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Deep Motivations

� Brains have a deep architecture

� Humans organize their ideas hierarchically, through 
composition of simpler ideas

Unsufficiently deep architectures can be exponentially � Unsufficiently deep architectures can be exponentially 
inefficient

� Distributed (possibly sparse) representations are necessary to 
achieve non-local generalization, exponentially more efficient 
than 1-of-N enumeration latent variable values

� Multiple levels of latent variables allow combinatorial sharing of 
statistical strength



Architecture Depth

Depth = 3Depth = 4



Deep Architectures are More Expressive

Theoretical arguments:

= universal approximator2 layers of

Logic gates
Formal 
neurons

RBF units

…

1 2 3 2n

1 2 3

…

n

RBF units

Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al 
2007)

Functions compactly 
represented with k layers 
may require exponential 
size with k-1 layers



Deep Architectures and Sharing 
Statistical Strength, Multi-Task Learning

� Generalizing better to new 
tasks is crucial to approach 
AI

task 1 
output y1

task 3 
output y3

task 2
output y2

� Deep architectures learn 
good intermediate 
representations that can be 
shared across tasks

� A good representation is one 
that makes sense for many 
tasks

raw input x

shared 
intermediate 
representation h



The Deep Breakthrough

� Before 2006, training deep architectures was unsuccessful, 
except for convolutional neural nets

� Hinton, Osindero & Teh « A Fast Learning Algorithm for Deep 
Belief Nets », Neural Computation, 2006Belief Nets », Neural Computation, 2006

� Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise 
Training of Deep Networks », NIPS’2006

� Ranzato, Poultney, Chopra, LeCun « Efficient Learning of 
Sparse Representations with an Energy-Based Model », 
NIPS’2006



Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)



Boltzman Machines and MRFs

� Boltzmann machines:

(Hinton 84)

� Markov Random Fields:� Markov Random Fields:

� More interesting with latent variables!



Restricted Boltzman Machine

� The most popular 
building block for 
deep architectures      deep architectures      
(Smolensky 86, Hinton 2002)

� Bipartite undirected 
graphical model

observed

hidden



Gibbs Sampling in RBMs

h1 ~ P(h|x1) h2 ~ P(h|x2) h3 ~ P(h|x3) 

P(h|x) and P(x|h) factorize

x2 ~ P(x|h1) x3 ~ P(x|h2) x1

� Easy inference

� Convenient Gibbs sampling 
x�h�x�h…



Problems with Gibbs Sampling

In practice, Gibbs sampling does not always mix well…

RBM trained by CD on MNIST

Chains from random state

Chains from real digits

RBM trained by CD on MNIST



Boltzmann Machine Gradient

� Gradient has two components:

“negative phase”“positive phase”

� In RBMs, easy to sample or sum over h|x
� Difficult part: sampling from P(x), typically with a Markov chain

“negative phase”“positive phase”



Training RBMs

Contrastive Divergence: 
(CD-k)

start negative Gibbs chain at 
observed x, run k Gibbs steps

Persistent CD:
(PCD) 

run negative Gibbs chain in 
background while weights slowly 
changechange

Fast PCD: two sets of weights, one with a large 
learning rate only used for negative 
phase, quickly exploring modes

Herding: (see Max Welling’s ICML, UAI and 
ICML workshop talks)

Tempered MCMC: use higher temperature to escape 
modes



Contrastive Divergence

Contrastive Divergence (CD-k): start negative phase block 
Gibbs chain at observed x, run k Gibbs steps (Hinton 2002)

h ~ P(h|x) h’ ~ 
P(h|x’)

Sampled x’
negative phase

Observed x
positive phase

k = 2 steps

x x’

Free 
Energy

push down

push up



Persistent CD (PCD)

Run negative Gibbs chain in background while weights slowly 
change (Younes 2000, Tieleman 2008):

• Guarantees (Younes 89, 2000; Yuille 2004)

• If learning rate decreases in 1/t, 

chain mixes before parameters change too much, 

Observed x
(positive phase)

new x’

h ~ P(h|x)

previous x’

chain mixes before parameters change too much, 

chain stays converged when parameters change



Negative phase samples quickly push up the energy of 
wherever they are and quickly move to another mode

FreeEnergy
push 
down

Persistent CD with Large Step Size

x

x’

push 
up



Persistent CD with Large Step Size

Negative phase samples quickly push up the energy of 
wherever they are and quickly move to another mode

FreeEnergy
push 

x

x’

FreeEnergy
push 
down



Negative phase samples quickly push up the energy of 
wherever they are and quickly move to another mode

FreeEnergy
push 
down

Persistent CD with Large Step Size

x

x’

push 
up



Fast Persistent CD and Herding

� Exploit impressively faster mixing achieved when parameters 
change quickly (large learning rate) while sampling

� Fast PCD: two sets of weights, one with a large learning rate 
only used for negative phase, quickly exploring modes

� Herding (see Max Welling’s ICML, UAI and ICML workshop talks):       
0-temperature MRFs and RBMs, only use fast weights



Herding MRFs

� Consider 0-temperature MRF 
with state s and weights w

� Fully observed case, observe � Fully observed case, observe 
values s+, dynamical system 
where s- and W evolve

� Then statistics of samples s-

match the data’s statistics,  
even if approximate max, as 
long as w remains bounded



Herding RBMs

� Hidden part h of the state s = (x,h)

� Binomial state variables si � {-1,1}

� Statistics f si, si sj� Statistics f si, si sj

� Optimize h given x in     the 
positive phase

� In practice, greedy maximization works, exploiting RBM structure 



Fast Mixing with Herding

FPCD Herding



� Annealing from high-temperature worked well for estimating 
log-likelihood (AIS)

� Consider multiple chains at different temperatures and 
reversible swaps between adjacent chains

Higher temperature chains can escape modes

Tempered MCMC

� Higher temperature chains can escape modes

� Model samples are from T=1

Sample Generation Procedure

Training Procedure TMCMC Gibbs (ramdom start) Gibbs (test start)

TMCMC 215.4 ± 2.2 88.4 ± 2.7 60.0 ± 2.8

PCD 44.7 ± 2.5 -28.6 ± 3.2 -175.1 ± 2.9

CD -2165 ± 0.5 -2154 ± 0.6 -842.8 ± 6.1



Deep Belief Networks
� Sampling:

• Sample from top RMB

• Sample from level k given k+1

� Easy approximate inference
h2

h3

Top-level RBM

� Training:

• Variational bound justifies greedy 
layerwise training of RBMs

• How to train all levels together?
sampled x

h1



Deep Boltzman Machines
(Salakhutdinov et al, AISTATS 2009, Lee et al, ICML 2009)

� Positive phase: variational 
approximation (mean-field) h3

� Negative phase: persistent chain

� Can (must) initialize from stacked RBMs

� Improved performance on MNIST from 
1.2% to .95% error

� Can apply AIS with 2 hidden layers observed x

h1

h2



Estimating Log-Likelihood

� RBMs: requires estimating partition function

• Reconstruction error provides a cheap proxy

• Log Z tractable analytically for < 25 binary inputs or hidden• Log Z tractable analytically for < 25 binary inputs or hidden

• Lower-bounded (how well?) with                               
Annealed Importance Sampling (AIS)

� Deep Belief Networks:

Extensions of AIS (Salakhutdinov & Murray, ICML 2008, NIPS 2008)

� Open question: efficient ways to monitor progress?



Back to Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)



Why are Classifiers Obtained from 
DBNs Working so Well?

� General principles?� General principles?

� Would these principles work for other single-level algorithms?

� Why does it work?



Stacking Auto-Encoders



Auto-Encoders and CD

RBM log-likelihood gradient written as converging  expansion:

• CD-k = 2 k terms

• reconstruction error ~ 1 term

(Bengio & Delalleau 2009)

• reconstruction error ~ 1 term



Greedy Layerwise Supervised Training

Generally worse than unsupervised pre-training but better than 
ordinary training of a deep neural network (Bengio et al. 2007).



Supervised Fine-Tuning is Important

� Greedy layer-wise 
unsupervised pre-training 
phase with RBMs or auto-
encoders on MNISTencoders on MNIST

� Supervised phase with or 
without unsupervised 
updates, with or without 
fine-tuning of hidden 
layers

� Can train all RBMs at the 
same time, same results



Sparse Auto-Encoders

� Sparsity penalty on the intermediate codes

� Like sparse coding but with efficient run-time encoder

(Ranzato et al, 2007; Ranzato et al 2008)

� Sparsity penalty pushes up the free energy of all configurations 
(proxy for minimizing the partition function)

� Impressive results in object classification (convolutional nets):

• MNIST 0.5% error    = record-breaking

• Caltech-101 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)

� Similar results obtained with a convolutional DBN (Lee et al, ICML’2009)



Denoising Auto-Encoder

� Corrupt the input

� Reconstruct the uncorrupted input

(Vincent et al, ICML 2008)

� Reconstruct the uncorrupted input

KL(reconstruction | raw input)
Hidden code (representation)

Corrupted input Raw input reconstruction



Denoising Auto-Encoder

� Learns a vector field towards 
higher probability regions

� Minimizes variational lower bound 
on a generative model

Corrupted input

on a generative model

� Similar to pseudo-likelihood

Corrupted input



Stacked Denoising Auto-Encoders

� No partition function, 
can measure training 
criterion

Encoder & decoder: � Encoder & decoder: 
any parametrization

� Performs as well or 
better than stacking 
RBMs for usupervised 
pre-training

Infinite MNIST



Why is Unsupervised Pre-Training 
Working So Well?

� Regularization hypothesis: 

• Unsupervised component forces model close to P(x)• Unsupervised component forces model close to P(x)

• Representations good for P(x) are good for P(y|x) 

� Optimization hypothesis:

• Unsupervised initialization near better local minimum of P(y|x)

• Can reach lower local minimum otherwise not achievable by 
random initialization



Learning Trajectories in Function Space

� Each point a model 
in function space

� Color = epoch

� Top: trajectories      � Top: trajectories      
w/o pre-training

� Each trajectory 
converges in 
different local min.

� No overlap of 
regions with and     
w/o pre-training



Unsupervised Learning as Regularizer

� Adding extra regularization 
(reducing # hidden units) 
hurts more the pre-trained 
models

� Pre-trained models have 
less variance wrt training 
sample

� Regularizer = infinite 
penalty outside of region 
compatible with 
unsupervised pre-training



Better Optimization of Online Error

� Both training and online error 
are smaller with unsupervised 
pre-training

As # samples �� As # samples �
training err. = online err. = 
generalization err.

� Without unsup. pre-training: 
can’t exploit capacity to 
capture complexity in target 
function from training data



Learning Dynamics of Deep Nets

Before fine-tuning After fine-tuning



Learning Dynamics of Deep Nets

� As weights become larger, get 
trapped in basin of attraction 
(“quadrant” does not change)

� Initial updates have a crucial 
influence (“critical period”), 
explain more of the variance

� Unsupervised pre-training initializes 
in basin of attraction with good 
generalization properties

0



Order & Selection of Examples Matters

� Curriculum learning 
(Bengio et al, ICML’2009; Krueger & Dayan 2009) 

� Start with easier examples

� Faster convergence to a better local 
minimum in deep architectures

� Also acts like a regularizer with 
optimization effect?

� Influencing learning dynamics can 
make a big difference



Level-Local Learning is Important

� Initializing each layer of an unsupervised deep Boltzmann 
machine helps a lot 

� Initializing each layer of a supervised neural network as an RBM 
helps a lothelps a lot

� Helps most the layers further away from the target

� Not just an effect of unsupervised prior

� Jointly training all the levels of a deep architecture is difficult

� Initializing using a level-local learning algorithm (RBM, auto-
encoders, etc.) is a useful trick  



Take-Home Messages

� Multiple levels of latent variables: potentially exponential gain 
in statistical sharing

� RBMs allow fast inference, stacked RBMs / auto-encoders have 
fast approximate inference

� Gibbs sampling in RBMs does not mix well, but sampling and 
learning can interact in surprisingly useful ways

� Unsupervised pre-training of classifiers acts like a strange 
regularizer with improved optimization of online error

� At least as important as the model: the inference 
approximations and the learning dynamics



Some Open Problems

� Why is it difficult to train deep architectures?

� What is important in the learning dynamics?

� How to improve joint training of all layers?� How to improve joint training of all layers?

� How to sample better from RBMs and deep generative models?

� Monitoring unsupervised learning quality in deep nets?

� Other ways to guide training of intermediate representations?

� More complex models to handle spatial structure of images, 
occlusion, temporal structure, etc.



Thank you for your attention!

� Questions?

� Comments?


