
Learning Deep Architectures

Yoshua Bengio, U. Montreal

Microsoft Cambridge, U.K.

July 7th, 2009, Montreal

Thanks to: Aaron Courville, Pascal Vincent, Dumitru Erhan, Olivier Delalleau,
Olivier Breuleux, Yann LeCun, Guillaume Desjardins, Pascal Lamblin,
James Bergstra, Nicolas Le Roux, Max Welling, Myriam Côté,
Jérôme Louradour, Ronan Collobert, Jason Weston

Deep Motivations

� Brains have a deep architecture

� Humans organize their ideas hierarchically, through
composition of simpler ideas

Unsufficiently deep architectures can be exponentially � Unsufficiently deep architectures can be exponentially
inefficient

� Distributed (possibly sparse) representations are necessary to
achieve non-local generalization, exponentially more efficient
than 1-of-N enumeration latent variable values

� Multiple levels of latent variables allow combinatorial sharing of
statistical strength

Architecture Depth

Depth = 3Depth = 4

Deep Architectures are More Expressive

Theoretical arguments:

= universal approximator2 layers of

Logic gates
Formal
neurons

RBF units

…

1 2 3 2n

1 2 3

…

n

RBF units

Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al
2007)

Functions compactly
represented with k layers
may require exponential
size with k-1 layers

Deep Architectures and Sharing
Statistical Strength, Multi-Task Learning

� Generalizing better to new
tasks is crucial to approach
AI

task 1
output y1

task 3
output y3

task 2
output y2

� Deep architectures learn
good intermediate
representations that can be
shared across tasks

� A good representation is one
that makes sense for many
tasks

raw input x

shared
intermediate
representation h

The Deep Breakthrough

� Before 2006, training deep architectures was unsuccessful,
except for convolutional neural nets

� Hinton, Osindero & Teh « A Fast Learning Algorithm for Deep
Belief Nets », Neural Computation, 2006Belief Nets », Neural Computation, 2006

� Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise
Training of Deep Networks », NIPS’2006

� Ranzato, Poultney, Chopra, LeCun « Efficient Learning of
Sparse Representations with an Energy-Based Model »,
NIPS’2006

Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)

Boltzman Machines and MRFs

� Boltzmann machines:

(Hinton 84)

� Markov Random Fields:� Markov Random Fields:

� More interesting with latent variables!

Restricted Boltzman Machine

� The most popular
building block for
deep architectures deep architectures
(Smolensky 86, Hinton 2002)

� Bipartite undirected
graphical model

observed

hidden

Gibbs Sampling in RBMs

h1 ~ P(h|x1) h2 ~ P(h|x2) h3 ~ P(h|x3)

P(h|x) and P(x|h) factorize

x2 ~ P(x|h1) x3 ~ P(x|h2) x1

� Easy inference

� Convenient Gibbs sampling
x�h�x�h…

Problems with Gibbs Sampling

In practice, Gibbs sampling does not always mix well…

RBM trained by CD on MNIST

Chains from random state

Chains from real digits

RBM trained by CD on MNIST

Boltzmann Machine Gradient

� Gradient has two components:

“negative phase”“positive phase”

� In RBMs, easy to sample or sum over h|x
� Difficult part: sampling from P(x), typically with a Markov chain

“negative phase”“positive phase”

Training RBMs

Contrastive Divergence:
(CD-k)

start negative Gibbs chain at
observed x, run k Gibbs steps

Persistent CD:
(PCD)

run negative Gibbs chain in
background while weights slowly
changechange

Fast PCD: two sets of weights, one with a large
learning rate only used for negative
phase, quickly exploring modes

Herding: (see Max Welling’s ICML, UAI and
ICML workshop talks)

Tempered MCMC: use higher temperature to escape
modes

Contrastive Divergence

Contrastive Divergence (CD-k): start negative phase block
Gibbs chain at observed x, run k Gibbs steps (Hinton 2002)

h ~ P(h|x) h’ ~
P(h|x’)

Sampled x’
negative phase

Observed x
positive phase

k = 2 steps

x x’

Free
Energy

push down

push up

Persistent CD (PCD)

Run negative Gibbs chain in background while weights slowly
change (Younes 2000, Tieleman 2008):

• Guarantees (Younes 89, 2000; Yuille 2004)

• If learning rate decreases in 1/t,

chain mixes before parameters change too much,

Observed x
(positive phase)

new x’

h ~ P(h|x)

previous x’

chain mixes before parameters change too much,

chain stays converged when parameters change

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

FreeEnergy
push
down

Persistent CD with Large Step Size

x

x’

push
up

Persistent CD with Large Step Size

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

FreeEnergy
push

x

x’

FreeEnergy
push
down

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

FreeEnergy
push
down

Persistent CD with Large Step Size

x

x’

push
up

Fast Persistent CD and Herding

� Exploit impressively faster mixing achieved when parameters
change quickly (large learning rate) while sampling

� Fast PCD: two sets of weights, one with a large learning rate
only used for negative phase, quickly exploring modes

� Herding (see Max Welling’s ICML, UAI and ICML workshop talks):
0-temperature MRFs and RBMs, only use fast weights

Herding MRFs

� Consider 0-temperature MRF
with state s and weights w

� Fully observed case, observe � Fully observed case, observe
values s+, dynamical system
where s- and W evolve

� Then statistics of samples s-

match the data’s statistics,
even if approximate max, as
long as w remains bounded

Herding RBMs

� Hidden part h of the state s = (x,h)

� Binomial state variables si � {-1,1}

� Statistics f si, si sj� Statistics f si, si sj

� Optimize h given x in the
positive phase

� In practice, greedy maximization works, exploiting RBM structure

Fast Mixing with Herding

FPCD Herding

� Annealing from high-temperature worked well for estimating
log-likelihood (AIS)

� Consider multiple chains at different temperatures and
reversible swaps between adjacent chains

Higher temperature chains can escape modes

Tempered MCMC

� Higher temperature chains can escape modes

� Model samples are from T=1

Sample Generation Procedure

Training Procedure TMCMC Gibbs (ramdom start) Gibbs (test start)

TMCMC 215.4 ± 2.2 88.4 ± 2.7 60.0 ± 2.8

PCD 44.7 ± 2.5 -28.6 ± 3.2 -175.1 ± 2.9

CD -2165 ± 0.5 -2154 ± 0.6 -842.8 ± 6.1

Deep Belief Networks
� Sampling:

• Sample from top RMB

• Sample from level k given k+1

� Easy approximate inference
h2

h3

Top-level RBM

� Training:

• Variational bound justifies greedy
layerwise training of RBMs

• How to train all levels together?
sampled x

h1

Deep Boltzman Machines
(Salakhutdinov et al, AISTATS 2009, Lee et al, ICML 2009)

� Positive phase: variational
approximation (mean-field) h3

� Negative phase: persistent chain

� Can (must) initialize from stacked RBMs

� Improved performance on MNIST from
1.2% to .95% error

� Can apply AIS with 2 hidden layers observed x

h1

h2

Estimating Log-Likelihood

� RBMs: requires estimating partition function

• Reconstruction error provides a cheap proxy

• Log Z tractable analytically for < 25 binary inputs or hidden• Log Z tractable analytically for < 25 binary inputs or hidden

• Lower-bounded (how well?) with
Annealed Importance Sampling (AIS)

� Deep Belief Networks:

Extensions of AIS (Salakhutdinov & Murray, ICML 2008, NIPS 2008)

� Open question: efficient ways to monitor progress?

Back to Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)

Why are Classifiers Obtained from
DBNs Working so Well?

� General principles?� General principles?

� Would these principles work for other single-level algorithms?

� Why does it work?

Stacking Auto-Encoders

Auto-Encoders and CD

RBM log-likelihood gradient written as converging expansion:

• CD-k = 2 k terms

• reconstruction error ~ 1 term

(Bengio & Delalleau 2009)

• reconstruction error ~ 1 term

Greedy Layerwise Supervised Training

Generally worse than unsupervised pre-training but better than
ordinary training of a deep neural network (Bengio et al. 2007).

Supervised Fine-Tuning is Important

� Greedy layer-wise
unsupervised pre-training
phase with RBMs or auto-
encoders on MNISTencoders on MNIST

� Supervised phase with or
without unsupervised
updates, with or without
fine-tuning of hidden
layers

� Can train all RBMs at the
same time, same results

Sparse Auto-Encoders

� Sparsity penalty on the intermediate codes

� Like sparse coding but with efficient run-time encoder

(Ranzato et al, 2007; Ranzato et al 2008)

� Sparsity penalty pushes up the free energy of all configurations
(proxy for minimizing the partition function)

� Impressive results in object classification (convolutional nets):

• MNIST 0.5% error = record-breaking

• Caltech-101 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)

� Similar results obtained with a convolutional DBN (Lee et al, ICML’2009)

Denoising Auto-Encoder

� Corrupt the input

� Reconstruct the uncorrupted input

(Vincent et al, ICML 2008)

� Reconstruct the uncorrupted input

KL(reconstruction | raw input)
Hidden code (representation)

Corrupted input Raw input reconstruction

Denoising Auto-Encoder

� Learns a vector field towards
higher probability regions

� Minimizes variational lower bound
on a generative model

Corrupted input

on a generative model

� Similar to pseudo-likelihood

Corrupted input

Stacked Denoising Auto-Encoders

� No partition function,
can measure training
criterion

Encoder & decoder: � Encoder & decoder:
any parametrization

� Performs as well or
better than stacking
RBMs for usupervised
pre-training

Infinite MNIST

Why is Unsupervised Pre-Training
Working So Well?

� Regularization hypothesis:

• Unsupervised component forces model close to P(x)• Unsupervised component forces model close to P(x)

• Representations good for P(x) are good for P(y|x)

� Optimization hypothesis:

• Unsupervised initialization near better local minimum of P(y|x)

• Can reach lower local minimum otherwise not achievable by
random initialization

Learning Trajectories in Function Space

� Each point a model
in function space

� Color = epoch

� Top: trajectories � Top: trajectories
w/o pre-training

� Each trajectory
converges in
different local min.

� No overlap of
regions with and
w/o pre-training

Unsupervised Learning as Regularizer

� Adding extra regularization
(reducing # hidden units)
hurts more the pre-trained
models

� Pre-trained models have
less variance wrt training
sample

� Regularizer = infinite
penalty outside of region
compatible with
unsupervised pre-training

Better Optimization of Online Error

� Both training and online error
are smaller with unsupervised
pre-training

As # samples �� As # samples �
training err. = online err. =
generalization err.

� Without unsup. pre-training:
can’t exploit capacity to
capture complexity in target
function from training data

Learning Dynamics of Deep Nets

Before fine-tuning After fine-tuning

Learning Dynamics of Deep Nets

� As weights become larger, get
trapped in basin of attraction
(“quadrant” does not change)

� Initial updates have a crucial
influence (“critical period”),
explain more of the variance

� Unsupervised pre-training initializes
in basin of attraction with good
generalization properties

0

Order & Selection of Examples Matters

� Curriculum learning
(Bengio et al, ICML’2009; Krueger & Dayan 2009)

� Start with easier examples

� Faster convergence to a better local
minimum in deep architectures

� Also acts like a regularizer with
optimization effect?

� Influencing learning dynamics can
make a big difference

Level-Local Learning is Important

� Initializing each layer of an unsupervised deep Boltzmann
machine helps a lot

� Initializing each layer of a supervised neural network as an RBM
helps a lothelps a lot

� Helps most the layers further away from the target

� Not just an effect of unsupervised prior

� Jointly training all the levels of a deep architecture is difficult

� Initializing using a level-local learning algorithm (RBM, auto-
encoders, etc.) is a useful trick

Take-Home Messages

� Multiple levels of latent variables: potentially exponential gain
in statistical sharing

� RBMs allow fast inference, stacked RBMs / auto-encoders have
fast approximate inference

� Gibbs sampling in RBMs does not mix well, but sampling and
learning can interact in surprisingly useful ways

� Unsupervised pre-training of classifiers acts like a strange
regularizer with improved optimization of online error

� At least as important as the model: the inference
approximations and the learning dynamics

Some Open Problems

� Why is it difficult to train deep architectures?

� What is important in the learning dynamics?

� How to improve joint training of all layers?� How to improve joint training of all layers?

� How to sample better from RBMs and deep generative models?

� Monitoring unsupervised learning quality in deep nets?

� Other ways to guide training of intermediate representations?

� More complex models to handle spatial structure of images,
occlusion, temporal structure, etc.

Thank you for your attention!

� Questions?

� Comments?

