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DEQF Represehka&i.oh Learning

Learn multiple levels of representation

of increasing complexity/abstraction i
* theory: exponential gain hym—
X

* brains are deep
e cognition is compositional
e Better mixing (Bengio et al, ICML 2013)

e They work! SOTA on industrial-scale Al tasks
(object recognition, speech recognition,
language modeling, music modeling)



Deea Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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Challenge: Computational Scaling

e Recent breakthroughs in speech, object recognition and NLP
hinged on faster computing, GPUs, and large datasets

e In speech, vision and NLP applications we tend to find that

as llya Sutskever would say

BIGGER IS BETTER

Because deep learning is
EASY TO REGULARIZE while
it is MORE DIFFICULT TO AVOID UNDERFITTING
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Compu&a&ion / Canpau:i&v Ratio

 N-grams, decision trees, etc.: poor generalization but capacity
(and memory) can grow a lot while computation remains
constant or grows as log(capacity).

 Neural nets / deep learning: very good generalization, but
computation grows linearly with capacity (humber of
parameters). Each parameter is used for every example.

* To build much higher-capacity models, we need to break that
linear relationship while keeping the compositional structure
that makes deep learning generalize so well.



Machine Trawnslation Exampte.s

e n-gram based English-French MT: ~ 26 Gbytes (zipped), 80 G
unzipped?
* Moses phrase-based baseline: 33.3 BLEU
* Edinburgh: 37 BLEU (using very large LM dataset)

e SOTA deep-learning based English-French MT:

* Montreal:
e Single model, 285M (unzipped): published 28.5 BLEU, latest 33.2 BLEU

* Google:
e Single large model, 1.7G: 32.7 BLEU
e Ensemble of 8 models, 13.5G: 36.9 BLEU



New Resullts on 'Deep
Machine Trawslation

e Handles long sentences by
introducing an attention
mechanism

e Learns to choose which part of
the input sentence to pay most
attention to when predicting the
next output word, as a function
of the output RNN state and
input bi-RNN state

e Single GPU trained over 2 weeks
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Im prove.me»x&s over Pure AE Model
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Sentence length

e RNNenc: encode whole sentence

e RNNsearch: predict alignment

e BLEU score on full test set (including UNK)

e We now reached SOTA on En-Fr (37 BLEU) and En-Ge (21 BLEU)
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Conditional Computation: only visit a
small fraction o{P parameters ? example

Bengio, Leonard & Courville g p—
arXiv 1305.2982
. N N N
. ] -
° Deep nets vs decision trees - .

e Hard mixtures of experts (Collobert, Bengio & Bengio®®
2002) - .

e Conditional computation for deep nets: sparse
distributed gaters selecting combinatorial
subsets of a deep net

e Challenges:
* Credit assignment for hard decisions
e Gated architectures exploration
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Issues with Back'-‘?rop

e OQOver very deep nets or recurrent nets with many steps, non-
linearities compose and yield sharp non-linearity = gradients
vanish or explode

* Training deeper nets: harder optimization

* |n the extreme of non-linearity: discrete functions, can’t use
back-prop



Issues with Undirected Gra Fkicat
Models & Boltzmann Machines

e Sampling from the MCMC of the model is required in the inner
loop of training

e Asthe model gets sharper, mixing between well-separated
modes stalls

O NN

Training updates

Gicious circla

Mixing
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Recurrent Neural Nebworles

e Selectively summarize an input sequence in a fixed-size state
vector via a recursive update

St = FO(St—laxt)

St+1

unfold Fo ’cf Fo .(T) Fo

Lt41
St — Gt(xta Lt—1yLt—2y 4L, 5131)
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Recurrent Neural Nebtworles

e Can produce an output at each time step: unfolding the graph
tells us how to back-prop through time.

2 Ot—1 Ot Ot +1

W
S ' W St—1 St t+1
W W W
untold
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Crenerative RNNs

e An RNN can represent a fully-connected directed generative
model: every variable predicted from all previous ones.

T
P(x) = P(z1,...27) = H P(xt¢|ri—1,2t—2,...21)
t=1

Li_1 Ly Litq

Lt = — lOg P($t|xt—17$t—2a c. 5(31)




Grenerative Stochastic Nets

Recurrent nets with noise injected and trained to reconstruct
the visible variables (inputs, targets) are called GSNs

ICML 2014 paper: they estimate the joint distribution of the
visible variables via the stationary distribution of the Markov
chain

Can be trained via back-prop, no need to get reliable samples
from the chain as part of training
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Increasing the E:xpressi;ve Power of
RNNs m.&h more Depth

e |CLR 2014, How to construct deep recurrent neural networks

+ deep hid-to-out
+ deep hid-to-hid
+deep in-to-hid

t-1 t t+1
Ordinary RNNs Vi Vi
Y 4
Z1 t
+ stacking — hté he
he §
- t
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+ skip connections for
creating shorter paths



Long-Term “Depev\de.v\caes > F 53

* Invery deep networks such as recurrent networks, the gradient
is a product of Jacobian matrices, each associated with a step in

the forward computation. It can become very small or very large
quickly [Bengio et al 1994], and the locality assumption of
gradient descent breaks down.

L= L(sr(s7—1(...st+1(5¢,--.))))
8_L 0L Osr 0S¢11
Os;  Osp Osp—_1 ~ Osy

e Two kinds of problems:

* sing. values of Jacobians > 1 = gradients explode
 or sing. values < 1 = gradients shrink & vanish

. oor random —> variance grows exponentially



RNN Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)
e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2"? order)
e |nitialization (start in right ballpark avoids exploding/vanishing)

e Sparse Gradients (symmetry breaking)
e Gradient propagation regularizer (avoid vanishing gradient)
e LSTM self-loops (avoid vanishing gradient)
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RNN Tricks

. Delays and multiple time scales, Elhihi & Bengio NIPS 1996

Ot—1 6 Ot+1
? W. W
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Optimization & Underfitting

e On large datasets, major obstacle is underfitting

e Marginal utility of wider tanh MLPs decreases quickly below
memorization baseline

M vLP

[l Baseline
100

(Dauphin & Bengio,
ICLR’2013)

10

Marginal utility (MU)

\\

1000 3000 5000 7000 9000

Nb. of hidden units

e Current limitations: local minima, ill-conditioning or else?

24



Easier Optimization with Rectifiers

e Why? Conjecture: Symmetry-breaking due to sparse gradients

Marginal utility of added hidden units

420 B Tanh
Feedforward nets B Rectifier
on ImageNet 32x32
210
2
S —
g 0
>
T
=
-210
-420
8000 11000 14000 17000 20000

25 Nb. of hidden units



arse Qec&bfier Neural Nebworles

and Bengio AISTATS 2011), foIIowmg up on (Nair & Hinton 2010) softplus RBMs

‘De.eor
Bordés

Glor

Neuroscience motivations Machine learning motivations

Leaky integrate-and-fire model

mm) Sparse representations
mm) Sparse gradients
mm) Trains deep nets even w/o pretraining

Rectifier mite container ship motor scooter leopard
f(X) =ma X(O ,X) mite container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

Output

Outstanding results by Krizhevsky et al 2012
killing the state-of-the-art on ImageNet 1000:

Hidden layer 2
e 2"d best 27% err
i Previous SOTA  45% err 26% err
Krizhevsky etal 37% err 15% err




Effect of Inikial Conditions
in Deep Nets

e (Erhan et al 2009, JMLR)

e Supervised deep net (tanh), with or w/o
unsupervised pre-training =2»very different minima

Neural net trajectories in w/o unsupervised pre-trainin
function space, visualized by e
t-SNE a o

No two training trajectories - o g @S 2 9 [y
end up in the same place 2 :
huge number of effective =~

local minima

with unsupervised pre-training
27



Guided Training, Intermediate
Cos«cep&s

 In(Gulcehre & Bengio ICLR’2013) we set up a task that seems
almost impossible to learn by shallow nets, deep nets, SVMs,

trees, forests, boosting etc

e Breaking the problem in two sub-problems and pre-training
each module separately, then fine-tuning, nails it

e Need prior knowledge to decompose the task

e Guided pre-training allows to find much better solutions, escape

effective local minima
HINT

N T
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Saddle Poinks

YWolfram Global Problem

Local minima dominate in low-D, but‘ &8

saddle points dominate in high-D

Most local minima are close to the
bottom (global minimum error)

MNIST
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Low Index Critical Poinks

Choromanska et al & LeCun 2014, ‘The Loss Surface of Multilayer Nets’
Shows that deep rectifier nets are analogous to spherical spin-glass models

The low-index critical points of large models concentrate in a band just
above the global minimum
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Saddle-Free Optimization

(Pascanu, Daupki.u, Granquli, Bengio 2014)

e Saddle points are ATTRACTIVE for Newton’s method

Replace eigenvalues A of Hessian by |A|
e Justified as a particular trust region method
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It is possible. to escape saddle po'm!:s!

e NIPS’2014, Identifying and attacking the saddle point problem
in high-dimensional non-convex optimization, Dauphin,
Pascanu, Gulcehre, Cho, Ganguli, Bengio.

e More work is ongoing to make it online

e Challenge: track the most negative eigenvector, which is easy in
batch mode with power method, if we also track most positive,

e.g.
v+ (H—M)v

— Gradient Descent
— Saddle-Free Gradient Descent ||

e The paper used a Krylov
subspace method.
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Saddle Points During Training

e QOscillating between two behaviors:

33

Training error (MSE)

Slowly approaching a saddle point

Escaping it
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Issue: underfitting due to combinatorially many poor
effective local minima, most likely to be flat saddle points

e

where the optimizer gets stuck

Culture vs Effective Local
Minima

Bengio 2013 (also arXiv 2012)



Parallelized explora&i.ov\ AT
brain space

 Each brain
explores a
potential solution

e Instead of
exchanging
synaptic
configurations,

Brain space exchange ideas

through language

Social success




Memes

Genetic Algorithms Evolution of ideas
Population of individuals Population of brains
Recombination mechanism Culture and language

Unit = Gene Unit = Meme = idea




vaa&ke.si.s 1

e When the brain of a single biological agent learns, it performs an
approximate optimization with respect to some endogenous
objective.

ijakke.sis 2

e When the brain of a single biological agent learns, it relies on
approximate local descent in order to gradually improve itself.
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Theoretical and experimental results on deep learning suggest:

ijoékesis 3

 Higher-level abstractions in brains are represented by deeper
computations (going through more areas or more
computational steps in sequence over the same areas).

limited by effective local minima.

38 Possibly due to ill-conditioning and flat saddle points but behaves like local min



ijo!:hesis ]

* Asingle human learner is unlikely to discover high-level
abstractions by chance because these are represented by a deep
sub-network in the brain.

@ o)

\e° K\
0\‘)«\& ’a\\(’

<
Q\)“ GO ©

Nl
e A human brain can learn high-level abstractions if guided by the
signals produced by other humans, which act as hints or indirect

supervision for these high-level abstractions.

vaalzke.si.s &

Supporting evidence: (Gulcehre & Bengio ICLR 2013)
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How is one brain

transfer of information happens

transferring
abstractions to
another brain?

Linguistic Linguistic
representation representation

o ofmuoo_ o

Linguistic exchange
= tiny / noisy channel

Shared input X
40



How do we escape Llocal minima?

e |inguistic inputs = extra examples, summarize
knowledge

e criterion landscape easier to optimize (e.g.
curriculum learning)

e turn difficult unsupervised learning into easy
supervised learning of intermediate abstractions

41



How could Langquage/education/
culture possibly help find the
better Local minima associated
with more useful abstractions?

More than random search:
potential exponential speed-
up by divide-and-conquer
combinatorial advantage:
can combine solutions to

HvFQ&kQSEvS 7 independently solved sub-

problems

e Language and meme recombination provide an efficient
evolutionary operator, allowing rapid search in the space of
memes, that helps humans build up better high-level internal
representations of their world.
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From where do new ideas emerqge?

e Seconds: inference (novel explanations for current x)
e Minutes, hours: learning (local descent, like current DL)

e Years, centuries: cultural evolution (global optimization,
recombination of ideas from other humans)
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Cownclusions

e Deep learning involves a powerful prior but optimization can be
difficult because we are trying to learn a highly non-linear
function that has compositional structure.

* Very long-term dependencies remain a challenge for RNNs but
much progress has been made, yielding SOTA in MT

e The myth that local minima are an issue for big deep nets is
blown away by recent evidence, both theoretical and
experimental

e Dealing with flat saddle points opens new avenues for research
on optimization for deep learning.
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