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Interesting Experimental Results with
Deep Architectures

m Beating shallow neural networks on vision and NLP tasks

m Beating SVMs on visions tasks from pixels (and handling dataset
sizes that SVMs cannot handle in NLP)

®m Reaching or beating state-of-the-art performance in NLP and
phoneme classification

m Beating deep neural nets without unsupervised component

m | earn visual features similar to V1 and V2 neurons as well as
auditory cortex neurons



Deep Motivations

m Brains have a deep architecture

® Humans organize their ideas hierarchically, through
composition of simpler ideas

m Unsufficiently deep architectures can be exponentially
inefficient

m Distributed (possibly sparse) representations are necessary to
achieve non-local generalization

= Multiple levels of latent variables allow combinatorial sharing of
statistical strength
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Deep Architectures are More Expressive

Theoretical arguments:

=

Logic gates
2 layers of § Formal = universal approximator
neurons o
—RBF units

Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al 2007)

Functions compactly
represented with k layers
may require exponential
size with k-1 layers




Deep Architectures and Sharing
Statistical Strength, Multi-Task Learning
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m Generalizing better to new
tasks is crucial to approach
Al

m Deep architectures learn
good intermediate
representations that can be
shared across tasks

shared
infermediate
representation h

m A good representation is one
that makes sense for many
tasks
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Feature and
Sub-Feature Sharing

m Different tasks can share the same
high-level feature

m Different high-level features can be
built from the same set of lower-level
features

m More levels = up to exponential gain
iINn representational efficiency
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Sharing Components in a Deep Architecture

2
(r129)(X2X3) + (1129)(2374) + (X2X3)” + (XoX3)(2374)

Polynomial expressed
with shared components:

advantage of depth may
grow exponentially



The Deep Breakthrough

m Before 2006, training deep architectures was unsuccessful,
except for convolutional neural nets

m Hinton, Osindero & Teh « A Fast Learning Algorithm for Deep
Belief Nets », Neural Computation, 2006

®m Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise
Training of Deep Networks », NIPS'2006

m Ranzato, Poultney, Chopra, LeCun « Efficient Learning of
Sparse Representations with an Energy-Based Model »,
NIPS'2006




The need for non-local
generalization and distributed
(possibly sparse) representations

® Most machine learning algorithms are based on local
generalization

m Curse of dimensionality effect with local generalizers

= How distributed representations can help



Locally Capture the Variations

* = training example
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Easy with Few Variations

learned function: prediction = f(x)




The Curse of
Dimensionality

1 dimension:
10 positions
@

2 dimensions:
100 positions
(o]

To generalise locally,
need representative
exemples for all
possible variations!

» 3 dimensions:
1000 positions!



Limits of Local Generalization:
Theoretical Results

(Bengio & Delalleau 2007)

m Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

m Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs require O(29)
examples



Curse of Dimensionality When
Generalizing Locally on a Manifold
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How to Beat the Curse of Many
Factors of Variation?

Compositionality: exponential gain in representational power

« Distributed representations
« Deep architecture



Distributed Representations
(Hintfon 1986)

= Many neurons active simultaneously

m [nput represented by the activation of a set of features that
are not mutually exclusive

m Can be exponentially more efficient than local representations



Local vs Distributed
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Currrent Speech Recognition &

Language Modeling

m Acoustic model: Gaussian mixture with a huge
number of components, tfrained on very large
datasets, on spectral representation

m Within-phoneme model: HMMs = dynamically
warpable templates for phoneme-context
dependent distributions

= Within-word models: concatenating phoneme
models based on transcribed or learned
phonetic transcriptions

m Word sequence models: smoothed n-grams
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Current Speech Recognition &
Language Modeling: Local

m Acoustic model: GMM = local generalization
only, Euclidean distance

® Within-phoneme model: HMM = [ocal
generalization with time-warping invariant

similarity
= Within-word models: exact template matching .
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Deep & Distributed NLP

m See “Neural Net
Language Models”
Scholarpedia entry

= NIPS'2000 and JMLR
2003 “A Neural
Probabilistic Language
Model”
 Each word represented

by a distributed
continuous-valued code

« Generalizes to sequences
of words that are
semantically similar to
training sequences
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Generalization through distributed
semantic representation

® Training sentence

The cat is walking in the bedroom

S I N

A dog was running in a room

m pbecause of the similarity between distributed representations
for (a,the), (cat,dog), (is,was), etc.



Results with deep distributed
representations for NLP

m (Bengio et al 2001, 2003): beating n-grams on small datasets
(Brown & APNews), but much slower

m (Schwenk et al 2002,2004,2006): beating state-of-the-art large-
vocabulary speech recognizer using deep & distributed NLP
model, with *real-time* speech recognition

m (Morin & Bengio 20085, Blitzer et al 2005, Mnih & Hinton
2007,2009): better & faster models through hierarchical
representations

m (Collobert & Weston 2008): reaching or beating state-of-the-art
in multiple NLP tasks (SRL, POS, NER, chunking) thanks to
unsupervised pre-training and multi-task learning

m (Bai et al 2009): ranking & semantic indexing (info retrieval).



Thank you for your attention!

m Questions?

m Commentse



