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Central Issue in Deep Learning:
Credit Assignment

e What should hidden layers do?

e Established approaches:
* Backpropagation

* Stochastic relaxation in Boltzmann machines

e Are these related?
e How does the brain do it?



What is the brain’s Llearning algorithm?
Cue: Spike-Timing Dependent Plasticity
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ijo&ke.sis #1

Inspired by hypothesis from Hinton 2007 (Deep Learning Workshop talk)

STDP is explained by a learning rule with this form:

Weight change proportional to post-synaptic
rate of change times pre-synaptic spike.



Proposed Interpretation of STDP

Inspired by Hinton 2007 (Deep Learning Workshop talk)

e Let s =continuous-valued state of all neurons
= soma integrated voltage potential (avg out effect of spikes)

e Proposed learning rule:
pre- state

. o
AW; ; o $ip(s;)
i /N

temporal change in
integrated post-potential:
temporal derivative of post-state

(or equivalently,
the spikes themselves)



Happy oivxciciehae.

In simulations, this learning rule fits the
classical STDP curves



Com!mm&i:ve. Behavior:
Sinmulations su,ppcr!:s hvpo&hesis

“An Objective Function for STDP”, Bengio et al., arXiv 2015
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ka itk matbtches the STDY curve

e When post-synaptic s increases, probability of post-spike is
larger after some event (pre-spike) than before

Post-synaptic s

Pleft P, right

e

- Nearest post-spike more
likely to be after pre-spike

- Pos. slope yields weight
increase, and vice-versa

AW@J X Sz'p(Sj)

Pre-syn;aptic spike

time



Happy oivxciciehae.

This learning rule corresponds to SGD on a
local objective function



Does it get us closer to a machine
learning interpretation? YES, if...

Proposed update rule corresponds to the SGD update of this
predictive objective function (easy log-lik. interpretation for

sequential structure, but what about within-frame dependencies?)
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How can we sakisfv this condition?
Neuron = Lealky integrator

Like gradient

e x = state of visible / clamped units descent on squared
_ . . difference between
e h =state of hidden / unclamped units / Rand hw/ Lr. €

St+1 = f(St,m) = st + €(R(S¢) — s¢)

must satisfy weighted su corrupted
< of input prev. state
4 aRZ (S) N spike rates
prie ACh)
2,] hich
S ) value towards whic

Reformulated hypothesis #2 integrator converges
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Happj ‘ Coincidence

Denoising auto-encoders with
reconstruction function R(s) converge
towards R(s)-s = gradient of energy

(Alain & Bengio, ICLR 2013)



13

H:,po!:kesi.s #3

Inspired by Hopfield nets and Boltzmann machines

NEURAL COMPUTATION = INFERENCE:

Neural activations tend to noisily move
towards configurations making neurons’
activations more compatible with each
other according to some energy function
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Happy oivxciciehae.

Leaky integration + hypothesis #2 +
symmetry + noise = Langevin MCMC



Neural Computation as Inference

e Langevin MCMC (and most MCMC) = small steps going down
the energy, plus injecting randomness

0'2 8E(zt)

Zia1 = 2t - o GaussianNoise
2 8zt
e inference to find good configurations of h that explain x, given
current synaptic weights. St+1 = St + €(R(8¢) — s¢)
= S + E(R(gt) — gt + gt — St)
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The need for symmelry
i Ry ) Wigp(sj)
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e then, by symmetry of second derivatives
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« we get symmetry of the weights
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ijokkesis H 4

Inspired by Hopfield nets and Boltzmann machines

There is an inference network made of
neuronal unit (one or more neurons) such
that the synaptic influence between any
pair of such units is symmetric:

Wij = Wi,



Happj . Coincidence

Autoencoders without forced symmetry
end up with symmetric weights

(Vincent et al 2011)

WHY?  (Arora et al 2015, arXiv 1511.05653)  h, & rect(Wrect (WT h))
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Happj ‘ omcidence.

There exists an energy function satisfying
the previous hypotheses on R: R is the
gradient of the energy and it’s a weighted
sum of presynaptic spikes



A Neural Ev\ergv ~unctkion

To satisfy conditions aRi(S) X p(g) & R(s) = 8§ — 8E(8)

_ OW: J 0s
define s

322 1
E(s) = Z 9 9 Z Wi ip(si)p(s;) — Z bip(si)
i i£] i
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This is new!

Ri(s) = p'(s:)

J
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\/va Happv Coincidence

Early Inference in Continuous-Variable
Energy-Based Models Approximates Back-
Propagation



The Connection to Backprop

“Early Inference in Energy-Based Model Approximates Back-Propagation”, Bengio, arXiv 2015
S = (x,h,y) h = (h17 h2)
e Near a fixed point of the update R(S) ~ S

* Consider what happens when input x is y O O O O
clamped and h and y have settled to ~and ¢
then external signal drivesQ towards a
target value y, creating a perturbation hh OO OO
A 1 . 1
Ay =¢€(y —9) Cc=3IR6) -yl = 55lAyl I
Now the closest layer h, gets updated hey O O O O
and the perturbation is propagated just I
like back-prop would mandate, and similarly : OO0 OO

this perturbation gets propagated to ho
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Propagation of Perturbations: Lemma

1
* Consider [(s) = §||s||2 — E(s)

>0 A OL(3 A OL(3
Ry(5) = 259 Ry, (5) = 22

By symetry of second derivatives, we get that
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Propagation of Perturbations: Thm

e At the fixed point (before the perturbation) aRy(S) _ %

e So the 1st layer perturbation is 8%1 B 3%1
AN 1
Ahy = —€” aR?Z(S) (‘?CA’ - o(€?)
Ohy 0y
~ T
_ 29990 | e
Ohy O
= —¢° 8AC - o(€?)
Oh;
e And similarly can show oC
Ahy = —¢€° - o(€%)

Oho
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Resulting Weight Update = SGD on
Prediction Error on Visible Oniks

o |f AW’L,] X S’Lp(sj ) (SGD on STDP objective function)

" ’ 882 ’ 8Wi,j PR
e then
oC
AW, ;
Wi ;i oW

e But thatis only for the feedforward weights!
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Mom.j Ope.h Questions Remain

 Trying to bridge the gap between neuroscience and deep
learning has seemingly helped us bridge the gap between
Boltzmann machines and backprop

 Many exciting & happy coincidences ... and many questions!

e What about the other contributions to the weight update?
e How about when we are not at a fixed point?
e How to handle the unsupervised case?

e What if we do not have a true energy function (only
approximate symmetry)?
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