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Technical Goals Hierarchy 

To	  reach	  AI:	  
•  Needs	  knowledge	  
•  Needs	  learning	   	   	   	   	   	  	  	  	  	  	  	  	  	  	  	  	  

(involves	  priors	  +	  op#miza#on/search	  +	  efficient	  computa#on)	  

•  Needs	  generaliza0on	   	   	   	   	  	  	  	  	  	  	  	  	  	  	  
(guessing	  where	  probability	  mass	  concentrates)	  

•  Needs	  ways	  to	  fight	  the	  curse	  of	  dimensionality	  
(exponenAally	  many	  configuraAons	  of	  the	  variables	  to	  consider)	  

•  Needs	  disentangling	  the	  underlying	  explanatory	  factors	  
(making	  sense	  of	  the	  data)	  
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•  Clustering,	  Nearest-‐
Neighbors,	  RBF	  SVMs,	  local	  
non-‐parametric	  density	  
esAmaAon	  &	  predicAon,	  
decision	  trees,	  etc.	  

•  Parameters	  for	  each	  
disAnguishable	  region	  

•  #	  of	  dis0nguishable	  regions	  
is	  linear	  in	  #	  of	  parameters	  

Non-distributed representations 

Clustering	  
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à	  No	  non-‐trivial	  generalizaAon	  to	  regions	  without	  examples	  



•  Factor	  models,	  PCA,	  RBMs,	  
Neural	  Nets,	  Sparse	  Coding,	  
Deep	  Learning,	  etc.	  

•  Each	  parameter	  influences	  
many	  regions,	  not	  just	  local	  
neighbors	  

•  #	  of	  dis0nguishable	  regions	  
grows	  almost	  exponen0ally	  
with	  #	  of	  parameters	  

•  GENERALIZE	  NON-‐LOCALLY	  
TO	  NEVER-‐SEEN	  REGIONS	  

The need for distributed 
representations 

MulA-‐	  
Clustering	  
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C1	   C2	   C3	  

input	  

Non-‐mutually	  
exclusive	  features/
a\ributes	  create	  a	  
combinatorially	  large	  
set	  of	  disAnguiable	  
configuraAons	  



Learning multiple levels of 
representation 
There	  is	  theoreAcal	  and	  empirical	  evidence	  in	  favor	  of	  
mulAple	  levels	  of	  representaAon	  

	  Exponen0al	  gain	  for	  some	  families	  of	  func0ons	  

Biologically	  inspired	  learning	  

Brain	  has	  a	  deep	  architecture	  

Cortex	  seems	  to	  have	  a	  	  
generic	  learning	  algorithm	  	  

Humans	  first	  learn	  simpler	  	  
concepts	  and	  compose	  them	  

It	  works!	  Speech	  +	  vision	  breakthroughs	  
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Visualizing and Understanding Convolutional Networks

(a) (b)

(c) (d) (e)

Figure 6. (a): 1st layer features without feature scale clipping. Note that one feature dominates. (b): 1st layer features
from (Krizhevsky et al., 2012). (c): Our 1st layer features. The smaller stride (2 vs 4) and filter size (7x7 vs 11x11)
results in more distinctive features and fewer “dead” features. (d): Visualizations of 2nd layer features from (Krizhevsky
et al., 2012). (e): Visualizations of our 2nd layer features. These are cleaner, with no aliasing artifacts that are visible in
(d).
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Figure 7. Three test examples where we systematically cover up di↵erent portions of the scene with a gray square (1st
column) and see how the top (layer 5) feature maps ((b) & (c)) and classifier output ((d) & (e)) changes. (b): for each
position of the gray scale, we record the total activation in one layer 5 feature map (the one with the strongest response
in the unoccluded image). (c): a visualization of this feature map projected down into the input image (black square),
along with visualizations of this map from other images. The first row example shows the strongest feature to be the
dog’s face. When this is covered-up the activity in the feature map decreases (blue area in (b)). (d): a map of correct
class probability, as a function of the position of the gray square. E.g. when the dog’s face is obscured, the probability
for “pomeranian” drops significantly. (e): the most probable label as a function of occluder position. E.g. in the 1st row,
for most locations it is “pomeranian”, but if the dog’s face is obscured but not the ball, then it predicts “tennis ball”. In
the 2nd example, text on the car is the strongest feature in layer 5, but the classifier is most sensitive to the wheel. The
3rd example contains multiple objects. The strongest feature in layer 5 picks out the faces, but the classifier is sensitive
to the dog (blue region in (d)), since it uses multiple feature maps.
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Visualizing and Understanding Convolutional Networks

Figure 2. Visualization of features in a fully trained model. For layers 2-5 we show the top 9 activations in a random subset
of feature maps across the validation data, projected down to pixel space using our deconvolutional network approach.
Our reconstructions are not samples from the model: they are reconstructed patterns from the validation set that cause
high activations in a given feature map. For each feature map we also show the corresponding image patches. Note:
(i) the the strong grouping within each feature map, (ii) greater invariance at higher layers and (iii) exaggeration of
discriminative parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in electronic form.
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Composing Features on Features 
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Higher-‐level	  features	  

are	  defined	  in	  terms	  of	  

lower-‐level	  

features	  



Why Unsupervised Representation 
Learning? Because of Causality. 

•  If	  Ys	  of	  interest	  are	  among	  the	  causal	  factors	  of	  X,	  then	  

is	  Aed	  to	  P(X)	  and	  P(X|Y),	  and	  P(X)	  is	  defined	  in	  terms	  of	  P(X|Y),	  i.e.	  
•  The	  best	  possible	  model	  of	  X	  (unsupervised	  learning)	  MUST	  

involve	  Y	  as	  a	  latent	  factor,	  implicitly	  or	  explicitly.	  
•  RepresentaAon	  learning	  SEEKS	  the	  latent	  variables	  H	  that	  

explain	  the	  variaAons	  of	  X,	  making	  it	  likely	  to	  also	  uncover	  Y.	  
•  We	  need	  3	  pieces:	  	  

•  latent	  variable	  model	  P(H),	  	  
•  generaAve	  decoder	  P(X|H),	  and	  	  
•  approximate	  inference	  encoder	  Q(H|X).	  
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P (Y |X) =
P (X|Y )P (Y )

P (X)



Real Data Are on Highly Curved 
Manifolds 
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How do humans generalize 
from very few examples? 

9	  

•  They	  transfer	  knowledge	  from	  previous	  learning:	  
•  RepresentaAons	  

•  Explanatory	  factors	  

•  Previous	  learning	  from:	  unlabeled	  data	  	  

	   	   	  	  	  	  	   	  +	  labels	  for	  other	  tasks	  

•  Prior:	  shared	  underlying	  explanatory	  factors,	  in	  
par0cular	  between	  P(x)	  and	  P(Y|x)	  	  

	  



Raw	  data	  
1	  layer	   2	  layers	  

4	  layers	  
3	  layers	  

ICML’2011	  
workshop	  on	  
Unsup.	  &	  
Transfer	  Learning	  

NIPS’2011	  
Transfer	  
Learning	  
Challenge	  	  
Paper:	  
ICML’2012	  

Unsupervised and Transfer Learning 
Challenge + Transfer Learning 
Challenge: Deep Learning 1st Place 



Multi-Task Learning: Sharing 
Statistical Strength Across Tasks 
•  Generalizing	  be\er	  to	  new	  tasks	  

(tens	  of	  thousands!)	  is	  crucial	  to	  
approach	  AI	  

•  Deep	  architectures	  learn	  good	  
intermediate	  representaAons	  that	  
can	  be	  shared	  across	  tasks	  

	  	  	  	  	  (Collobert	  &	  Weston	  ICML	  2008,	  
	  	  	  	  	  Bengio	  et	  al	  AISTATS	  2011)	  

•  Good	  representaAons	  that	  
disentangle	  underlying	  factors	  of	  
variaAon	  make	  sense	  for	  many	  tasks	  
because	  each	  task	  concerns	  a	  
subset	  of	  the	  factors	  
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raw input x 

task 1  
output y1 

task 3  
output y3 

task 2 
output y2 

Task	  A	   Task	  B	   Task	  C	  

Prior:	  shared	  underlying	  explanatory	  factors	  between	  tasks	  	  
	  

E.g.	  dicAonary,	  with	  intermediate	  
concepts	  re-‐used	  across	  many	  definiAons	  



general	  

specific	  

Layer	  number	  

??	   ??	  

??	  
Lion	  

Main	  idea:	  
QuanAfy	  the	  general	  to	  specific	  

transiAon	  

by	  using	  transfer	  learning.	  

Depends	  on	  tasks	  A	  and	  B.	  

Very	  useful	  to	  know!	  

Yosinski et al NIPS’2014 
How	  transferable	  are	  features	  in	  deep	  
neural	  networks?	  



A	  Images	  

B	  Images	  

baseA	  

baseB	  



A	  Images	   A	  Labels	  



B	  Images	   B	  Labels	  



transfer	  
AnB	  

B	  Images	   B	  Labels	  
baseB	  

Compare	  to	  







Fragile	  
co-‐adaptaAon	  

Performance	  drops	  due	  to...	  

RepresentaAon	  
specificity	  











Transfer	  +	  fine-‐tuning	  improves	  generalizaAon	  



•  Measure	  general	  to	  specific	  transiAon	  layer	  by	  layer	  

•  Transferability	  governed	  by:	  

•  lost	  co-‐adaptaAons	  

•  specificity	  
•  difference	  between	  base	  and	  target	  dataset	  

•  Fine-‐tuning	  helps	  even	  on	  large	  target	  dataset	  

Conclusions	  

co-‐adaptaAon	  

specificity	  

fine-‐tuning	  helps	  



Better Representations  
! Better Transfer  
! Better Domain Adaptation 

•  What	  is	  a	  good	  representaAon?	  
	  
•  Separate	  the	  «	  noise	  »	  from	  the	  «	  signal	  »	  
•  Disentangle	  the	  underlying	  causal	  factors	  from	  each	  other	  
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Invariance and Disentangling 

•  Invariant	  features	  

•  Which	  invariances?	  

•  AlternaAve:	  learning	  to	  disentangle	  factors	  

•  Good	  disentangling	  à	  	  
	  avoid	  the	  curse	  of	  dimensionality	  
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Hints to Help Disentangling 

•  (Rifai	  et	  al,	  ECCV	  2012,	  Disentangling	  factors	  
of	  varia;on	  for	  facial	  expression	  recogni;on)	  

•  (Kingma	  &	  Welling,	  NIPS	  2014,	  Semi-‐
Supervised	  Learning	  with	  Deep	  Genera;ve	  
Models)	  

•  Some	  hidden	  units	  predict	  some	  of	  
the	  factors,	  others	  are	  free	  to	  be	  used	  
to	  reconstruct	  the	  input.	  Different	  
groups	  of	  hidden	  units	  assigned	  to	  
different	  factors.	  Orthogonality	  or	  
penalty	  or	  independence	  prior	  
between	  hidden	  units	  of	  different	  
groups	  

28	  
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Broad Priors as Hints to Disentangle 
the Factors of Variation 

•  Mul;ple	  factors:	  distributed	  representaAons	  
•  MulAple	  levels	  of	  abstracAon:	  depth	  
•  Semi-‐supervised	  learning:	  Y	  is	  one	  of	  the	  factors	  explaining	  X	  
•  Mul;-‐task	  learning:	  different	  tasks	  share	  some	  factors	  
•  Manifold	  hypothesis:	  probability	  mass	  concentraAon	  
•  Natural	  clustering:	  class	  =	  manifold,	  well-‐separated	  manifolds	  
•  Temporal	  and	  spaAal	  coherence	  
•  Sparsity:	  most	  factors	  irrelevant	  for	  parAcular	  X	  
•  Simplicity	  of	  factor	  dependencies	  (in	  the	  right	  representaAon)	  
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Emergence of Disentangling 
•  (Goodfellow	  et	  al.	  2009):	  sparse	  auto-‐encoders	  trained	  

on	  images	  	  
•  some	  higher-‐level	  features	  more	  invariant	  to	  
geometric	  factors	  of	  variaAon	  	  

•  (Glorot	  et	  al.	  2011):	  sparse	  recAfied	  denoising	  auto-‐
encoders	  trained	  on	  bags	  of	  words	  for	  senAment	  
analysis	  
•  different	  features	  specialize	  on	  different	  aspects	  
(domain,	  senAment)	  

30	  

WHY?	  



Space-Filling in Representation-Space 
•  Deeper	  representa0ons	  "	  abstrac0ons	  "	  disentangling	  
•  Manifolds	  are	  expanded	  and	  fla[ened	  

Linear	  interpolaAon	  at	  layer	  2	  

Linear	  interpolaAon	  at	  layer	  1	  

3’s	  manifold	  

9’s	  manifold	  

Linear	  interpolaAon	  in	  pixel	  space	  

Pixel	  space	  

9’s	  manifold	   3’s	  manifold	  

RepresentaAon	  space	  

9’s	  manifold	   3’s	  manifold	  
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Extracting Structure By Gradual 
Disentangling and Manifold Unfolding 
(Bengio 2014, arXiv 1407.7906)  
Each	  level	  transforms	  the	  
data	  into	  a	  representaAon	  in	  
which	  it	  is	  easier	  to	  model,	  
unfolding	  it	  more,	  
contracAng	  the	  noise	  
dimensions	  and	  mapping	  the	  
signal	  dimensions	  to	  a	  
factorized	  (uniform-‐like)	  
distribuAon.	  
	  
	  
for	  each	  intermediate	  level	  h	  
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Variational Auto-Encoder: 
Random Sampling at Top Level 

•  Models	  trained	  with	  the	  KL(Q||P)	  or	  VAE	  training	  objecAve	  
•  Randomly	  sample	  from	  2-‐D	  top-‐level	  h	  (Gaussian),	  project	  down:	  
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(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
p✓(x|z) with the learned parameters ✓.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p✓(z) = N (0, I) and the
posterior approximation q�(z|x(i)
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(from	  Kingma	  &	  Welling	  ICLR	  2014)	  



Deep Directed Generative AEs 

•  log	  P(x)	  >=	  log	  P(x|h=f(x))	  +	  log	  P(h=f(x))	  	  	  	  	  	  
=	  bound	  that	  is	  maximized	  and	  becomes	  Aght	  as	  training	  
progresses	  

•  Stacking	  such	  auto-‐encoders	  yields	  representaAons	  that	  
become	  sparser	  and	  with	  less	  correlaAon	  between	  features	  
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(Ozair	  &	  Bengio	  2014,	  arXiv	  1410.0630)	  	  



Conclusion: Learning Multiple Levels 
of Abstraction 

•  The	  big	  payoff	  of	  deep	  learning	  is	  to	  allow	  learning	  
higher	  levels	  of	  abstracAon	  

•  Higher-‐level	  abstracAons	  disentangle	  the	  factors	  of	  
variaAon,	  which	  allows	  much	  easier	  generalizaAon	  and	  
transfer	  
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