Optimization Challenges for Deep Learning

Yoshua Bengio

U. Montreal

December 12th, 2014

OPT'2014: NIPS Workshop on Optimization for Machine Learning

Deep Representation Learning

Learn multiple levels of representation of increasing complexity/abstraction

- theory: exponential gain
- brains are deep
- cognition is compositional
- Better mixing (Bengio et al, ICML 2013)
- They work! SOTA on industrial-scale AI tasks (object recognition, speech recognition, language modeling, music modeling)

Deep Learning Challenges (Bengio, arxiv 1305.0445 Deep learning of representations: Looking forward)

- Computational Scaling
- Optimization & Underfitting
- Intractable Marginalization, Approximate Inference & Sampling
- Disentangling Factors of Variation
- Reasoning & One-Shot Learning of Facts

Deep Learning Challenges (Bengio, arxiv 1305.0445 Deep learning of representations: Looking forward)

- Computational Scaling
- Optimization & Underfitting
- Intractable Marginalization, Approximate Inference & Sampling
- Disentangling Factors of Variation
- Reasoning & One-Shot Learning of Facts

Challenge: Computational Scaling

- Recent breakthroughs in speech, object recognition and NLP hinged on faster computing, GPUs, and large datasets
- In speech, vision and NLP applications we tend to find that

as **Ilya Sutskever** would say

BIGGER IS BETTER

Because deep learning is

EASY TO REGULARIZE while

it is MORE DIFFICULT TO AVOID UNDERFITTING

We still have a long way to go in raw computational power

Computation / Capacity Ratio

- N-grams, decision trees, etc.: poor generalization but capacity (and memory) can grow a lot while computation remains constant or grows as log(capacity).
- Neural nets / deep learning: very good generalization, but computation grows linearly with capacity (number of parameters). Each parameter is used for every example.
- To build much higher-capacity models, we need to break that linear relationship while keeping the compositional structure that makes deep learning generalize so well.

Machine Translation Examples

- n-gram based English-French MT: ~ 26 Gbytes (zipped), 80 G unzipped?
 - Moses phrase-based baseline: 33.3 BLEU
 - Edinburgh: 37 BLEU (using very large LM dataset)
- SOTA deep-learning based English-French MT:
 - Montreal:
 - Single model, 285M (unzipped): published 28.5 BLEU, latest 33.2 BLEU
 - Google:
 - Single large model, 1.7G: 32.7 BLEU
 - Ensemble of 8 models, 13.5G: 36.9 BLEU

New Results on Deep Machine Translation

- Handles long sentences by introducing an attention mechanism
- Learns to choose which part of the input sentence to pay most attention to when predicting the next output word, as a function of the output RNN state and input bi-RNN state

Single GPU trained over 2 weeks

signed

agreement

Predicted Alignments

10

(c)

(d)

Improvements over Pure AE Model

- RNNenc: encode whole sentence
- RNNsearch: predict alignment
- BLEU score on full test set (including UNK)
- We now reached SOTA on En-Fr (37 BLEU) and En-Ge (21 BLEU)

Conditional Computation: only visit a small fraction of parameters / example

Bengio, Leonard & Courville arXiv 1305.2982

- Deep nets vs decision trees
- Hard mixtures of experts (Collobert, Bengio & Bengio 2002)
- Conditional computation for deep nets: sparse distributed gaters selecting combinatorial subsets of a deep net
- Challenges:
 - Credit assignment for hard decisions
 - Gated architectures exploration

Deep Learning Challenges (Bengio, arxiv 1305.0445 Deep learning of representations: Looking forward)

- Computational Scaling
- Optimization & Underfitting
- Intractable Marginalization, Approximate Inference & Sampling
- Disentangling Factors of Variation
- Reasoning & One-Shot Learning of Facts

Issues with Back-Prop

- Over very deep nets or recurrent nets with many steps, nonlinearities compose and yield sharp non-linearity → gradients vanish or explode
- Training deeper nets: harder optimization
- In the extreme of non-linearity: discrete functions, can't use back-prop

Issues with Undirected Graphical Models & Boltzmann Machines

- Sampling from the MCMC of the model is required in the inner loop of training
- As the model gets sharper, mixing between well-separated modes stalls

Recurrent Neural Networks

 Selectively summarize an input sequence in a fixed-size state vector via a recursive update

$$s_t = F_{\theta}(s_{t-1}, x_t)$$

$$s_t = G_t(x_t, x_{t-1}, x_{t-2}, \dots, x_2, x_1)$$

Recurrent Neural Networks

 Can produce an output at each time step: unfolding the graph tells us how to back-prop through time.

Generative RNNs

 An RNN can represent a fully-connected directed generative model: every variable predicted from all previous ones.

Generative Stochastic Nets

- Recurrent nets with noise injected and trained to reconstruct the visible variables (inputs, targets) are called GSNs
- ICML 2014 paper: they estimate the joint distribution of the visible variables via the stationary distribution of the Markov chain
- Can be trained via back-prop, no need to get reliable samples from the chain as part of training

Increasing the Expressive Power of RNNs with more Depth

• ICLR 2014, How to construct deep recurrent neural networks

Long-Term Dependencies

• In very deep networks such as **recurrent networks**, the gradient is a product of Jacobian matrices, each associated with a step in the forward computation. It can become very small or very large quickly [Bengio et al 1994], and the locality assumption of gradient descent breaks down.

$$L = L(s_T(s_{T-1}(\dots s_{t+1}(s_t, \dots))))$$

$$\frac{\partial L}{\partial s_t} = \frac{\partial L}{\partial s_T} \frac{\partial s_T}{\partial s_{T-1}} \dots \frac{\partial s_{t+1}}{\partial s_t}$$

- Two kinds of problems:
 - sing. values of Jacobians $> 1 \rightarrow gradients explode$
 - or sing. values < 1 → gradients shrink & vanish
 - or random → variance grows exponentially

RNN Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

- Clipping gradients (avoid exploding gradients)
- Leaky integration (propagate long-term dependencies)
- Momentum (cheap 2nd order)
- Initialization (start in right ballpark avoids exploding/vanishing)
- Sparse Gradients (symmetry breaking)
- Gradient propagation regularizer (avoid vanishing gradient)

LSTM self-loops (avoid vanishing gradient)

RNN Tricks

Delays and multiple time scales, Elhihi & Bengio NIPS 1996

Optimization & Underfitting

- On large datasets, major obstacle is underfitting
- Marginal utility of wider tanh MLPs decreases quickly below memorization baseline

Current limitations: local minima, ill-conditioning or else?

Easier Optimization with Rectifiers

Why? Conjecture: Symmetry-breaking due to sparse gradients

Marginal utility of added hidden units

Deep Sparse Rectifier Neural Networks

(Glorot, Bordes and Bengio AISTATS 2011), following up on (Nair & Hinton 2010) softplus RBMs

Neuroscience motivations

Leaky integrate-and-fire model

Rectifier f(x)=max(0,x)

Machine learning motivations

- Sparse representations
- Sparse gradients
 - Trains deep nets even w/o pretraining

Outstanding results by Krizhevsky et al 2012 killing the state-of-the-art on ImageNet 1000:

	1 st choice	Top-5
2 nd best		27% err
Previous SOTA	45% err	26% err
Krizhevsky et al	37% err	15% err

Effect of Initial Conditions in Deep Nets

- (Erhan et al 2009, JMLR)
- Supervised deep net (tanh), with or w/o unsupervised pre-training → very different minima

Neural net trajectories in function space, visualized by t-SNE

No two training trajectories end up in the same place → huge number of effective local minima

Guided Training, Intermediate Concepts

- In (Gulcehre & Bengio ICLR'2013) we set up a task that seems almost impossible to learn by shallow nets, deep nets, SVMs, trees, forests, boosting etc
- Breaking the problem in two sub-problems and pre-training each module separately, then fine-tuning, nails it
- Need prior knowledge to decompose the task
- Guided pre-training allows to find much better solutions, escape effective local minima

Saddle Points

- Local minima dominate in low-D, but saddle points dominate in high-D
- Most local minima are close to the bottom (global minimum error)

MNIST

Low Index Critical Points

Choromanska et al & LeCun 2014, 'The Loss Surface of Multilayer Nets'

Shows that deep rectifier nets are analogous to spherical spin-glass models. The low-index critical points of large models concentrate in a band just above the global minimum

Saddle-Free Optimization (Pascanu, Dauphin, Ganguli, Bengio 2014)

- Saddle points are ATTRACTIVE for Newton's method
- Replace eigenvalues λ of Hessian by |λ|
- Justified as a particular trust region method

It is possible to escape saddle points!

- NIPS'2014, Identifying and attacking the saddle point problem in high-dimensional non-convex optimization, Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio.
- More work is ongoing to make it online
- Challenge: track the most negative eigenvector, which is easy in batch mode with power method, if we also track most positive, e.g.

$$v \leftarrow (H - \lambda I)v$$

 The paper used a Krylov subspace method.

Saddle Points During Training

- Oscillating between two behaviors:
 - Slowly approaching a saddle point
 - Escaping it

33

Issue: underfitting due to combinatorially many poor effective local minima, most likely to be flat saddle points

where the optimizer gets stuck

Culture vs Effective Local Minima

Bengio 2013 (also arXiv 2012)

Parallelized exploration in brain space

Each brain explores a potential solution

Instead of exchanging synaptic configurations, exchange ideas through language

Memes

Genetic Algorithms

Population of individuals

Recombination mechanism

Unit = Gene

Evolution of ideas

Population of brains

Culture and language

Unit = Meme = idea

Hypothesis 1

 When the brain of a single biological agent learns, it performs an approximate optimization with respect to some endogenous objective.

Hypothesis 2

 When the brain of a single biological agent learns, it relies on approximate local descent in order to gradually improve itself. Theoretical and experimental results on deep learning suggest:

Hypothesis 3

 Higher-level abstractions in brains are represented by deeper computations (going through more areas or more computational steps in sequence over the same areas).

Hypothesis 4

 Learning of a single human learner is limited by effective local minima.

Hypothesis 5

 A single human learner is unlikely to discover high-level abstractions by chance because these are represented by a deep sub-network in the brain.

Hypothesis 6

Curriculum learning 20091

 A human brain can learn high-level abstractions if guided by the signals produced by other humans, which act as hints or indirect supervision for these high-level abstractions.

How is one brain transferring abstractions to another brain?

Shared input X

How do we escape Local minima?

- linguistic inputs = extra examples, summarize knowledge
- criterion landscape easier to optimize (e.g. curriculum learning)
- turn difficult unsupervised learning into easy supervised learning of intermediate abstractions

How could language/education/ culture possibly help find the better local minima associated with more useful abstractions?

Hypothesis 7

More than random search: potential exponential speed-up by divide-and-conquer combinatorial advantage: can combine solutions to independently solved sub-problems

 Language and meme recombination provide an efficient evolutionary operator, allowing rapid search in the space of memes, that helps humans build up better high-level internal representations of their world.

From where do new ideas emerge?

• Seconds: inference (novel explanations for current x)

Minutes, hours: learning (local descent, like current DL)

 Years, centuries: cultural evolution (global optimization, recombination of ideas from other humans)

Conclusions

- Deep learning involves a powerful prior but optimization can be difficult because we are trying to learn a highly non-linear function that has compositional structure.
- Very long-term dependencies remain a challenge for RNNs but much progress has been made, yielding SOTA in MT
- The myth that local minima are an issue for big deep nets is blown away by recent evidence, both theoretical and experimental
- Dealing with flat saddle points opens new avenues for research on optimization for deep learning.

MILA: Montreal Institute for Learning Algorithms

