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Technical Goals Hiemrckv

To reach Al:

* Needs knowledge
* Needs learning

* Needs generalization

e Needs ways to fight the curse of dimensionality

 Needs disentangling the underlying explanatory factors



Now-distributed representations

e (lustering, Nearest-
Neighbors, RBF SVMs, local
non-parametric density
estimation & prediction,
decision trees, etc.

Clustering

e Parameters for each
distinguishable region

LOCAL PARTITION

e # of distinguishable regions
is linear in # of parameters

- No non-trivial generalization to regions without examples



The need for distributed

represe.vx&a!:iov\s

e Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

e Each parameter influences
many regions, not just local
neighbors

e # of distinguishable regions

grows almost exponentially
with # of parameters

* GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS
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Learning multiple Levels of
representaktion

There is theoretical and empirical evidence in favor of
multiple levels of representation

Exponential gain for some families of functions

Biologically inspired learning
Brain has a deep architecture

Cortex seems to have a
generic learning algorithm

Humans first learn simpler
concepts and compose them

It works! Speech + vision breakthroughs N
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Composing Features on Features

Higher-level features

Output
(object identity)

are defined in terms of

3rd hidden layer
(object parts)

lower-level

2nd hidden layer
(corners and
contours)

features

1st hidden layer
(edges)

Visible layer
(input pixels)



th Dnsupervised Representation
Learning? Because o Causatikj.

e |fYs of interest are among the causal factors of X, then
P(X|Y)P(Y
pvix) - PP
P(X)
is tied to P(X) and P(X|Y), and P(X) is defined in terms of P(X]|Y), i.e.

e The best possible model of X (unsupervised learning) MUST
involve Y as a latent factor, implicitly or explicitly.

e Representation learning SEEKS the latent variables H that
explain the variations of X, making it likely to also uncover Y.

e We need 3 pieces:
 |latent variable model P(H),
e generative decoder P(X|H), and
e approximate inference encoder Q(H | X).



Real Data Are o Highly Curved
Manifolds
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How do humans generalize
from very few examples?

* They transfer knowledge from previous learning:
* Representations

*  Explanatory factors

* Previous learning from: unlabeled data
+ labels for other tasks

* Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)



Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on
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Multi-Task Learning: Sharing
Statistical Stremgth Across Tasks

e Generalizing better to new tasks
(tens of thousands!) is crucial to
approach Al

e Deep architectures learn good
intermediate representations that
can be shared across tasks

(Collobert & Weston ICML 2008,
Bengio et al AISTATS 2011)

e Good representations that
disentangle underlying factors of
variation make sense for many tasks  E.g. dictionary, with intermediate
because each task concerns a concepts re-used across many definitions
subset of the factors

Prior: shared underlying explanatory factors between tasks
11



Yosinskei et al NIPS'2014

general ‘
LI T How transferable are features in deep
Y .... ...... networkS?
L N n
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Main idea:

Quantify the general to specific transition

by using transfer learning.

Depends on tasks A and B.

Very useful to know!

N ...

Speciﬁc ‘I .....lll.....

Layer number




baseA

baseB

e
. ,
3 i
3 z Y‘ o) "‘5
Eds )
TH "IN

B Images




A Images A Labels
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Top-1 accuracy (higher is better)
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e Measure general to specific transition layer by layer
e Transferability governed by:

* |ost co-adaptations

* specificity

 difference between base and target dataset

* Fine-tuning helps even on large target dataset



Better Representations

> Belter Transfer
> Betlter Domain Adap&a&i.ov\

e Whatis a good representation?

e Separate the « noise » from the « signal »
e Disentangle the underlying causal factors from each other
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Invariance and Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality

27



Hints to Help Disentangling

e (Rifaietal, ECCV 2012, Disentangling factors Y, Y,
of variation for facial expression recognition)

e (Kingma & Welling, NIPS 2014, Semi-
Supervised Learning with Deep Generative
hl h2 h3

Models) GO00000D0000
e Some hidden units predict some of

the factors, others are free to be used W

to reconstruct the input. Different QOO00000OD

groups of hidden units assigned to

different factors. Orthogonality or

penalty or independence prior

between hidden units of different
groups

OQOO00000OD
X
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Broad Priors as Hinks to Disentangle
the Factors of Variation

e Multiple factors: distributed representations

e Multiple levels of abstraction: depth

e Semi-supervised learning: Y is one of the factors explaining X
e Multi-task learning: different tasks share some factors

e Manifold hypothesis: probability mass concentration

e Natural clustering: class = manifold, well-separated manifolds
e Temporal and spatial coherence

e Sparsity: most factors irrelevant for particular X

e Simplicity of factor dependencies (in the right representation)

29



Emergence of 'Dusenkangtmg

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot et al. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)

30



Space-Filling in Representation-Space
* Deeper representations = abstractions = disentangling
e Manifolds are expanded and flattened

- X-space
4 Pixel space A Representation space
" 3 il q symantol e htod X
Lmenr interpolation at Iayer 2 3’s manifold
. 3
o} ®
9’s mahifold B -
Pe_Linear interpolation at layer 1 ®

1 E

Linear mterpolatlon in pixel space
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Extracting Structure By Gradual
Disentangling and Manifold Unfolding
(Bengio 2014, arXiv 1407,7906) 3

ahy) 1=
Each level transforms the o
data into a representation in T ’ T
which it is easier to model, B
unfolding it more,
contracting the noise ath,h,) Tz lgz P(h,/h,)
dimensions and mapping the
sighal dimensions to a ath,) ’/'\-J P(
factorized (uniform-like) . P(x/h.)
distribution. Q(h;[x) Tl l 1
min K L(Q(z, h)||P(z, h))

Q(x)

for each intermediate level h
32



»
®

Variational Auto-Encoder

Random Sampti‘.vxg ok Top Level

e Models trained with the KL(Q]| | P) or VAE training objective

Randomly sample from 2-D top-level h (Gaussian), project down:

(from Kingma & Welling ICLR 2014)
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‘Dee.p Directed Gewnerakive AEs

(Ozair & Bengio 2014, arXiv 1410.0630)

e log P(x) >=log P(x| h=f(x)) + log P(h=f(x))
= bound that is maximized and becomes tight as training
progresses

e Stacking such auto-encoders yields representations that
become sparser and with less correlation between features

Samples Entropy | Avg # active bits | ||Corr — diag(Corr)||r
Data (X) 297.6 102.1 63.5
Output of 1°¢ encoder (f1 (X)) 56.9 20.1 11.2
Output of 274 encoder (f2(f1(X))) | 47.6 17.4 9.4
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Conclusion: Learning Multiple Levels
of Abstraction

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and

transfer

Organizational Maturity
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