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Discussion subjects



What neuron models for learning

deep architecturese



What neuron model?

Amount of noise / randomness in individual neuron
behavior?

Linear or higher-order computations in the dendrific tree?

Exponentially or polynomially saturating non-linearity or
Geoff's Poisson rate neurons?

Temporal constancy? multiple fime scales?
Structure and type of feedback connections?
Slow and fast synapses?

Back-prop through fast feedback connections?



Toys

Digits

Quadratic interactions? Sigmoid?
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Why Is unsupervised pre-training

SO successfule




Success of deep neural networks

Records broken on MNIST handwritten character
recognition benchmark (Ranzato et al 2007, 2008)

State-of-the-art beaten in language modeling (Collobert
& Weston 2008)

NSF et DARPA are interested...

Similarities between V1 & V2 neurons and representations
learned with deep nets

Dozens of papers. See my to appearin
Foundations and Trends in Machine Learning.



RBMs and Auto-Encoders

Building blocks of
current learning
algorithms for deep
architectures

Mathematically similar

Feedback connections
for learning

Injection of noise  XOXOO——{OO0O0O0) OOOO0)




Unsupervised layer-wise pre-training
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Two phases?

Pre-training + fine-tfuning

Currently best results generally obtained when doing purely
supervised fine-tuning after unsupervised pre-training

Kind of disappointing
Can we avoid the fine-tuning alltogether?

Can we fold both phases together? (would be very useful for
online learning on huge datasets)
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AISTATS'2009

Effect of unsupervised pre-training
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Regularization or optimization?

Initial results with
supervised deep
architectures trained
with unsupervised pre-
training show
regularization effect:

O fraining error with
or w/o pre-training

Pre-training hurts
with too small nefts

test error

— 1 layers wi/o pretraining

— 77 1 layers w., pretraining
T A

2 layers w/o pretraining
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3 layers w/o pretraining

— "3 layers w. pretraining

layer size



Deep training trajectories:

Zillions of local minima

(Erhan et al. AISTATS 09)
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Pre-training lower layers more critical
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Why Is unsupervised pre-fraining working?

Regularizer or better optimization? both

Learning mostly layer-local with unsupervised learning:
hints fo hidden layers

Deep better than shallow when many factors of variation
(Larochelle et al ICML'2007)

Finds local minima that give better generalization

Moves into improbable region with better basins of
attraction, adds prior on P(input)



What optimization trickse

Humans somehow find a good solution to an intractable
non-convex optimization problem.

How?
the optimization near good solutions

/ giving hints to infermediate layers



Continuation Methods

Final solution

Track local minima

Easy to find
mMinimum



The Credit Assignment Problem

Even with the correct gradient, lower layers (far from the
prediction, close to input) are the most difficult to frain

Lower layers benefit most from unsupervised pre-training
Local unsupervised signal = extract / disentangle factors
Temporal constancy
Mutual information between multiple modalities

Credit assignment / error information not flowing easily?

Related to difficulty of credit assignment through time?



Guiding the Stochastic Opftimization

of Representations

Train lower levels first (DBNs)

Start with more noise / larger learning rate
(babies vs adults)

Slow features / multiple time scales
Cross-modal mutual information
Curriculum / shaping

Parallel search / culture, education & research



Curriculum Learning

Guided learning helps training humans and animails

gt 5
Start from simpler examples / easier tasks (Piaget 1952, Skinner 1958)



ICML'2009

Curriculum Learning

O Sequence of
training distributions

1 - Easiest O Initially peaking on
* Lower level . .
\_ abstractions easier / simpler

2 ones

O Gradually give
more weight to
more difficult ones
until reach target
distribution




«M 3=

og'~.




==
D
V)
O
a4
C
O
C
®)
O
O
O
a4
O
Q
O
C
09

|

[ [ I [ I I
k0 020 ©6L0 8L0 ZI'O 910

0.1 UOIB2I}ISSB|0 Uoliepl[eA 1saq

I
S0

128

64

32

16

switch epoch k



Language Modeling Results

log(rank next word)
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Parallelized exploration in brain space

/\

Each brain explores a
potential solution

Instead of exchanging
synapftic
configurations,
exchange ideas
through language

(Hutchins & Hazelhurst 2005)



Memes (R. Dawkins)

Genetic Algorithms Evolution of ideas
Population of candidate solutions  Brains

Recombination mechanism Culture and language

R. Dawkins' Selfish Gene, 1982



Unsupervised Training Principles

Maximum likelihood

Information preservation + mutual predictibility between
subsets of variables

O Sparsity
O Temporal constancy

Score matching

Matching stafistics (CD-like algorithms, Max Welling's
ICML 2009 paper): most flexible?



Discussion Questions

What neuron models? Is sampling necessarye

Why is unsupervised pre-training helping so much to train
deep neural networkse

Why is credit assignment not well carried by gradient
through many layers?

Are there general principles exploited by brains to deal
with this difficult non-convex optimization?
Optimizing easier proxys (contfinuation
methods)?

Guiding the learning of infermediate
representationse
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