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Central Issue in Deep Learning:  
Credit Assignment 

•  What	should	hidden	layers	do?	

•  Established	approaches:	
•  Backpropaga3on	
•  Stochas3c	relaxa3on	in	Boltzmann	machines	

•  Are	these	related?	
•  How	does	the	brain	do	it?		



What is the brain’s learning algorithm? 
Cue: Spike-Timing Dependent Plasticity 

•  Observed	throughout	
the	nervous	system,	
especially	in	cortex	

•  STDP:	weight	
increases	if	post-spike	
just	aRer	pre-spike,	
decreases	if	just	
before.	

•  Timing	counted	only	
if	spike	on	only	one	
side	within	window	
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Hypothesis #1 

STDP	is	explained	by	a	learning	rule	with	this	form:	
	

Weight	change	propor=onal	to	post-synap=c	
rate	of	change	=mes	pre-synap=c	spike.	
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Inspired	by	hypothesis	from	Hinton	2007	(Deep	Learning	Workshop	talk)	



Proposed Interpretation of STDP 

•  Let	s	=	con3nuous-valued	state	of	all	neurons	
														=	soma	integrated	voltage	poten3al	(avg	out	effect	of	spikes)	
•  Proposed	learning	rule:	
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synap3c	
change	

temporal	change	in	
integrated	post-poten3al:	
temporal	deriva3ve	of	post-state	

pre-spike	rate	
(or	equivalently,	
the	spikes	themselves)	

pre-	state	

Inspired	by	Hinton	2007	(Deep	Learning	Workshop	talk)	



Happy Coincidence 

In	simula=ons,	this	learning	rule	fits	the	
classical	STDP	curves		
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Comparative Behavior:  
Simulations supports hypothesis 

Weight	change	vs	post	minus	pre	spike	3ming	difference	
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Biological	observa3on	
(Bi	&	Poo	2001)	

Our	simula3on,	using	SGD	
on	proposed	objec3ve	fn,	i.e.	

“An	ObjecCve	FuncCon	for	STDP”,	Bengio	et	al.,	arXiv	2015	



Why it matches the STDP curve 

•  When	post-synap3c	s	increases,	probability	of	post-spike	is	
larger	aRer	some	event	(pre-spike)	than	before	

8	

Post-synap3c	s	

Pre-synap3c	spike	

à Nearest	post-spike	more	
likely	to	be	aRer	pre-spike	

à Pos.	slope	yields	weight	
increase,	and	vice-versa	



Happy Coincidence 

This	learning	rule	corresponds	to	SGD	on	a	
local	objec=ve	func=on	
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Proposed	update	rule	corresponds	to	the	SGD	update	of	this	
predic've	objec3ve	func3on	(easy	log-lik.	interpreta3on	for	
sequen3al	structure,	but	what	about	within-frame	dependencies?)	

	
	IF																																																																:	

Injected	
noise	

prev.	
state	

next	
state	

parametrized	
state		update	

Does it get us closer to a machine 
learning interpretation? YES, if… 
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st

Derived	hypothesis	#2	

JSTDP =
1

2
||f✓(st�1, ⌘t�1)� st+1||2



How can we satisfy this condition? 
Neuron = leaky integrator 
•  x	=	state	of	visible	/	clamped	units	
•  h	=	state	of	hidden	/	unclamped	units	
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corrupted		
prev.	state	

weighted	sum	
of	input		
spike	rates	
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of neuron i at time t. If we take for granted that the learn-
ing rule in Eq. 1 is consistent with STDP, there remains
the question of its machine learning interpretation, and this
paper is only a first step in the direction of answering this
difficult question.

Towards this goal, we propose the following objective func-
tion JSTDP per time step t, that makes the above weight
update equation perform stochastic gradient descent on
JSTDP:

JSTDP =

1

2

||f(s
t�1, ⌘t�1)� s

t+1||2 (3)

where f(s

t�1, ⌘t�1) = s

t

computes the next state value
and f is the parametrized function that represents the
stochastic transformation from the previous neural state
s

t�1 to the next neural state s

t

, with injected noise ⌘

t�1.
That noise captures the effects of synaptic noise and spike
quantization (modeled as a Poisson distribution, or equiva-
lently with an independent binomial probability of spiking
in each small time interval).

3.2. How it yields the proposed STDP update rule

We now show how the above objective function JSTDP can
give rise to Eq. 1, if the following condition (which we call
condition 1) is satisfied:
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i.e., there is a linear relationship between the updated state
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, proportional to the average input
signal ⇢(s

t�1,j) from neuron j. Under condition 1, we
then obtain the weight gradient
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which corresponds to Eq. 1, as claimed, when �W
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Something notable and not apparent in the typical analysis
of STDP is that this learning rule also predicts that the av-

erage weight change will be 0 when the postsynaptic firing

rate remains constant, even if it is large. According to this
prediction, it is not enough that the presynaptic and postsy-
naptic neurons fire together, averaged over multiple runs,
change only occurs if the postsynaptic firing rate changes.

3.3. Neural computation as leaky integrator

Let us now consider the stochastic update operation f in
more detail. As usual in neuron models, we assume that

unclamped neurons are performing leaky temporal integra-
tion of their past inputs. Let us denote x

t

for the clamped
part of s

t

(i.e., the externally driven input) and h

t

for the
unclamped part, i.e., s

t

= (x

t

, h

t

). Let f = (f

x

, f

h

) to de-
note the parts of f that respectively outputs the predictions
on the clamped units and on the unclamped units. The time
evolution of the unclamped units is assumed to follow a
leaky integration equation, i.e.,

h

t+1 = f

h

(s

t

, ⌘
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where s̃ represents a noisy corruption of s due to synap-
tic noise and spiking effects, grossly modeled by additive
noise:

s̃

t

= s

t

+ ⌘

t

, (7)
and we see that the above equation corresponds to the dis-
cretization of a differential equation

⌧

˙

h = R

h

(s+ ⌘)� h

which brings h exponentially fast towards the “target”
value R

h

(s), along with the random walk movements
brought by the noise ⌘. In the above equations, R(s) =

(R

x

(s), R

h

(s)) represents the network-generated pressure
on neurons, i.e., R

i

(s) is what the rest of the network asks
neuron i to move towards. With this leaky integrator struc-
ture, we see that condition 1 is converted into a similar
condition on R

i

(s), which we call condition 2:
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In section 4.1 we introduce a definition of R which satisfies
the above property and also makes sense from the point of
view of a machine learning interpretation of JSTDP intro-
duced next, as a form of score matching.

3.4. More on the Continuous Time Perspective
In continuous time, the proposed STDP update rule can be
written as in Eq. 1. This can be viewed as the derivative of
a continuous-time version of the objective function JSTDP,
with respect to W

i,j

with

J =

1

2

||ṡ||2 (9)

where s is the continuous-time vector-valued state of the
neural network, and ṡ is its temporal derivative. According
to the neural energy function proposed above, the elements
ṡ
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of ṡ are as follows:
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This yields the weight gradient
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which would lead to a weight update proportional to the
proposed STDP rule for �W

i,j

, Eq. 1.

value	towards	which	
integrator	converges	

Like	gradient	
descent	on	squared		
difference	between	
R	and	h	w/	l.r.	
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of neuron i at time t. If we take for granted that the learn-
ing rule in Eq. 1 is consistent with STDP, there remains
the question of its machine learning interpretation, and this
paper is only a first step in the direction of answering this
difficult question.
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That noise captures the effects of synaptic noise and spike
quantization (modeled as a Poisson distribution, or equiva-
lently with an independent binomial probability of spiking
in each small time interval).

3.2. How it yields the proposed STDP update rule

We now show how the above objective function JSTDP can
give rise to Eq. 1, if the following condition (which we call
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rate remains constant, even if it is large. According to this
prediction, it is not enough that the presynaptic and postsy-
naptic neurons fire together, averaged over multiple runs,
change only occurs if the postsynaptic firing rate changes.
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cretization of a differential equation
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(s)) represents the network-generated pressure
on neurons, i.e., R
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(s) is what the rest of the network asks
neuron i to move towards. With this leaky integrator struc-
ture, we see that condition 1 is converted into a similar
condition on R

i

(s), which we call condition 2:
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In section 4.1 we introduce a definition of R which satisfies
the above property and also makes sense from the point of
view of a machine learning interpretation of JSTDP intro-
duced next, as a form of score matching.

3.4. More on the Continuous Time Perspective
In continuous time, the proposed STDP update rule can be
written as in Eq. 1. This can be viewed as the derivative of
a continuous-time version of the objective function JSTDP,
with respect to W

i,j

with

J =

1

2

||ṡ||2 (9)

where s is the continuous-time vector-valued state of the
neural network, and ṡ is its temporal derivative. According
to the neural energy function proposed above, the elements
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which would lead to a weight update proportional to the
proposed STDP rule for �W
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, Eq. 1.

must	sa3sfy	

Reformulated	hypothesis	#2	

st+1 = f(st, ⌘t) = st + ✏(R(s̃t)� st)



Happy Coincidence 

Denoising	auto-encoders	with	
reconstruc=on	func=on	R(s)	converge	
towards	R(s)-s	=	gradient	of	energy	

12	
(Alain	&	Bengio,	ICLR	2013)	



Hypothesis #3 

NEURAL	COMPUTATION	=	INFERENCE:	
Neural	ac=va=ons	tend	to	noisily	move	
towards	configura=ons	making	neurons’	
ac=va=ons	more	compa=ble	with	each	
other	according	to	some	energy	func=on	

13	

Inspired	by	Hopfield	nets	and	Boltzmann	machines	



Happy Coincidence 

Leaky	integra=on	+	hypothesis	#2	+	
symmetry	+	noise	=	Langevin	MCMC	
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Neural Computation as Inference 

•  Langevin	MCMC	(and	most	MCMC)	=	small	steps	going	down	
the	energy,	plus	injec=ng	randomness	

•  inference	to	find	good	configura3ons	of	h	that	explain	x,	given	
current	synap3c	weights.		

15	
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4. Predictive interpretation of the STDP
criterion

What could be the purpose of minimizing JSTDP in Eq. 3
from a machine learning perspective?

If we consider a sequence of inputs, then predicting what
will come next corresponds to maximizing the likelihood
of the observed sequence, a very natural criterion for fitting
a sequence of observations x1, . . . , xT

, via the decomposi-
tion

P (x1, . . . , xT

) =

Y

t

P (x

t

|x
t�1, xt�2, . . . , x1)

=

Y

t

P (x

t

|s
t�1) (12)

when the past sequence (x1, . . . , xt�1) is summarized by a
state s

t�1, i.e. we are trying to predict the next observation
given the current state.

However, this leaves an important question out of the pic-
ture, which has been central in the last decades of research
in unsupervised learning algorithms for neural networks:
what if x

t

is a high-dimensional vector with strong depen-
dencies between its elements, like the pixels in an image or
the frequency bins in a spectral representation of speech?
In that case, it is important not just to model the dependen-
cies between consecutive “frames” x

t

but also to model the
dependencies between the elements x

ti

of each x

t

.

We now shift our attention to this static aspect of modeling
the interactions between different sensory elements (like
pixels) co-occurring in time together in a way that carries
important meaning for the learning agent. There have been
many machine learning proposals to capture the joint dis-
tribution of a set of joint observations (such as the pixels
in an image, i.e., the elements of the vector x associated
with a particular static input), and it remains a very active
field of research where more investigation is needed. In-
deed whereas deep supervised learning has been extremely
successful in AI applications such as speech recognition,
computer vision and natural language processing (see Le-
Cun et al. (2015) for a recent review), deep learning of un-
supervised models remains challenging but needed to han-
dle the large quantities of unlabeled data the world has to
offer.

4.1. Neural computation does inference: going down
the energy

We consider the hypothesis that a central interpretation of
neural computation (what neurons do, on a short time scale
at which weights can be considered fixed) is that it con-
sists in performing iterative inference. Iterative inference
means that the hidden units h of the network are gradu-
ally changed towards configurations that are more proba-

ble, with the given sensory input x and according to the cur-
rent “model of the world” associated with the parameters
of the model. In other words, they are approximately mov-
ing towards configurations more probable under P (h|x),
and eventually sampling from P (h|x). With this in mind,
R(s̃

t

) in Eq. 6 represents a guess for a new configuration,
with R(s̃

t

) � s

t

a noisy direction of movement. A noise-
free direction would be R(s

t

) � s

t

, but injecting noise is
known to be important in order to find not just a single lo-
cal mode of P (h|x) but explore the full distribution.

We now draw an interesting link between this observation
and recent work on unsupervised learning using denois-
ing auto-encoders and denoising score matching (Vincent,
2011; Alain and Bengio, 2013). If R(s) is the linear com-
bination of input rates ⇢(s), the above papers make a link
between R(s) � s and the energy of a probabilistic model
P (s) / e

�E(s) with energy function E(s), i.e., they find
that

R(s)� s / @ logP (s)

@s

= �@E(s)

@s

. (13)

With this interpretation, the leaky integration neural com-
putation of Eq. 6 seems to follow a Langevin Monte-Carlo
Markov chain (Andrieu et al., 2003):
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where for the last line we used Eqs. 13, 7, and we see that
we are going down the gradient from s̃

t

. Hence from the
point of view of the noisy states s̃, we see that the update
equation corresponds to
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which we recognize as going down the gradient of the en-
ergy with “learning rate” ✏ and adding “noise” ⌘

t+1 � (1�
✏)⌘

t

.

4.2. A neurally motivated energy function

An important missing ingredient is condition 2 (Eq. 8),
which depends on the specific choice of parametrization
for the energy function. We would like this condition to be
satisfied, while yielding a neural computation that roughly
approximates real neural computation, and R correspond-
ing to the derivative of the energy as per Eq. 13. Towards
that objective, we propose the following energy function:
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tribution of a set of joint observations (such as the pixels
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known to be important in order to find not just a single lo-
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We now draw an interesting link between this observation
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ing auto-encoders and denoising score matching (Vincent,
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that
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t+1 � (1�
✏)⌘

t

.

4.2. A neurally motivated energy function

An important missing ingredient is condition 2 (Eq. 8),
which depends on the specific choice of parametrization
for the energy function. We would like this condition to be
satisfied, while yielding a neural computation that roughly
approximates real neural computation, and R correspond-
ing to the derivative of the energy as per Eq. 13. Towards
that objective, we propose the following energy function:

E(s) =

X

i

s

2
i

2

�
X

i<j

W

i,j

⇢(s

i

)⇢(s

j

)�
X

i

b

i

⇢(s

i

) . (16)

zt+1 = zt �
�2

2

@E(zt)

@zt
+ �GaussianNoise



The need for symmetry 

•  If	

•  and																																																										or	

•  then,	by	symmetry	of	second	deriva3ves		

•  we	get	symmetry	of	the	weights		
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Ri /
X

j
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Ri � si /
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@si
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@si
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Ri /
@L(s)

@si



Hypothesis #4 

There	is	an	inference	network	made	of	
neuronal	unit	(one	or	more	neurons)	such	
that	the	synap=c	influence	between	any	

pair	of	such	units	is	symmetric:		

17	

Inspired	by	Hopfield	nets	and	Boltzmann	machines	

Wi,j ⇡ Wj,i



Happy Coincidence 

Autoencoders	without	forced	symmetry	
end	up	with	symmetric	weights	

18	

(Vincent	et	al	2011)	

WHY?	 (Arora	et	al	2015,	arXiv	1511.05653)	 h ⇡ rect(W rect(WTh))



Happy Coincidence 

There	exists	an	energy	func=on	sa=sfying	
the	previous	hypotheses	on	R:	R	is	the	

gradient	of	the	energy	and	it’s	a	weighted	
sum	of	presynap=c	spikes		
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From STDP towards Biologically Plausible Deep Learning

of neuron i at time t. If we take for granted that the learn-
ing rule in Eq. 1 is consistent with STDP, there remains
the question of its machine learning interpretation, and this
paper is only a first step in the direction of answering this
difficult question.

Towards this goal, we propose the following objective func-
tion JSTDP per time step t, that makes the above weight
update equation perform stochastic gradient descent on
JSTDP:

JSTDP =

1

2

||f(s
t�1, ⌘t�1)� s

t+1||2 (3)

where f(s

t�1, ⌘t�1) = s

t

computes the next state value
and f is the parametrized function that represents the
stochastic transformation from the previous neural state
s

t�1 to the next neural state s

t

, with injected noise ⌘

t�1.
That noise captures the effects of synaptic noise and spike
quantization (modeled as a Poisson distribution, or equiva-
lently with an independent binomial probability of spiking
in each small time interval).

3.2. How it yields the proposed STDP update rule

We now show how the above objective function JSTDP can
give rise to Eq. 1, if the following condition (which we call
condition 1) is satisfied:

@f

i

(s

t�1, ⌘t�1)

@W

i,j

/ ⇢(s

t�1,j) (4)

i.e., there is a linear relationship between the updated state
f

i

(s

t�1, ⌘t�1) and W

i,j

, proportional to the average input
signal ⇢(s

t�1,j) from neuron j. Under condition 1, we
then obtain the weight gradient

@JSTDP

@W

i,j

=

@JSTDP

@s

t,i

@f(s

t�1, ⌘t�1)

@W

i,j

/ @JSTDP

@s

t,i

⇢(s

t�1,j)

/ (s

t,i

� s

t+1,i)⇢(st�1,j) (5)

which corresponds to Eq. 1, as claimed, when �W

i,j

/
�@JSTDP

@W

i,j

.

Something notable and not apparent in the typical analysis
of STDP is that this learning rule also predicts that the av-

erage weight change will be 0 when the postsynaptic firing

rate remains constant, even if it is large. According to this
prediction, it is not enough that the presynaptic and postsy-
naptic neurons fire together, averaged over multiple runs,
change only occurs if the postsynaptic firing rate changes.

3.3. Neural computation as leaky integrator

Let us now consider the stochastic update operation f in
more detail. As usual in neuron models, we assume that

unclamped neurons are performing leaky temporal integra-
tion of their past inputs. Let us denote x

t

for the clamped
part of s

t

(i.e., the externally driven input) and h

t

for the
unclamped part, i.e., s

t

= (x

t

, h

t

). Let f = (f

x

, f

h

) to de-
note the parts of f that respectively outputs the predictions
on the clamped units and on the unclamped units. The time
evolution of the unclamped units is assumed to follow a
leaky integration equation, i.e.,

h

t+1 = f

h

(s

t

, ⌘

t

) = h

t

+ ✏(R

h

(s̃

t

)� h

t

) (6)
where s̃ represents a noisy corruption of s due to synap-
tic noise and spiking effects, grossly modeled by additive
noise:

s̃

t

= s

t

+ ⌘

t

, (7)
and we see that the above equation corresponds to the dis-
cretization of a differential equation

⌧

˙

h = R

h

(s+ ⌘)� h

which brings h exponentially fast towards the “target”
value R

h

(s), along with the random walk movements
brought by the noise ⌘. In the above equations, R(s) =

(R

x

(s), R

h

(s)) represents the network-generated pressure
on neurons, i.e., R

i

(s) is what the rest of the network asks
neuron i to move towards. With this leaky integrator struc-
ture, we see that condition 1 is converted into a similar
condition on R

i

(s), which we call condition 2:

@R

i

(s̃)

@W

i,j

/ ⇢(s̃

j

) . (8)

In section 4.1 we introduce a definition of R which satisfies
the above property and also makes sense from the point of
view of a machine learning interpretation of JSTDP intro-
duced next, as a form of score matching.

3.4. More on the Continuous Time Perspective
In continuous time, the proposed STDP update rule can be
written as in Eq. 1. This can be viewed as the derivative of
a continuous-time version of the objective function JSTDP,
with respect to W

i,j

with

J =

1

2

||ṡ||2 (9)

where s is the continuous-time vector-valued state of the
neural network, and ṡ is its temporal derivative. According
to the neural energy function proposed above, the elements
ṡ

i

of ṡ are as follows:

ṡ

i

/ ⇢

0
(s

i

)

X

j

W

i,j

⇢(s

j

)� s

i

. (10)

This yields the weight gradient

@J

@W

i,j

= 2ṡ

i

⇢(s

j

)⇢

0
(s

i

) , (11)

which would lead to a weight update proportional to the
proposed STDP rule for �W

i,j

, Eq. 1.

A Neural Energy Function 

To	sa3sfy	condi3ons																																								&	
define	

Yields	
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Must	be	symmetric	
This	is	new!	



Very Happy Coincidence 

Early	Inference	in	Con=nuous-Variable	
Energy-Based	Models	Approximates	Back-

Propaga=on	

21	



The Connection to Backprop 

•  Near	a	fixed	point	of	the	update	
•  Consider	what	happens	when	input	x	is	

clamped	and	h	and	y	have	seiled	to				and	
then	external	signal	drives					towards	a	
target	value	y,	creaCng	a	perturbaCon	

Now	the	closest	layer	h1	gets	updated	
and	the	perturba3on	is	propagated	just		
like	back-prop	would	mandate,	and	similarly	
this	perturba3on	gets	propagated	to		
	

And	similarly	for	the	next	layer	h2,	etc.			
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R(s) ⇡ s

s = (x, h, y)

ĥ ŷ
ŷ

x

y

h1

h2

h = (h1, h2)

h2

“Early	Inference	in	Energy-Based	Model	Approximates	Back-PropagaCon”,	Bengio,	arXiv	2015	



Propagation of Perturbations: Lemma 

•  Consider	
						so	
	
•  By	symetry	of	second	deriva3ves,	we	get	that	
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Propagation of Perturbations: Thm 

•  At	the	fixed	point	(before	the	perturba3on)	
•  So	the	1st	layer	perturba3on	is	

•  And	similarly	can	show	
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Resulting Weight Update = SGD on 
Prediction Error on Visible Units 

•  If		

•  and																														,	

•  then		

•  But	that	is	only	for	the	feedforward	weights!	

25	

ṡi /
@C

@si

(SGD	on	STDP	objec3ve	func3on)	

�Wi,j /
@C

@Wi,j

@Ri(s)
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Many Open Questions Remain 
•  Trying	to	bridge	the	gap	between	neuroscience	and	deep	

learning	has	seemingly	helped	us	bridge	the	gap	between	
Boltzmann	machines	and	backprop	

•  Many	exci3ng	&	happy	coincidences	…	and	many	ques3ons!	

•  What	about	the	other	contribu3ons	to	the	weight	update?	
•  How	about	when	we	are	not	at	a	fixed	point?	
•  How	to	handle	the	unsupervised	case?	
•  What	if	we	do	not	have	a	true	energy	func3on	(only	

approximate	symmetry)?	
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