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Still Far from Human-Level Al

* Industrial successes mostly based on
supervised learning

* Learning superficial clues, not generalizing
well enough outside of training contexts, easy
to fool trained networks:

— Current models cheat by picking on surface
regularities



Learning Multiple Levels of Abstraction

(Bengio & LeCun 2007)

* The big payoff of deep learning is to allow learning
higher levels of abstraction

» Higher-level abstractions disentangle the

factors of variation, which allows much easier
generalization and transfer




Invariance and Disentangling

Invariant features

Which invariances?

Alternative: learning to disentangle ! /

Good disentangling =2
avoid the curse of dimensionality:

Dependencies are “simple” when the data is
projected in the right abstract space



Disentangling from denoising objective
(Glorot, Bordes & Bengio ICML 2011) % o

* Early deep learning research already is Iookin’rB a
possible disentangling arising from unsupervised
learning of representations

* Experiments on stacked denoising auto-encoders
with ReLUs, on BoW text classification

e Features tend to specialize to either sentiment or
domain

Raw data &
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How to Discover Good
Disentangled Representations

* How to discover abstractions? é
« What is a good representation? (Bengio et al 2013

* Need clues (= priors) to help disentangle the
underlying factors, such as

— Spatial & temporal scales

— Marginal independence K XK ¥ ¥
— Simple dependencies between factorm

e Consciousness prior ( ) ) ) )

— Causal / mechanism independence [M{ T
* Controllable factors
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Latent Variables and Abstract
Representations to Disentangle Tanifolds

Encoder/decoder view: maps Qlh1x) Abstract

between low & high-levels representation
space
A
Encoder does inference:
interpret the data at the encoder decoder P(x|h)
abstract level !

Decoder can generate new
configurations

Encoder flattens and

disentangles the data manifold J
ata space



Why Generative Models?

. Face Aging
Generation o |
Condltlonlng { 0-18 19-29 30-39 40-49 50-59 60+ !
- Conditional variable
generation
Stvle transf Generated
yie transier face
 De-noising / image
completion ;
: p . [Antipov et. al., 2017]
(inpainting)
This bird has a yellow This bird is white ~ This flower has
« Super-resolution ] belly and tarsus, grey with some black on overlapping pink
P G iven textback, wings, and its head and wings, pointed petals
brown throat, nape and has a long surrounding a ring of
with a black face orange beak short yellow filaments

Generated
image




Why Generatlve Models?

Generation [ala Zhu et. al., 2017

- Conditional
generation

- Style transfer

« De-noising / image
completion
(inpainting)

 Super-resolution




Why Generatlve Models?
Generation [Zhang et..al., 2017]

- Conditional
generation

- Style transfer

- De-noising / image
completion
(inpainting)

« Super-resolution
Missing
pixels

Inpainted
image
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Why Generative Models?

Generation

- Conditional
generation

- Style transfer

 De-noising / image
completion
(inpainting)

- Super-resolution

T8

Low res ngh res
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Why Generative Models?

SOTA Generation
. Conditional Thgse were all GANs
generation ‘

- Style transfer

* De-noising / image
completion
(inpainting)

« Super-resolution
 Drug discovery

« Speech synthesis

« Domain transfer

« And much much more Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset
[Karras et. al., 2017]
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Why Generative Models?

“What | cannot create, | do not understand”
-Richard Feynman

Discovery

* Learn relevant factors

200999995

Interpolation
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Why Generative Models?

“What | cannot create, | do not understand”
-Richard Feynman

Discovery
* Learn relevant factors

* Inference

eneration

156



Why Generative Models?

“What | cannot create, | do not understand”
-Richard Feynman

Discovery
* Learn relevant factors
 Inference

- Semi-supervised
learning




What’s wrong with standard
maximum likelihood?

Model

* Pay a huge price for not putting probability
manifold

mass at even a single training example, even
If the data manifold and model manifold are Data

very close. manifold



What’s wrong with standard
maximum likelihood?

Model

1. Payah ice for not putti lit
ay a huge price for not putting probability density

mass at even a single training example, even
if the data manifold and model manifold are

very close. Data

manifold

* So MLE makes the model distribution very
fat and conservative

2. Another problem is that MLE measures error
bits in pixel space whereas humans really
care about errors in abstract space, so we
would like loss measured in learned latent
space



Classifiers for modellng‘_
distributions

In—support
e\ classifier

Data
manifold
* We were inspired by the work of Gutmann & Hyvarinen
using probabilistic classifiers to estimate energy functions
Gutmann & Hyvarinen 2012, Noise-Contrastive Estimation
* In high dimension, more relevant then density is whether
you are in-support vs out-of-support

* A classifier of in-support vs out-of-support pays a
*constant” price (rather than huge) for not putting support
at a training example



Generative adversarial networks (GANSs):
a two player game with neural networks

Givens:
Samples from a target distribution P

(Simple) prior Q,,

Q.

i
20 [Goodfellow et. al., 2014]



Generative adversarial networks (GANSs):
a two player game with neural networks

Givens:
Samples from a target distribution P

(Simple) prior Q,,

Player 1: Generator
A neural network with parameters, 6, whose
samples fool the discriminator

Generator network qQ

(counterfeiter)
d) Q.

. [Goodfellow et. al., 2014]



Generative adversarial networks (GANSs):

a two player game with neural networks
Fake Real

Givens:
Samples from a target distribution P

(Simple) prior Q,,

Player 1: Generator
A neural network with parameters, 6, whose
samples fool the discriminator

Player 2: Discriminator
Distinguish (classify) real and fake
correctly

22

Discriminator
Network

Generator network | (54

(counterfeiter)
é) Q.

I

):‘_
[Goodfellow et. al., 2014]




Generative adversarial networks (GANSs):

a two player game with neural networks
Fake Real

Givens:
Samples from a target distribution P

(Simple) prior Q,,

Discriminator
Network

Player 1: Generator
A neural network with parameters, 6, whose
samples fool the discriminator

Player 2: Discriminator
Distinguish (classify) real and fake
correctly

Generator network | (;,
(counterfeiter)

Minimax on value function e @z

V(P,Qg, Dy) = Ep [log Dy(z)] + Eq, [log(1 — Dy(Go(2))]
(8, $) = arg min arg max V(P, Qg, D)
o 4

@

Completely
differentiable function

Fine print: Continuous data only 23 [Goodfellow et. al., 2014]



A closer look at the discriminator

* The discriminator defines a lower-bound

2*Dysp(P||Qs) —log4 > V(P,Qp; Ty) V(P, @gifﬁb)

i

0

24 [f-GAN. Nowozin et. al., 2017]



A closer look at the discriminator

* The discriminator defines a lower-bound
2*Dysp(P||Qs) —log4 > V(P,Qp; Ty)

 f~-divergence

)|

25

V(Pv @fﬁ T¢)

P
0
P
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AP\
”’¢' 666\)
Qg oc® o)
ot ot
Primal

[f-GAN. Nowozin et. al., 2017]



A closer look at the discriminator

* The discriminator defines a lower-bound
2*Dysp(P||Qs) —log4 > V(IP, Qp; T)

 f~-divergence
Dy (P|Qs)

 Convex dual using neural networks
Dy (P||Qg) = Ep[Ty(z)] — Eq, [f* (T (x))]

gg(c)

)|

Estimated

V(lPJ , Qei T¢) difference

‘s, measure

oy

[-GAN.

Primal
Nowozin et. al., 2017]



A closer look at the discriminator

* The discriminator defines a lower-bound q) Estimated

2% Dysp(P||Qg) — logd > V(P,Qg; Tp) V(P, @Biirqs) drir]ﬁeear:SI?ee

* f~divergence RN
Dy (BlIs) = B, |1 ( 220 b 5 )
’ gs(z) : P
- Convex dual using neural networks T Q )
| ° 0
Dy(P||Qo) = Ep[Ty(x)] — Eq, [f™ (T4 (2))]
- Estimate using samples P
- Other Examples . x,;s\)(e
KL, Jensen-Shannon, Squared Hellinger, Pearson > Qg ,»'(’\é,eg@
SIS SRNE
- GANS are a convex dual optimization with a ot 9®
classifier Primal

27 [f-GAN. Nowozin et. al., 2017]



WGAN

Arjowski et al 2017

° P.enalize the Earth-Mover’s Model manifold
distance between the generated
and data distribution: pay a small
price if the two manifolds do not
overlap but are close in data Data manifold
space.

Dy (P[|Qg) = ||TSI|1|p<1E]p[T¢(CC)] — Eq, [Ty(z)]



Estimating the likelihood ratio

- Recall the convex dual form: D;(P||Qg) > Ep[Ty(z)] — Eg, [f*(Ts(z))]

» For perfect discriminator 7:
p(z) = (8f*/0T)(T*(x))gs(z)

29



Boundary-Seeking GANs

Hjelm, Jacob, Che, Trischler, Cho & Bengio ICLR 2018

« Recall the convex dual form:

Dy(P||Qg) > Ep[Ty(x)] — Eq,[f™(Ty())]

 For perfect discriminator T

p(z) = (9 /0T)(T*(z))gs ()

» Given a neural network 1 :
w(z)

p(z) = TQ& ()

- Importance weights: w(z) = (8f*/0T)(Ty(x))

« Partition function: B = Eg, [w(z)]

30 T(z)



BGAN: Importance samlmg
Hjelm et al ICLR 2018 i _

VoD (5(2) lao) = ~E, | "2V, 1ogqe(m)] ........ N

Gradient becomes 0 when p=q

31 [Hjelm et. al., 2017]



Qualitative discrete results [sic]
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BGAN: boundary-seeking
- Increased stability by pushing
discriminator to the boundary

* The BGAN objective ends up pushing the discriminator
output towards the decision surface whereas all the other
GAN objectives can actually push it well *beyond* it

* Continuous case objective on generator with f-divergence

(KL):
min Fy (G (2))’



Adversarial Domain
Adaptation

_¥¢ Yaroslav Ganin Main Invariance
task task

* Adversarial domain adaptation:

Ganin & Lempitsky ICML 2015

gradient
reversal

* Shared representation R(x) is trained
to optimize main task Y|R(x) and
worsen the prediction of the ‘domain’
variables Z wrt which we want the
representation R(x) to be invariant. Ro(X)



Stability Trick in Adversarial
Domain Adaptation

* Learning Anonymized

Representations with Adversarial Main  Invariance
Neural Networks: Feutry et al task task
arXiv:1802.09386 zmm
Clément .Pablc.) -
Feutry % Piantanida

gradient
reversal

* Instead of *maximizing* cross-
entropy on the invariance variables
prediction Q(Z|R), bring it to the
cross-entropy of the marginal
distribution Q(2)

m@in EX,Y,Z[ — log Q(Y|RQ(X))
+ A[log Q(Z|Ro(X)) —1og Q(Z)]] AN



Using a discriminator to
optimize independence,
mutual information or entropy

* The GAN discriminator is trained to estimate a similarity
function between two distributions

* Two independent r-v A & B have the property that
P(A,B)=P(A)P(B)

* Given samples from P(A,B) you can obtain samples from
P(A)P(B), e.g. by shuffling A values within a minibatch

, A\ Train a discriminator to separate between pairs (A,B)
== /=8 coming from P(A,B) and pairs coming from P(A) P(B)

" Brakel & Bengio ArXiv:1710.05050



Using a discriminator to

optimize independence,

mutual information or entropy
Brakel & Bengio ArXiv:1710.05050

Discriminator

Train a discriminator to separate
between pairs (A,B) coming from P(A,B) -
and pairs coming from P(A) P(B) Mmégj_tch

variable
shuffle

* Generalize this to measuring
independence of all the outputs of a

representation function (encoder). Novgzear
Maximize independence by backprop encoder

independence score into encoder -
NON-LINEAR ICA.



Using a discriminator to
optimize independence,

mutual information or entropy

Belghazi et al ArXiv:1801.04062

/| Same architecture, but with a twist in
the training objective which provides an
asymptotically correct estimator of
mutual independence

®* Note that

MI(A, B) = H[A] — H[B|A




Mutual information neural estimator
viw (MINE)

‘ Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, Aaron Courville, R Devon Hjelm

=" -
-

Mutual information: measure of dependence

between two variables

I(X;Z) = Dx1(Px z||Px ® Pz) = Epy , [log (p?ifp%)]

Fenchel convex dual (~GAN): MINE-f

Dir(Px.z||[Px ® Pz) > Ee, , [Ts(z)] — Bz, gp, [T 1]

Donsker-Varadhan (tighter): MINE

Dir(Px z||Px ® Pz) > Ep, ,[Ts(z)] — log Epy gz, €741

39 [Belghazi et. al., 2018]



Demonstration of estimation

Mutual Information of 2-dimensional variables
2.00

— MINE
1.75 —— MINE-f
150 \ —— Kraskov /

-=== True Ml

125

< 1.00
= 0.75
0.50

0.25

0.00

40 [Belghazi et. al., 2018]



Demonstration of estimation

Mutual Information of 20-dimensional variables
40

— MINE

— MINE-f
— Kraskov
-==- True Ml

'
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
/

41 [Belghazi et. al., 2018]



Maximizing mutual information: avoid
GAN mode dropping by max MI(X,Z)

GAN GAN+MINE

Ground Truth GAN GAN+MINE

6 —6 —4 -2 0 2 4 6
1

42 [Belghazi et. al., 2018]
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| daeg
DCGAN 99 3,4
ALI 16 5,4
Unrolled GAN 48,7 4,32
VEEGAN 150 2,96
PacGAN 1000 0,6
DCGAN+MINE 1000 0,5
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[Belghazi et. al., 2018]






