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Issues with Back-—‘?rop

e OQOver very deep nets or recurrent nets with many steps, non-
linearities compose and yield sharp non-linearity = gradients
vanish or explode

* Training deeper nets: harder optimization

* |n the extreme of non-linearity: discrete functions, can’t use
back-prop

e Biological plausibility?



Biological Implausibility of Backprop
vs Targetprop

* Not quite local, and not quite neural backprop operations:
v' ¢ Purely linear operation

v * Needs precise knowledge of derivative of fprop nonlinearity
v« Spikes?
v * Non-local requirement: “weight transport”

* The w; used in fprop network must match the w; used in the bprop
(feedback) network, i.e., symmetric weights —

Auto-encoders?

4 . :
e Where is the target coming from? ———>| gther modalities & rewards

Ye Needs a clock to alternate between fprop and bprop

e BPTT is even worse (storing sequence of all activations and
running gradients backwards in time) —___

Future work...




Previous work: Boltzmann machine

(Hinton et al, Salakhutdinov et al)

* Not yet successful but biologically

reasonable algorithm

* Clampxandy

 Stochastic relaxation

* Measure and add pre x post

* Release y (or both x and y)

 Stochastic relaxation

* Measure and subtract pre x post
e Sleep phase: both x and y released.

e Needs symmetric weights




Issues with Undirected Gra Fhicat
Models & Boltzmann Machines

e Sampling from the MCMC of the model is required in the inner
loop of training

e Asthe model gets sharper, mixing between well-separated
modes stalls

O NN

Training updates

Gicious circla

Mixing
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REINFORCE & Stochastic Perturbation

(Williams 1992, “Simple Statistical Gradient-Following Algorithms
Connectionist Reinforcement Learning”)

(Fiete & Seung 2006, “Gradient learning in spiking neural networks by
dynamic perturbations of conductances”)

e Correlating reward (or log-likelihood) with stochastic
perturbations gives rise to a gradient estimator and a learning
algorithm that can be applied to spiking neural networks

e Very inefficient (even with variance reduction) and does not
scale well with size of the network, whereas backprop does



Debterministic Relaxation

(Xie & Seung 2003, “Equivalence of backpropagation and
contrastive Hebbian learning in a layered network”)

e Contrastive Hebbian learning
* Similar to deep Boltzmann machine but deterministic

* Also needs symmetric weights

e Equivalence to back-prop shown in the case where a fixed point
of the relaxation is reached (for both cases of free Y and
clamped Y) and the feedback weights are weak (to obtain
derivatives by Taylor expansion)

e |sasingle step or a few steps enough?



Te.m'oomi. Derivative = Loss Gradient

and becomes amplified by W]{Z-O/(aj) to yield
temporal change in hj

(Hinton, NIPS DL Workshop 2007 talk,
“How to do backpropagation in a brain”)

Weak feedback weights are symmetric and are used to
propagate gradients
Non-linear activation: h; = o(a;) = o(b; + Z il )

Temporal derivative of spiking rate represents gradient on

potential: Oh; (9_0
ot N Gai

Weak feedback influence goes through ¢

STDP update = delta-rule (pre x d/dt post)




Feedback Alignment

% Error on Test Set

(Lillicrap et al arxiv 2014, “Random feedback weights support

learning in deep networks”)

Feedback weights B (instead of W' in backprop) are fixed

As good as back-prop on not too deep nets: angle(W,B)
decreases during training (but does not reach 0)
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Generalizing gradients to hon-
differentiable credit assignment:
Target Propagation

e Gradient = in which direction each unit should make
infinitesimal change towards reducing loss function

not infinitesimal

e Target = nearby value which would yield a smaller loss

 When target - value is small 2 equivalent to backprop via
Lagrange multipliers (LeCun thesis, 1986, 1987)

e Principle of target propagation can work for discrete values
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Target Pro f
(Bengio 2014, arXiv 1407,7906)

e Instead of propagating the effect of an To deal with highly non-
. pe . . linear or even discrete
infinitesimal change, propagate a target

functions
that would be < >
* Near the original value T l
* Yielding to a lower loss h
* Can be obtained by maintaining hl - | D_ll
each layer as an auto-encoder: flT lgl R
good target hj_ 1 s.t. hl—lC | Dhl—l
filhi—1) = filgi(h1)) = Ry T l
e Preliminary experiments: works with < >

correction for imperfect inverse:

hi—1 = h;j—1 + gz(h ) — g1(hy)
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How to brain an aukto-encoder
without backprop

e To learn a shallow auto-encoder without backprop: could be
potentially applied to discrete units, biologically more plausible

If you observe the output y=f(x) for some x, that gives you a
training example

(input =y, target = x)
for training a function g that tries to invert f

Here we want both the encoder f and the decoder g to invert
each other

y inputforg
f lg

target for g




reconstuction error (cross entropy)

Recirculation & Backprop-free AEs
(Hinkon & McClelland 1955, Leé & Bengio 2014)
h N

Also: (O’Reilly 1996, generalized recirculation)

e Experiments with back-
prop free auto-encoder
training similar to
Recirculation algorithm.

* Minimizes 2-way
reconstruction losses

0.gaoss( g(f(corrupt(x,o;o))). x ) + loss( f(q(corrupt(h,0.0))). h) og|3°SS( g(f(corrupt(x,0.1))), x ) + loss( f(g(corrupt(h,0.1))), h )

— vanilla BFAE — vanilla BFAE

- \ —  back-step BFAE |1 - — back-step BFAE |{
— regular DAE — regular DAE

06l two-way DAE | 06} two-way DAE
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Back-Step BFAE

Lee & Bengio, NIPS 2014 Deep Learning workshop)

* By symmetry, we minimize both encode/decode and decode/
encode reconstruction errors, unlike in ordinary auto-encoders

e To make the learning of encoder more relevant, we consider the
decode/encode step where the input of the encoder is
approximately x, using a local approximation:
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Denoising Auto-Encoders (Minimizing
Reconstruction Error) Learn ko Model
the Input Distribution

e (Alain & Bengio ICLR 2013): reconstruction-input=dlogp(x)/dx
e (Alain & Bengio ICLR 2013; Bengio et al, arxiv 2013)
(Bengio et al NIPS’2013; Bengio et al ICML’2014)
* Encode-Decode iterations without noise = local MAP

* Encode-Decode iterations with noise = MCMC samples from
estimated generative model

* Clamped Encode-Decode iterations fill-in missing values

* GSNs generalize this to arbitrary recurrent net with injected
noise

15



Denoising Auto-Encoders Leari a
Small Move Towards Higher
?T'Qbﬁbu.i&v (Alain & Bengio ICLR 2013)

e Reconstruction L. points in direction of higher probability

a log P(Qj) / gradient
Ox

T — 1 X

e Trained with input/target pair =
(corrupted X' > clean dataXl’)

e DAE - Score matching - :Ii

r L/
\

. »
(Vincent 2011) / A 2
N _ 7/
\ N\

Reconstruction is towards more probable configuration accarding\to AE




ularized Auto-Encoders Learn a

9
Vector Field or a Markov Chain

Transition Diskribution

Ke

(Bengio, Vincent & Courville, TPAMI 2013) review paper

(Alain & Bengio ICLR 2013; Bengio et al, arxiv 2013)
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Grenerative Sktochastic Nebworlks

 Generalizes the denoising auto-encoder training scheme
* Introduce latent variables in the Markov chain (over X,H)

 |nstead of a fixed corruption process, have a deterministic
function with parameters 6, and a noise source Z as input

Hi1 = fo,(X¢, Zy, Hy)
H, > H, > H;
/\/H\/m. Hepr ~ Po, (H|Hy, Xy)
X, X, X, Xt—l-l ™~ P92(X|Ht+1)

e DAE special case of GSN, both generate a Markov chain whose

stationary distribution is a consistent estimator of the data
generating distribution (Bengio et al, NIPS’2013; ICML’2014)
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Ancestral Sampling with Learned

Approximate Inference
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Helmholtz machine & Wake-Sleep algorithm g

e (Dayan, Hinton, Neal, Zemel 1995) $
Variational Auto-Encoders Q ;ﬁ
e (Kingma & Welling 2013, ICLR 2014)  Traine ate

inference
e (Gregor et al ICML 2014)

e (Rezende et al ICML 2014)

e (Mnih & Gregor ICML 2014)

Reweighted Wake-Sleep (Bornschein & Bengio 2014)
Target Propagation (Bengio 2014)

visible

Deep Directed Generative Auto-Encoders (Ozair & Bengio 2014)
NICE (Dinh et al 2014)



Variational Auto-Encoder Training
ObJQC&i\/Q Reconstruction of h is towards

Configuration of h more
probable according to higher
levels

latent

Trained approximate
e Two distributions: | >
e data Q(x) 2 h ~Q(h/x): Q(x,h)

* model P(h) x P(x[h): P(x,h)
Q(h|x)

e Variational bound is equivalent to
the following natural objective:

min KL(Q(z, h)||P(2, 7)) omsened " gonerated

example sample

Can consistently be applied at every layer h of a deep net



ALl the pieces are tractable
KL(Q(x,h)||P(z, h))

Decomposes into
e -H(Q)
e Reconstruction error:
Eq .|~ log P(z|h)]
e Bottom-up / Top-down match: Qlhx)

Eq(h,x)|—log P(h)]
- upper model likelihood

—> lower encoder tries to reduce upper error

observéd generated
tractable if top P(h) is an auto-encoder: example sample
A Olog P(h
P Qlog P(h)

21 oh



Extracting Structure By Gradual
Disentangling and Manifold Unfolding
(Bengio 2014, arXiv 1407,7906) 3

ahy) 1=
Each level transforms the o
data into a representation in T ’ T
which it is easier to model, B
unfolding it more,
contracting the noise ath,h,) Tz lgz P(h,/h,)
dimensions and mapping the
sighal dimensions to a ath,) ’/'\-J P(
factorized (uniform-like) . P(x/h.)
distribution. Q(h;[x) Tl l 1
min K L(Q(z, h)||P(z, h))

Q(x)

for each intermediate level h
22



Disentangling I
wilth Dee.p Nets | Ti 'S

e With sparse auto-encoders, the pressure to make P(h) simple
comes from the sparsity penalty

* However, we would also like lower-level encoders to help the
higher-level encoders achieve a better P(h)

e Minimizing KL(Q(h,x) || P(h,x)) at each level h, achieves that!

e However, with INSUFFICIENT DEPTH, the sparsity (or other
simplicity preference) of P(h) cannot be achieved without
vielding a mismatch between P(h) and Q(h), hence a poor P(x)

23



The Importance of Contraction

Denoising = contractive g
Max. determinant of f* = contractive

g

Contraction = removes unnecessary
directions

The log P(h = f(x)+noise) force on the
encoder f makes f contractive, making
it insensitive to directions of non-
variation in x-space

Making g contractive helps to manage
the mismatch between P(h) and Q(h)

Adding noise at the top-level in Q(h/x)
shows to the decoder which directions
of h need to be contracted out, making
it contractive too

]

D am

v

Q(x)



Purely Local Training Signals

e Each layer tries to be a good | _
denoising auto-encoder while Hf;?::pmmmate
transforming the lower-level
data into a form h easier to
model by higher levels: higher
P(h)

e This basically makes the long-
path reconstructions (going all
the way up) a target h for the
original h, and vice-versa, while
the long-path auto-encoder is
trained with h as data

observed generated
example sample



Target-Prop as an alternative to
BQCR'?‘.OP cost(h;) > cost(h;)

cost(fi(hi—1)) > cost(fi(hi—1) = h;)
e Weights at each layer are

trained to match targets h; hi
associated with the layer @ 2
output

e How to propagate targets?

e If g;is the inverse of f, then
it guarantees an fil 1 gi ~ [;
improvement in the cost. -
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Difference Target-Prop for Inexact

Inverse h; h;
. .

e Make a correction that guarantees to ;’fz hi1)
first order that the projection
estimated target is closer to the
correct target than the original value 9i

) . fi
hi—1=hi—1 — gi(h;) + gi(h;)

e Special case: feedback alignement, if
g,-(h) =Bh ,—"A

2

A A 2 A
hi_fi(hi—l)H < ||h; — h;
if 1 > maz eigen value {(I — fl(him)gi(ha))" (I = fi(hi—1)g}(h:))
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Targetprop can work for discrete
activations

e Work in progress

29

classification error (%)

6

1

L

L

L

train error - 3 hidden discrete
test error - 3 hidden discrete |-
train error - 2 hidden discrete
test error - 2 hidden discrete |4

100

200

300

epoch

400

700



negative log-likelihood

Target-Prop on Deep Nets
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MNIST 784-240-240-240-240-240-240-240-10 tanh net

training cost

— diff target prop without tricks
— diff target prop with tricks
— back-prop

10

Tricks: noise injection, combine
feedforward and feedback values,
train lower layers first

test error

— target prop without tricks |
— target prop with tricks
— back-prop




From Supervised Targets to
Reconstructions from Other Modalikies:
Multi-Modal / Structured Output

e yiscomplex and needs its own
P(y) (modeled by it’s own stack of
auto-encoders) and non-trivial
P(y|x). Model joint of h,(x) and
h,(y) with another stack on top.

e Inference (MAP or MCMC) is
done with the top stack, then
projected back in the x or y space.

e Top levelis a DAE or GSN

predicted x or predicted y



(Conditional) Sampling & MAP

e Two things we want from our models:

* Probabilistic inference:
e Sample some variables given others (or none)

* MAP inference:
e Choose likely values for some variables given others
e Both can be done here:
* Unconditional sampling by ancestral sampling from P
* Conditional sampling by GSN-like MCMC, clamping the given

variables and resampling others:
* |teratively encode/decode with noise injected (top level stack)

* Local ascent for approximate MAP:
 |teratively encode/decode with no noise injected (top level stack)



Ambiquous Multi-Modal Posteriors on
Latent Variables

The simple stack model aims at a
factorized posterior Q(h[x)

However, plausible latent variables must
have a multi-modal posterior

Latent variables can be thought of as
unobserved labels ¢

Stick an AE/GSN on top with the latent
variables ¢ and h as input




Multiple Iterations of Target-Prop

Set h to opt. reconstruction (et al & LeCun 200x) or prediction error (Perpinan & Wang AISTATS 2014)

* Want time-invariant computation/update without f/bprop phases

34

If target = new value of h, target-prop update
Bl =N+ g(h™) = g(hT)

can be interpreted as , , o -

new h' — old b = g(new h'"') — g(old A*T1)

Ah = Ar
Where r = output of reconstruction (feedback path) units
r = g(upper level h)

If we do several iterations, h continues to move towards better

matching the top-level target but may become unrealistic for
realization by feedforward path

Iterations stop when target is reached as well as possible



Reconstructing Both x and y

e Feedback path = target for feedforward path (better predict y)
e Feedforward path = target for feedback path (better predict x)
e Good 2-way auto-encoders give that for free

e |terative targetprop is run both ways

35



Multiple Iterations of Target-Prop >
MAP? or EM braining

e One optionis to force h toremain close to its feedforward value
e More appealing: look for h that is compatible with both x and y

e Achievable by moving h towards better reconstruction of both x
and y

e |f we add a sparsity prior, this corresponds to
argmax, log P(h|x,y)
e And if we inject noise, this corresponds a GSN MCMC towards
h ~ P(h|z,y)
e And we can then do a layer-wise update (delta-rule = STDP)
which corresponds to an EM update of P(x,y,h)

36



Delta-Rule Updal:e.s in Cortex

e (Urbanczik & Senn, Neuron Report 2014, “Learning by the
dendritic prediction of somatic spiking”)

e Dendritic synapses learn by matching the target imposed by
soma-level synapses, as in Delta-Rule

e Spiking rate at soma depends on both, dominated by soma-
synapses

axon
dendritic tree

input x:

adaptive synapse 2 = PETTTTommommsoes

into dendritic tr targe’F y:
overriding synapse
into soma
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How Brains Might Learn Without Backprop

e Two kinds of nodes: feedforward & feedback
e Feedback nodes = targets for feedforward ones and vice-versa

e I|nitially clamp x, fprop, then clamp vy, then settle, delta-rule
update along the way (new x,y can arrive at any time)

e Does not depend on the form of activation function, tied

symmetric weights, differentiability of anything, using rates vs

spikes, etc.
Extends Hinton’s proposal made at the first DL workshop NIPS’2007
based on encoding gradients as temporal derivatives



Conclusion: Beautiful Coincidences

e Same basic mechanism (auto-encoders) basically does it all

e Local training signals provided only by using activity at the
neurons and synapses (like in the Boltzmann machine, but
no need to achieve mixing in inner loop of training)

 Not requiring the differentiability of neuronal activation
and noise helps to achieve to needed contraction (could be
used to train spiking neurons?)

e Same mechanism for supervised, unsupervised, and multi-
modal learning, and structured-output sampling or MAP

e Handling sequences: relation to Jaeger’s Conceptors...



PLUG: Deep Learning, MIT Press book in
preparation, draft chapters online for feedback

usa rean: Meyrel! Questions?
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