• Dialogue, chatbots, personal assistants
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Common Sense & Winograd Schemas
The women stopped taking pills because they were pregnant. 

Which entities were pregnant? The women or the pills?

The women stopped taking pills because they were carcinogenic. 

Which entities were carcinogenic? The women or the pills?

Humans: 100% accurate

SOTA systems: 56% accurate

Chance: 50% accuracy
24



Humans outperform machines at 
unsupervised learning

• Humans	are	very	good	at	
unsupervised	learning,	e.g.	a	2	
year	old	knows	intuitive	physics

• Babies	construct	an	
approximate	but	sufficiently	
reliable	model	of	physics,	how	
do	they	manage	that?	Note	
that	they	interact	with	the	
world,	not	just	observe	it.
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Intuitive Psychology and Intuitive Physics
Informal ’common sense’ knowledge. 

Still lacking in our best Ais.
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Knowledge!

• What does it mean for a machine to understand a 
question, a document?

• What kind of knowledge would be required to do that?

• How is that knowledge to be acquired by the 
computer?

27



Alien Language Understanding: a Thought Experiment

Imagine yourself approaching another planet and observing the bits of information 
exchanged by aliens communicating with each other

Unlike on Earth, their communication channel is noisy, but like on Earth, bandwidth 
is expensive à the best way to communicate is to maximally compress the 
messages, which leads to sequences of random bits being actually exchanged.

If we only observe the compressed messages, there is no way we can ever understand 
the alien language
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Alien Language Understanding: a Thought Experiment

How can we learn to understand the alien language?

We need to do grounde language learning: we need to observe what the aliens are 
doing jointly with their messages, to try to decipher their intentions, context, etc.

For this we need to build an ’Alien World Model’ which captures the causal structure 
of their behaviors and resulting changes in their environment. 

29



Jointly Learning Natural Language and a World Model

• Should we first learn a world model and then a natural language description of it? 

• Or should agents jointly learn about language and about the world? 

• I lean towards the latter. 

• Consider top-level representations from supervised ImageNet classifiers. They tend to 
be much better and easier to learn than those learned by unsupervised learning. Why? 

• Because language (here object categories) provides to the learner clues about relevant 
semantic high-level factors from which it is easier to generalize. 

• See my earlier paper on cultural evolution, which posits that culture can help a learner 
escape from poor optimization, guide (through curricula) the learner to better 
explanations about the world. 
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Learning « How the world ticks »

• So long as our machine learning models « cheat » by relying only on 
superficial statistical regularities, they remain vulnerable to out-of-
distribution examples

• Humans generalize better than other animals thanks to a more accurate 
internal model of the underlying causal relationships

• To predict future situations (e.g., the effect of planned actions) far from 
anything seen before while involving known concepts, an essential 
component of reasoning, intelligence and science
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Beyond the iid assumption
• The assumption that the test data is from the same distribution as the 

training data is too strong, and it is often violated in practice, leading to 
poor out-of-distribution generalization. 

• I propose to consider relaxed assumptions: the test data was generated 
under the same causal dynamics, but from different initial conditions 
(which may be unlikely under the training distribution). 

Initial 
conditions

Observed 
data

Stochastic dynamical system
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Develop learning procedures which figure out how their small-scale 
environment works
• Outcome of ML research = learning framework, not a trained learner

• Solve simple environments before human-level understanding of our world

• Current trained models are very poor at understanding our world. Working on a 
simpler virtual environment leads to a faster research cycle.

• We can gradually make the environments more realistic and complex as our learning 
methods and our computational capabilities improve



How to Teach Agent to Understand Language?
Hard-code everything?

● doesn’t scale
● likely a dead-end

SHRDLU by Winograd (1971)
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Motivation for BabyAI Platform
Let’s bite the bullet - language learning with a human in the loop would be great!

● A human can gradually increase the complexity of the task 
(curriculum learning)

● A human can choose the task based on what the agent has already learned
(interactive learning)

● You could tune your intelligent helper / household robot / R2D2 to understand 
you better!

But are we there in terms of data efficiency?

BabyAI: First Steps Towards Grounded Language Learning With a Human In the Loop; submitted to 
ICLR 2018, Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan 
Saharia, Thien Huu Nguyen, Yoshua Bengio
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BabyAI Platform
Purpose: Simulate language learning from a human and study data efficiency

Comprises:

● A gridworld with partial observability (Minigrid)
● A compositional natural-looking Baby language 

with over 10^19 instructions
● 19 levels of increasing difficulty
● A heuristic stack-based expert that can solve all levels

github.com/mila-udem/babyai
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Under review as a conference paper at ICLR 2019

The language can also express the conjunction of several such tasks, for example “put a red ball
next to the green box after you open the door". The Backus-Naur Form (BNF) grammar for the lan-
guage is presented in Figure 2 and some example instructions drawn from this language are shown
in Figure 3. In order to keep the resulting instructions readable by humans, we have imposed some
structural restrictions on this language: the and connector can only appear inside the then and after

forms, and instructions can contain no more than one then or after word. The language is inten-
tionally kept simple, but still exhibits interesting combinatorial properties, and contains 2.48⇥ 1019

possible instructions.

hSenti |= hSent1i | hSent1i ’,’ then hSent1i | hSent1i after you hSent1i
hSent1i |= hClausei | hClausei and hClausei
hClausei |= go to hDescri | pick up hDescrNotDoori | open hDescrDoori |

put hDescrNotDoori next to hDescri
hDescrDoori |= hArticlei hColori door hLocSpeci
hDescrBalli |= hArticlei hColori ball hLocSpeci
hDescrBoxi |= hArticlei hColori box hLocSpeci
hDescrKeyi |= hArticlei hColori key hLocSpeci

hDescri |= hDescrDoori | hDescrBalli | hDescrBoxi | hDescrKeyi
hDescrNotDoori |= hDescrBalli | hDescrBoxi | hDescrKeyi

hLocSpeci |= ✏ | on your left | on your right | in front of you | behind you
hColori |= ✏ | red | green | blue | purple | yellow | grey
hArticlei |= the | a

Figure 2: BNF grammar productions for the Baby Language

go to the red ball

open the door on your left

put a ball next to the blue door

open the yellow door and go to the key behind you

put a ball next to a purple door after you put a blue box next to a grey
box and pick up the purple box

Figure 3: Example Baby Language instructions

The BabyAI platform includes a verifier which serves to check if an agent performing a sequence
of actions in a given environment has successfully completed a given instruction and achieved its
goal or not. The descriptors in the language can refer to one or to multiple objects. Hence, if the
agent is instructed to go to "a red door", it can execute this instruction by going to any of the red
doors in the environment. The then and after connectors can be used to sequence subgoals. The
and form implies that both subgoals must be completed, without ordering constraints. Importantly,
Baby Language instructions leave details about the execution implicit. An agent may have to find a
key and unlock a door, or move obstacles out of the way to complete instructions, without this being
stated explicitly.

3.3 BABYAI LEVELS

There is abundant evidence in the literature that using a curriculum may greatly facilitate learning
complex tasks for neural architectures (Bengio et al., 2009; Kumar et al., 2010; Zaremba et al., 2015;
Graves et al., 2016). To enable investigations of how a curriculum can help with data efficiency,
we have produced a number of levels that require the understanding of only a limited of subset
of Baby Language, and take place in environments of varying complexity. Formally, a level is a

4

Early Steps in the Baby AI Game Project
• Designing and training experts 

for each level, which can serve 
as teachers and evaluators for 
the Baby AI learners 

• Partially observable, 2-D grid, 
instructions about objects, 
locations, actions 

Under review as a conference paper at ICLR 2019

(a) GoToObj: "go to
the blue ball"

(b) PutNextLocal:
"put the blue key next
to the green ball"

(c) BossLevel: "pick up the grey box behind you, then go
to the grey key and open a door". Note that the green door
near the bottom left needs to be unlocked with a green key,
but this is not explicitly stated in the instruction.

Figure 1: Three BabyAI levels built using the MiniGrid environment. The red triangle represents
the agent, and the light-grey shaded area represents its field of view (partial observation).

3 BABYAI PLATFORM

The BabyAI platform that we present in this work comprises an efficiently simulated gridworld en-
vironment (MiniGrid) and a number of instruction-following tasks that we call levels, all formulated
using subsets of a synthetic language (Baby Language). The platform also includes a heuristic ex-
pert that can solve all BabyAI levels and is an important component in defining a simulated teacher
when evaluating human in the loop teaching methods.

3.1 MINIGRID ENVIRONMENT

Studies of data-efficiency are very computationally expensive (multiple runs are required for differ-
ent amounts of data), hence, in our design of the environment, we have aimed for a minimalistic and
efficient environment which still poses a considerable challenge for current general-purpose agent
learning methods. We have implemented MiniGrid, a partially observable 2D gridworld environ-
ment. The environment is populated with various entities of different colors, such as the agent,
balls, boxes, doors and keys (see Figure 1). Objects can be picked up, dropped and moved around
by the agent, doors can be unlocked with keys matching their color. At each step, the agent receives
a 7x7 representation of its field of view (the grid cells in front of it) as well as a Baby Language
instruction (textual string).

The MiniGrid environment is fast and lightweight. Throughput of over 3000 frames per second is
possible on a modern multi-core laptop, which makes experimentation quicker and more accessible.
The environment is open source, available online, and supports integration with OpenAI Gym. For
more details, see Appendix A.

3.2 BABY LANGUAGE

We have developed a synthetic Baby Language to give instructions to the agent as well as to auto-
matically verify their execution. Baby Language is a comparatively small yet combinatorially rich
subset of English that is designed to be easily understood by humans. In this language, the agent
can be instructed to go to objects, pick up objects, open doors, and put objects next to other objects.

3
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BabyAI Competencies
● We distinguish 13 competencies, e.g. 

○ MAZE = 3x3 maze navigation
○ UNLOCK = find a key to unlock the door
○ LOC = understand “in front of”, “behind”, ...

● Each level is defined by the set of 
required competencies

Open a door and pick 
up the green box, 
then pick up the 
green key and put a 
blue ball next to a 
grey ball !!!!!!

LEVEL BOSS
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And How Is Data Efficiency?
- We measure the number of demos/episodes needed to get 99% success rate
- Because who cares about 80% accurate agents??? 

all numbers are thousands!!!
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Results of 1st benchmark: data efficiency needs work!

● Hundreds of thousands of demonstrations are needed for very simple tasks
● It takes 3 times as much data to get from 95% to 99%
● A lot of progress is needed before putting a human in the loop!
● Use BabyAI for your data efficiency studies!
● … but don’t try too hard (e.g. semantic parsing) cause it’s a gridworld
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What Next? Abstract Word Models

• Current ML and RL tends to model dependencies in data space

• Current ML and RL tends to model temporal sequences via the unfolding of one-step predictions

• Humans’ plans are very different:

P (next frame | previous frames)
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• We project ourselves at arbitrary points into the future or the past

• A plan is a sequence of events which are not at regularly spaced 
intervals

• A future event in a plan does not need to be specified at a 
particular time, e.g. ”tomorrow I will…”

• We imagine not the a future state but only very specific and 
abstract aspects of it (see ’The Consciousness Prior’)
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