GANs and Unsupervised Representation Learning

Yoshua Bengio

March 19th, 2018 NYU, ECE Seminar Series on Modern Al

Thanks

- Devon Hjelm
- Philemon Brakel
- Aaron Courville
- Ishmael Belghazi
- Aristide Baratin
- Sai Rajeswar
- Clément Feutry

- Sherjil Ozair
- Ian Goodfellow
- Athul Paul Jacob
- Gerry Che
- Adam Trischler
- Kyunghyun Cho
 - Pablo Piantanida

Still Far from Human-Level Al

 Industrial successes mostly based on supervised learning

- Learning superficial clues, not generalizing well enough outside of training contexts, easy to fool trained networks:
 - Current models cheat by picking on surface regularities

Learning Multiple Levels of Abstraction

(Bengio & LeCun 2007)

- The big payoff of deep learning is to allow learning higher levels of abstraction
- Higher-level abstractions disentangle the

factors of variation, which allows much easier

generalization and transfer

Invariance and Disentangling

- Invariant features
- Which invariances?
- Alternative: learning to disentangle

- - Dependencies are "simple" when the data is projected in the right abstract space

Disentangling from denoising objective

(Glorot, Bordes & Bengio ICML 2011)

- Early deep learning research already is looking for possible disentangling arising from unsupervised learning of representations
- Experiments on stacked denoising auto-encoders with ReLUs, on BoW text classification
- Features tend to specialize to either sentiment or domain

How to Discover Good Disentangled Representations

- How to discover abstractions?
- What is a good representation? (Bengio et al 2013)
- Need clues (= priors) to help disentangle the underlying factors, such as
 - Spatial & temporal scales
 - Marginal independence
 - Simple dependencies between factors
 - Consciousness prior
 - Causal / mechanism independence
 - Controllable factors

Latent Variables and Abstract Representations to Disentangle Manifolds

- Encoder/decoder view: maps between low & high-levels
- Encoder does inference: interpret the data at the abstract level
- Decoder can generate new configurations
- Encoder flattens and disentangles the data manifold

Generation

- Conditional generation
- Style transfer
- De-noising / image completion (inpainting)
- Super-resolution

Conditioning variable

Generated face

[Antipov et. al., 2017]

This bird has a yellow belly and tarsus, grey back, wings, and brown throat, nape

This bird is white with some black on its head and wings, and has a long orange beak This flower has overlapping pink pointed petals surrounding a ring of short yellow filaments

Generated image

with a black face

[Zhang et. al., 2016]

Generation

- Conditional generation
- Style transfer
- De-noising / image completion (inpainting)
- Super-resolution

Generation

- Conditional generation
- Style transfer
- De-noising / image completion (inpainting)
- Super-resolution

Missing pixels

Generation

- Conditional generation
- Style transfer
- De-noising / image completion (inpainting)
- Super-resolution

Low res

High res

SOTA Generation

- Conditional generation
- Style transfer
- De-noising / image completion (inpainting)
- Super-resolution
- Drug discovery
- Speech synthesis
- Domain transfer
- And much much more

Figure 5: 1024 × 1024 images generated using the CELEBA-HQ dataset [Karras et. al., 2017]

Discovery

Learn relevant factors

"What I cannot create, I do not understand" -Richard Feynman

Discovery

Learn relevant factors

Inference

"What I cannot create, I do not understand" -Richard Feynman

Discovery

Learn relevant factors

"What I cannot create, I do not understand" -Richard Feynman

Inference

What's wrong with standard maximum likelihood?

 Pay a huge price for not putting probability mass at even a single training example, even if the data manifold and model manifold are very close.

What's wrong with standard maximum likelihood?

Model

density

Data

manifold

- 1. Pay a huge price for not putting probability mass at even a single training example, even if the data manifold and model manifold are very close.
 - So MLE makes the model distribution very fat and conservative
- Another problem is that MLE measures error bits in pixel space whereas humans really care about errors in abstract space, so we would like loss measured in learned latent space

Classifiers for modeling distributions

Data manifold

classifier

- We were inspired by the work of Gutmann & Hyvarinen using probabilistic classifiers to estimate energy functions
 Gutmann & Hyvarinen 2012, Noise-Contrastive Estimation
- In high dimension, more relevant then density is whether you are in-support vs out-of-support
- A classifier of in-support vs out-of-support pays a *constant* price (rather than huge) for not putting support at a training example

Givens:

Samples from a target distribution \mathbb{P} (Simple) prior \mathbb{Q}_z

P

 \mathbb{Q}_z

Givens:

Samples from a target distribution \mathbb{P} (Simple) prior \mathbb{Q}_z

Player 1: Generator

A neural network with parameters, θ , whose samples **fool the discriminator**

Givens:

Samples from a target distribution \mathbb{P} (Simple) prior \mathbb{Q}_z

Player 1: Generator

A neural network with parameters, θ , whose samples **fool the discriminator**

Player 2: Discriminator
Distinguish (classify) real and fake correctly

Givens:

Samples from a target distribution \mathbb{P} (Simple) prior \mathbb{Q}_z

Player 1: Generator

A neural network with parameters, θ , whose samples **fool the discriminator**

Player 2: Discriminator
Distinguish (classify) real and fake correctly

Minimax on value function

$$\mathcal{V}(\mathbb{P}, \mathbb{Q}_{\theta}, D_{\phi}) = \mathbb{E}_{\mathbb{P}} \left[\log D_{\phi}(x) \right] + \mathbb{E}_{\mathbb{Q}_{z}} \left[\log(1 - D_{\phi}(G_{\theta}(z))) \right]$$

 $(\hat{\theta}, \hat{\phi}) = \operatorname*{arg\,min}_{\theta} \operatorname*{arg\,max}_{\phi} \mathcal{V}(\mathbb{P}, \mathbb{Q}_{\theta}, D_{\phi})$

Discriminator Network Generator network (counterfeiter) Completely differentiable function

Fake

Real

Fine print: Continuous data only

The discriminator defines a lower-bound

$$2 * \mathcal{D}_{JSD}(\mathbb{P}||\mathbb{Q}_{\theta}) - \log 4 \geq \mathcal{V}(\mathbb{P}, \mathbb{Q}_{\theta}; T_{\phi})$$

The discriminator defines a lower-bound

$$2 * \mathcal{D}_{JSD}(\mathbb{P}||\mathbb{Q}_{\theta}) - \log 4 \ge \mathcal{V}(\mathbb{P}, \mathbb{Q}_{\theta}; T_{\phi})$$

• *f*-divergence

$$\mathcal{D}_f(\mathbb{P}||\mathbb{Q}_{ heta}) = \mathbb{E}_{\mathbb{Q}_{ heta}}\left[f\left(rac{p(x)}{q_{ heta}(x)}
ight)
ight]$$

[f-GAN. Nowozin et. al., 2017]

The discriminator defines a lower-bound

$$2 * \mathcal{D}_{JSD}(\mathbb{P}||\mathbb{Q}_{\theta}) - \log 4 \geq \mathcal{V}(\mathbb{P}, \mathbb{Q}_{\theta}; T_{\phi})$$

• *f*-divergence

$$\mathcal{D}_f(\mathbb{P}||\mathbb{Q}_{ heta}) = \mathbb{E}_{\mathbb{Q}_{ heta}}\left[f\left(rac{p(x)}{q_{ heta}(x)}
ight)
ight]$$

Convex dual using neural networks

$$\mathcal{D}_{f}(\mathbb{P}||\mathbb{Q}_{\theta}) \geq \mathbb{E}_{\mathbb{P}}[T_{\phi}(x)] - \mathbb{E}_{\mathbb{Q}_{\theta}}[f^{\star}(T_{\phi}(x))]$$
$$= \mathcal{V}_{f}(\mathbb{P}, \mathbb{Q}_{\theta}; T_{\phi})$$

Dual using a classifier

measure

Primal

[f-GAN. Nowozin et. al., 2017]

The discriminator defines a lower-bound

$$2 * \mathcal{D}_{JSD}(\mathbb{P}||\mathbb{Q}_{\theta}) - \log 4 \geq \mathcal{V}(\mathbb{P}, \mathbb{Q}_{\theta}; T_{\phi})$$

• *f*-divergence

$$\mathcal{D}_f(\mathbb{P}||\mathbb{Q}_{ heta}) = \mathbb{E}_{\mathbb{Q}_{ heta}}\left[f\left(rac{p(x)}{q_{ heta}(x)}
ight)
ight]$$

Convex dual using neural networks

$$\mathcal{D}_{f}(\mathbb{P}||\mathbb{Q}_{\theta}) \geq \mathbb{E}_{\mathbb{P}}[T_{\phi}(x)] - \mathbb{E}_{\mathbb{Q}_{\theta}}[f^{\star}(T_{\phi}(x))]$$
$$= \mathcal{V}_{f}(\mathbb{P}, \mathbb{Q}_{\theta}; T_{\phi})$$

Dual using a classifier

- Estimate using samples
- Other Examples KL, Jensen-Shannon, Squared Hellinger, Pearson χ²
- GANS are a convex dual optimization with a classifier

[f-GAN. Nowozin et. al., 2017]

WGAN

Arjowski et al 2017

 Penalize the Earth-Mover's distance between the generated and data distribution: pay a small price if the two manifolds do not overlap but are close in data space.

$$D_W(\mathbb{P}||\mathbb{Q}_{\theta}) = \sup_{||T_{\phi}||_{L} < 1} \mathbb{E}_{\mathbb{P}}[T_{\phi}(x)] - \mathbb{E}_{\mathbb{Q}_{\theta}}[T_{\phi}(x)]$$

Estimating the likelihood ratio

• Recall the convex dual form: $\mathcal{D}_f(\mathbb{P}||\mathbb{Q}_\theta) \geq \mathbb{E}_{\mathbb{P}}[T_\phi(x)] - \mathbb{E}_{\mathbb{Q}_\theta}[f^\star(T_\phi(x))]$

• For perfect discriminator T^{\star} :

$$p(x) = (\partial f^*/\partial T)(T^*(x))q_{\theta}(x)$$

Boundary-Seeking GANs

Hjelm, Jacob, Che, Trischler, Cho & Bengio ICLR 2018

Recall the convex dual form:

$$\mathcal{D}_f(\mathbb{P}||\mathbb{Q}_{\theta}) \ge \mathbb{E}_{\mathbb{P}}[T_{\phi}(x)] - \mathbb{E}_{\mathbb{Q}_{\theta}}[f^{\star}(T_{\phi}(x))]$$

• For perfect discriminator T^* :

$$p(x) = (\partial f^*/\partial T)(T^*(x))q_{\theta}(x)$$

• Given a **neural network** T_{ϕ} :

$$ilde{p}(x) = rac{w(x)}{eta}q_{ heta}(x)$$

- Importance weights: $w(x) = (\partial f^{\star}/\partial T)(T_{\phi}(x))$
- Partition function: $\beta = \mathbb{E}_{\mathbb{Q}_{\phi}}[w(x)]$

BGAN: Importance sampling Hjelm et al ICLR 2018

Gradient becomes 0 when p=q

Qualitative discrete results [sic] And it 's miant a quert could he

Discrete MNIST

Ground Truth

Generated

Quantized CelebA

- He weirst placed produces hopesi
- What 's word your changerg bette
- "We pait of condels of money wi
- Sance Jory Chorotic , Sen doesin
- In Lep Edger 's begins of a find",
- Lankard Avaloma was Mr. Palin ,
- What was like one of the July 2
- " I stroke like we all call on a
- Thene says the sounded Sunday in
- The BBC nothing overton and slea
- With there was a passes ipposing
- About dose and warthestrinds fro
- College is out in contesting rev
- And tear he jumped by even a roy

Character-level [Hjelm et. al., 2017] 1-billion word (convnet)

⇒ BGAN: boundary-seeking ⇒ increased stability by pushing discriminator to the boundary

- The BGAN objective ends up pushing the discriminator output towards the decision surface whereas all the other GAN objectives can actually push it well *beyond* it
- Continuous case objective on generator with f-divergence (KL):

$$\min_{\theta} F_{\phi}(G_{\theta}(z))^2$$

Adversarial Domain Adaptation

Yaroslav Ganin

- Adversarial domain adaptation: Ganin & Lempitsky ICML 2015
- Shared representation R(x) is trained to optimize main task Y|R(x) and worsen the prediction of the 'domain' variables Z wrt which we want the representation R(x) to be invariant.

Main Invariance task

Stability Trick in Adversarial Domain Adaptation

Learning Anonymized
 Representations with Adversarial
 Neural Networks: Feutry et al

arXiv:1802.09386

Clément Feutry

Pablo Piantanida

 Instead of *maximizing* crossentropy on the invariance variables prediction Q(Z|R), bring it to the cross-entropy of the marginal distribution Q(Z)

$$\min_{\theta} \mathbb{E}_{X,Y,Z}[-\log Q(Y|R_{\theta}(X)) + \lambda |\log Q(Z|R_{\theta}(X)) - \log Q(Z)|]$$

Using a discriminator to optimize independence, mutual information or entropy

- The GAN discriminator is trained to estimate a similarity function between two distributions
- Two independent r-v A & B have the property that P(A,B)=P(A)P(B)
 - Given samples from P(A,B) you can obtain samples from P(A)P(B), e.g. by shuffling A values within a minibatch

Train a discriminator to separate between pairs (A,B) coming from P(A,B) and pairs coming from P(A) P(B)

Brakel & Bengio ArXiv:1710.05050

Using a discriminator to optimize independence, mutual information or entropy

Brakel & Bengio ArXiv:1710.05050

Train a discriminator to separate between pairs (A,B) coming from P(A,B) and pairs coming from P(A) P(B)

 Generalize this to measuring independence of all the outputs of a representation function (encoder). Maximize independence by backprop independence score into encoder → NON-LINEAR ICA.

Using a discriminator to optimize independence, mutual information or entropy

MINE: Mutual Information Neural Estimator

Belghazi et al ArXiv:1801.04062

Same architecture, but with a twist in the training objective which provides an asymptotically correct estimator of mutual independence

Mutual information neural estimator (MINE)

Ishmael Belghazi, Aristide Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio, Aaron Courville, R Devon Hjelm

Mutual information: measure of dependence between two variables

$$I(X;Z) = \mathcal{D}_{KL}(\mathbb{P}_{X,Z}||\mathbb{P}_X\otimes\mathbb{P}_Z) = \mathbb{E}_{\mathbb{P}_{X,Z}}\left[\log\left(rac{p(x,z)}{p(x)p(z)}
ight)
ight]$$

Fenchel convex dual (f-GAN): MINE-f

$$\mathcal{D}_{KL}(\mathbb{P}_{X,Z}||\mathbb{P}_X\otimes\mathbb{P}_Z)\geq \mathbb{E}_{\mathbb{P}_{X,Z}}[T_{\phi}(x)]-\mathbb{E}_{\mathbb{P}_X\otimes\mathbb{P}_Z}[e^{T_{\phi}(x)-1}]$$

Donsker-Varadhan (tighter): MINE

$$\mathcal{D}_{KL}(\mathbb{P}_{X,Z}||\mathbb{P}_X\otimes\mathbb{P}_Z)\geq \mathbb{E}_{\mathbb{P}_{X,Z}}[T_{\phi}(x)]-\log\mathbb{E}_{\mathbb{P}_X\otimes\mathbb{P}_Z}[e^{T_{\phi}(x)}]$$

Demonstration of estimation

Demonstration of estimation

Maximizing mutual information: avoid GAN mode dropping by max MI(X,Z)

[Belghazi et. al., 2018]

Maximizing mutual information (stacked MNIST)

303	Modes (max 1000)	$\mathcal{D}_{KL}(\mathbb{P}_Y \mathbb{Q}_Y)$
DCGAN	99	3,4
ALI	16	5,4
Unrolled GAN	48,7	4,32
VEEGAN	150	2,96
PacGAN	1000	0,6
DCGAN+MINE	1000	0,5

