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Central Issue in Deep Learning:  
Credit Assignment 

•  What	
  should	
  hidden	
  layers	
  do?	
  

•  Established	
  approaches:	
  
•  BackpropagaBon	
  
•  StochasBc	
  relaxaBon	
  in	
  Boltzmann	
  machines	
  



Issues with Back-Prop 
•  Over	
  very	
  deep	
  nets	
  or	
  recurrent	
  nets	
  with	
  many	
  steps,	
  non-­‐

lineariBes	
  compose	
  and	
  yield	
  sharp	
  non-­‐linearity	
  à	
  gradients	
  
vanish	
  or	
  explode	
  

•  Training	
  deeper	
  nets:	
  harder	
  opBmizaBon	
  
•  In	
  the	
  extreme	
  of	
  non-­‐linearity:	
  discrete	
  funcBons,	
  can’t	
  use	
  

back-­‐prop	
  
•  Biological	
  plausibility	
  

¢	
   =	
  ¢	
   …	
  



Biological Plausibility Issues with 
Standard Backprop 

1.  BP	
  of	
  gradient	
  =	
  purely	
  linear	
  computaBon,	
  not	
  plausible	
  across	
  
many	
  neural	
  levels	
  

2.  If	
  feedback	
  paths	
  are	
  used	
  for	
  BP,	
  how	
  would	
  they	
  know	
  the	
  
precise	
  derivaBves	
  of	
  forward-­‐prop?	
  

3.  Feedback	
  paths	
  would	
  have	
  to	
  use	
  exactly	
  the	
  same	
  weights	
  
(transposed)	
  as	
  feedforward	
  paths	
  

4.  Real	
  neurons	
  communicate	
  via	
  spikes	
  
5.  Need	
  to	
  clock	
  and	
  alternate	
  feedforward	
  and	
  feedback	
  

computaBon	
  
6.  Where	
  would	
  the	
  supervised	
  targets	
  come	
  from?	
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Issues with Boltzmann Machines 
•  Sampling	
  from	
  the	
  MCMC	
  of	
  the	
  model	
  is	
  required	
  in	
  the	
  inner	
  loop	
  

of	
  training	
  
•  As	
  the	
  model	
  gets	
  sharper,	
  mixing	
  between	
  well-­‐separated	
  modes	
  

stalls	
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Training	
  updates	
  

Mixing	
  
vicious	
  circle	
  



What is the brain’s learning algorithm? 
Cue: Spike-Timing Dependent Plasticity 

•  Observed	
  
throughout	
  the	
  
nervous	
  system,	
  
especially	
  in	
  
cortex	
  

•  STDP:	
  weight	
  
increases	
  if	
  post-­‐
spike	
  just	
  a^er	
  
pre-­‐spike,	
  
decreases	
  if	
  just	
  
before.	
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Machine Learning Interpretation of 
Spike-Timing Dependent Plasticity 
•  Suggested	
  by	
  Xie	
  &	
  Seung	
  NIPS’99	
  and	
  Hinton	
  2007:	
  the	
  STDP	
  

update	
  corresponds	
  to	
  a	
  temporal	
  derivaBve	
  filter	
  applied	
  to	
  
post-­‐spike,	
  around	
  pre-­‐spike.	
  

•  In	
  agreement	
  with	
  the	
  above,	
  we	
  argue	
  this	
  corresponds	
  to	
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here.

Note that back-propagation is used not just for classical su-
pervised learning but also for many unsupervised learning
algorithms, including all kinds of auto-encoders: sparse
auto-encoders (Ranzato et al., 2007; Goodfellow et al.,
2009), denoising auto-encoders (Vincent et al., 2008),
contractive auto-encoders (Rifai et al., 2011), and more
recently, variational auto-encoders (Kingma & Welling,
2014). Other unsupervised learning algorithms exist which
do not rely on back-propagation, such as the various Boltz-
mann machine learning algorithms (Hinton & Sejnowski,
1986; Smolensky, 1986; Hinton et al., 2006; Salakhutdinov
& Hinton, 2009). Boltzmann machines are probably the
most biologically plausible learning algorithms for deep ar-
chitectures that we currently know, but they also face sev-
eral question marks in this regard, such as the weight trans-
port problem ((3) above) to achieve symmetric weights, and
the positive-phase vs negative-phase synchronization ques-
tion (similar to (5) above).

Our starting point (Sec. 2) proposes an interpretation of the
main learning rule observed in biological synapses: Spike-
Timing-Dependent Plasticity (STDP). Following up on the
ideas presented in Hinton’s 2007 talk (Hinton, 2007), we
first argue that STDP could be seen as stochastic gradient
descent if only the neuron was driven by a feedback signal
that either increases or decreases the neuron’s firing rate
in proportion to the gradient of an objective function with
respect to the neuron’s voltage potential.

In Sec. 3 we then argue that the above interpretation
suggests that neural dynamics (which creates the above
changes in neuronal activations thanks to feedback and lat-
eral connections) correspond to inference towards neural
configurations that are more consistent with each other and
with the observations (inputs, targets, or rewards). This
view extends Hinton’s supervised learning proposal to the
unsupervised generative setting. It naturally suggests that
the training procedure corresponds to a form of variational
EM (Neal & Hinton, 1999) (see Sec.3), possibly based on
MAP (maximum a posteriori) or MCMC (Markov Chain
Monte-Carlo) approximations. In Sec. 4 we show how this
mathematical framework suggests a training procedure for
a deep generative network with many layers of latent vari-
ables. However, the above interpretation would still require
to compute some gradients. Another contribution (Sec. 6)
is to show that one can estimate these gradients via an ap-
proximation that only involves ordinary neural computa-
tion and no explicit derivatives, following previous work
on target propagation (Bengio, 2014; Lee et al., 2014).

Although our primary justification for the proposed learn-
ing algorithm corresponds to a deep directed graphical
model, it turns out that the proposed learning mechanism
can be interpreted as training a denoising auto-encoder. As

discussed in Sec. 5 these alternative interpretations of the
model provide different ways to sample from it, and we
found that better samples could be obtained.

2. STDP as Stochastic Gradient Descent
Spike-Timing-Dependent Plasticity or STDP is believed to
be the main form of synaptic change in neurons (Markram
& Sakmann, 1995; Gerstner et al., 1996) and it relates the
expected change in synaptic weights to the timing differ-
ence between post-synaptic spikes and pre-synaptic spikes.
Although it is the result of experimental observations in
biological neurons, its interpretation as part of a learning
procedure that could explain learning in deep networks re-
mains unclear. This paper aims at proposing such an in-
terpretation, starting from the proposal made by Hinton
(2007), but extending these ideas towards unsupervised
generative modeling of the data.

What has been observed in STDP is that the weights change
if there is a pre-synaptic spike in the temporal vicinity of
a post-synaptic spike: that change is positive if the post-
synaptic spike happens just after the pre-synaptic spike,
negative if it happens just before. As suggested in Hin-
ton’s talk, this also corresponds to a temporal derivative fil-
ter applied to the post-synaptic firing rate, at the time of the
pre-synaptic spike. To illustrate this, consider the situation
in which two neurons Ni and Nk impinge on neuron Nj ,
and each neuron, say Ni, has a voltage potential Vi which,
when above threshold, makes the neuron send out a spike
Si with probability (called rate) Ri. If Rk increases after a
spike Si, in average (over Sk), that will increase Vj and Rj

and thus the probability of Nj’s post-synaptic spike. That
will come right after the Ni spike, yielding an increase in
the synaptic weight Wij as per STDP. However, if Rk de-
creases after a spike Si, this decreases the probability of Nj

spiking after Ni’s spike, or equivalently, making the prob-
ability of Nj’s spike occuring before Ni’s spike larger than
the probability of Nj’s spike occuring after Ni’s spike, i.e.,
making Vj and Rj smaller. According to STDP, this situ-
ation would then correspond to a decrease in the synaptic
weight. In conclusion, these arguments suggest that STDP
can be interpreted as follows:

�Wij / Si�Vj , (1)

where � indicates the temporal change, Si indicates the
pre-synaptic spike (from neuron i), and Vj indicates the
post-synaptic voltage potential (of neuron j).

Clearly, the consequence is that if the change �Vj cor-
responds to improving some objective function J , then
STDP corresponds to approximate stochastic gradient
descent in that objective function. With this view, STDP
would implement the delta rule (gradient descent on a one-
layer network) if the post-synaptic activation changes in the
direction of the gradient.

pre-­‐spike	
   temporal	
  change	
  in	
  
post-­‐potenBal	
  

synapBc	
  
change	
  



Machine Learning Interpretation of 
Spike-Timing Dependent Plasticity 

•  would	
  be	
  SGD	
  on	
  objecBve	
  J	
  	
  if	
  

•  This	
  corresponds	
  to	
  neural	
  dynamics	
  implemenBng	
  a	
  form	
  of	
  
inference	
  wrt	
  J,	
  seen	
  as	
  a	
  funcBon	
  of	
  parameters	
  and	
  latent	
  vars	
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here.

Note that back-propagation is used not just for classical su-
pervised learning but also for many unsupervised learning
algorithms, including all kinds of auto-encoders: sparse
auto-encoders (Ranzato et al., 2007; Goodfellow et al.,
2009), denoising auto-encoders (Vincent et al., 2008),
contractive auto-encoders (Rifai et al., 2011), and more
recently, variational auto-encoders (Kingma & Welling,
2014). Other unsupervised learning algorithms exist which
do not rely on back-propagation, such as the various Boltz-
mann machine learning algorithms (Hinton & Sejnowski,
1986; Smolensky, 1986; Hinton et al., 2006; Salakhutdinov
& Hinton, 2009). Boltzmann machines are probably the
most biologically plausible learning algorithms for deep ar-
chitectures that we currently know, but they also face sev-
eral question marks in this regard, such as the weight trans-
port problem ((3) above) to achieve symmetric weights, and
the positive-phase vs negative-phase synchronization ques-
tion (similar to (5) above).

Our starting point (Sec. 2) proposes an interpretation of the
main learning rule observed in biological synapses: Spike-
Timing-Dependent Plasticity (STDP). Following up on the
ideas presented in Hinton’s 2007 talk (Hinton, 2007), we
first argue that STDP could be seen as stochastic gradient
descent if only the neuron was driven by a feedback signal
that either increases or decreases the neuron’s firing rate
in proportion to the gradient of an objective function with
respect to the neuron’s voltage potential.

In Sec. 3 we then argue that the above interpretation
suggests that neural dynamics (which creates the above
changes in neuronal activations thanks to feedback and lat-
eral connections) correspond to inference towards neural
configurations that are more consistent with each other and
with the observations (inputs, targets, or rewards). This
view extends Hinton’s supervised learning proposal to the
unsupervised generative setting. It naturally suggests that
the training procedure corresponds to a form of variational
EM (Neal & Hinton, 1999) (see Sec.3), possibly based on
MAP (maximum a posteriori) or MCMC (Markov Chain
Monte-Carlo) approximations. In Sec. 4 we show how this
mathematical framework suggests a training procedure for
a deep generative network with many layers of latent vari-
ables. However, the above interpretation would still require
to compute some gradients. Another contribution (Sec. 6)
is to show that one can estimate these gradients via an ap-
proximation that only involves ordinary neural computa-
tion and no explicit derivatives, following previous work
on target propagation (Bengio, 2014; Lee et al., 2014).

Although our primary justification for the proposed learn-
ing algorithm corresponds to a deep directed graphical
model, it turns out that the proposed learning mechanism
can be interpreted as training a denoising auto-encoder. As

discussed in Sec. 5 these alternative interpretations of the
model provide different ways to sample from it, and we
found that better samples could be obtained.

2. STDP as Stochastic Gradient Descent
Spike-Timing-Dependent Plasticity or STDP is believed to
be the main form of synaptic change in neurons (Markram
& Sakmann, 1995; Gerstner et al., 1996) and it relates the
expected change in synaptic weights to the timing differ-
ence between post-synaptic spikes and pre-synaptic spikes.
Although it is the result of experimental observations in
biological neurons, its interpretation as part of a learning
procedure that could explain learning in deep networks re-
mains unclear. This paper aims at proposing such an in-
terpretation, starting from the proposal made by Hinton
(2007), but extending these ideas towards unsupervised
generative modeling of the data.

What has been observed in STDP is that the weights change
if there is a pre-synaptic spike in the temporal vicinity of
a post-synaptic spike: that change is positive if the post-
synaptic spike happens just after the pre-synaptic spike,
negative if it happens just before. As suggested in Hin-
ton’s talk, this also corresponds to a temporal derivative fil-
ter applied to the post-synaptic firing rate, at the time of the
pre-synaptic spike. To illustrate this, consider the situation
in which two neurons Ni and Nk impinge on neuron Nj ,
and each neuron, say Ni, has a voltage potential Vi which,
when above threshold, makes the neuron send out a spike
Si with probability (called rate) Ri. If Rk increases after a
spike Si, in average (over Sk), that will increase Vj and Rj

and thus the probability of Nj’s post-synaptic spike. That
will come right after the Ni spike, yielding an increase in
the synaptic weight Wij as per STDP. However, if Rk de-
creases after a spike Si, this decreases the probability of Nj

spiking after Ni’s spike, or equivalently, making the prob-
ability of Nj’s spike occuring before Ni’s spike larger than
the probability of Nj’s spike occuring after Ni’s spike, i.e.,
making Vj and Rj smaller. According to STDP, this situ-
ation would then correspond to a decrease in the synaptic
weight. In conclusion, these arguments suggest that STDP
can be interpreted as follows:

�Wij / Si�Vj , (1)

where � indicates the temporal change, Si indicates the
pre-synaptic spike (from neuron i), and Vj indicates the
post-synaptic voltage potential (of neuron j).

Clearly, the consequence is that if the change �Vj cor-
responds to improving some objective function J , then
STDP corresponds to approximate stochastic gradient
descent in that objective function. With this view, STDP
would implement the delta rule (gradient descent on a one-
layer network) if the post-synaptic activation changes in the
direction of the gradient.



STDP and Variational EM 
•  Neural	
  dynamics	
  moving	
  towards	
  “improved”	
  objecBve	
  J	
  and	
  

parameter	
  updates	
  towards	
  the	
  same	
  J	
  corresponds	
  to	
  a	
  
variaBonal	
  EM	
  learning	
  algorithm,	
  	
  

•  where	
  J	
  =	
  regularized	
  joint	
  likelihood	
  of	
  observed	
  x	
  and	
  latent	
  h	
  

	
  
•  Generalizes	
  PSD	
  (PredicBve	
  Sparse	
  DecomposiBon)	
  from	
  

(Kavukcuoglu	
  &	
  LeCun	
  2008)	
  with	
  

Inference	
  iniBal	
  guess	
  
(forward	
  pass)	
  

GeneraBve	
  model	
  
All	
  interacBons	
  between	
  neurons	
  

Towards Biologically Plausible Deep Learning

3. Variational EM with Learned Approximate
Inference

To take advantage of the above statement, the dynamics of
the neural network must be such that neural activities move
towards better values of some objective function J . Hence
we would like to define such an objective function in a way
that is consistent with the actual neural computation be-
ing performed (for fixed weights W ), in the sense that the
expected temporal change of the voltage potentials approx-
imately corresponds to increases in J . In this paper, we
are going to consider the voltage potentials as the central
variables of interest which influence J and consider them
as latent variables V (denoted h below to keep machine
learning interpretation general), while we will consider the
actual spike trains S as non-linear noisy corruptions of V ,
a form of quantization (with the “noise level” controlled
either by the integration time or the number of redundant
neurons in an ensemble (Legenstein & Maass, 2014). This
view makes the application of the denoising auto-encoder
theorems discussed in Sec. 5 more straightforward.

The main contribution of this paper is to propose and give
support to the hypothesis that J comes out of a variational
bound on the likelihood of the data. Variational bounds
have been proposed to justify various learning algorithms
for generative models (Hinton et al., 1995) (Sec. 7). To
keep the mapping to biology open, consider such bounds
and the associated criteria that may be derived from them,
using an abstract notation with observed variable x and la-
tent variable h. If we have a model p(x, h) of their joint
distribution, as well as some approximate inference mech-
anism defining a conditional distribution q⇤(H|x), the ob-
served data log-likelihood log p(x) can be decomposed as

log p(x) = log p(x)
X

h

q⇤(h|x)

=

X

h

q⇤(h|x) log p(x, h)q⇤(h|x)
p(h|x)q⇤(h|x)

=Eq⇤(H|x)[log p(x,H)] +H[q⇤(H|x)]
+KL(q⇤(H|x)||p(H|x)), (2)

where H[] denotes entropy and KL(||) the Kullback-
Leibler (KL) divergence, and where we have used sums but
integrals should be considered when the variables are con-
tinuous. Since both the entropy and the KL-divergence are
non-negative, we can either bound the log-likelihood via

log p(x) � Eq⇤(H|x)[log p(x,H)] +H[q⇤(H|x)], (3)

or if we care only about optimizing p,
log p(x) � Eq⇤(H|x)[log p(x,H)]. (4)

The idea of variational bounds as proxies for the log-
likelihood is that as far as optimizing p is concerned, i.e.,
dropping the entropy term which does not depend on p,

the bound becomes tight when q⇤(H|x) = p(H|x). This
suggests that q⇤(H|x) should approximate p(H|x). Fix-
ing q⇤(H|x) = p(H|x) and optimizing p with q fixed is
the EM algorithm. Here (and in general) this is not possi-
ble so we consider variational methods in which q⇤(H|x)
approximates but does not reach p(H|x).

We propose to decompose q⇤(H|x) in two components:
parametric initialization q

0

(H|x) = q(H|x) and iterative
inference, implicitly defining q⇤(H|x) = qT (H|x) via a
deterministic or stochastic update, or transition operator

qt(H|x) = A(x) qt�1

(H|x). (5)

The variational bound suggests that A(x) should gradu-
ally bring qt(H|x) closer to p(H|x). At the same time,
to make sure that a few steps will be sufficient to approach
p(H|x), one may add a term in the objective function to
make q

0

(H|x) closer to p(H|x), as well as to encourage
p(x, h) to favor solutions p(H|x) that can be easily approx-
imated by qt(H|x) even for small t.

For this purpose, consider as training objective a regular-
ized variational MAP-EM criterion (for a given x):

J = log p(x, h) + ↵ log q(h|x), (6)

where h is a free variable (for each x) initialized from
q(H|x) and then iteratively updated to approximately max-
imize J . The total objective function is just the average
of J over all examples after having performed inference
(the approximate maximization over h for each x). A
reasonable variant would not just encourage q = q

0

to
generate h (given x), but all the qt’s for t > 0 as well.
Alternatively, the iterative inference could be performed
by stochastically increasing J , i.e., via a Markov chain
which may correspond to probabilistic inference with spik-
ing neurons (Pecevski et al., 2011). The corresponding
variational MAP or variational MCMC algorithm would be
as in Algorithm 1. For the stochastic version one would in-
ject noise when updating h. Variational MCMC (de Freitas
et al., 2001) can be used to approximate the posterior, e.g.,
as in the model from Salimans et al. (2014). However, a re-
jection step does not look very biologically plausible (both
for the need of returning to a previous state and for the need
to evaluate the joint likelihood, a global quantity). On the
other hand, a biased MCMC with no rejection step, such as
the stochastic gradient Langevin MCMC of Welling & Teh
(2011) can work very well in practice.

4. Training a Deep Generative Model
There is strong biological evidence of a distinct pattern of
connectivity between cortical areas that distinguishes be-
tween “feedforward” and “feedback” connections (Douglas
et al., 1989) at the level of the microcircuit of cortex (i.e.,
feedforward and feedback connections do not land in the
same type of cells). Furthermore, the feedforward connec-

Approximate	
  inference	
  

J = log p(x, h) + regularizer

regularizer = ↵ q(h|x)



What Inference Mechanism? 

•  Simply	
  going	
  down	
  on	
  J’s	
  gradient	
  corresponds	
  to	
  MAP	
  
inference	
  (disadvantage:	
  decoder	
  not	
  sufficiently	
  contracBve)	
  

•  InjecBng	
  noise	
  in	
  the	
  process	
  gives	
  a	
  form	
  of	
  approximate	
  
posterior	
  MCMC,	
  such	
  as	
  Langevin	
  MCMC	
  

•  Or,	
  in	
  discrete	
  Bme:	
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˙h =

1

2�

@J

@h
+ � Brownian noise

h h+

1

2�

@J

@h
+ � Normal(0, 1) noise

*	
  no	
  rejecBon:	
  biased	
  samples,	
  but	
  ok,	
  see	
  (Welling	
  &	
  Teh	
  ICML	
  2011)	
  



Inference Decouples Deep Net Layers 

•  A^er	
  inference,	
  no	
  need	
  for	
  back-­‐prop	
  because	
  the	
  	
  joint	
  over	
  
layers	
  decouples	
  the	
  updates	
  of	
  the	
  parameters	
  from	
  the	
  
different	
  layers,	
  e.g.	
  

	
  

•  So	
  J	
  could	
  be	
  of	
  the	
  form	
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Algorithm 1 Variational MAP (or MCMC) SGD algorithm
for gradually improving the agreement between the values
of the latent variables h and the observed data x. q(h|x) is
a learned parametric initialization for h, p(h) is a paramet-
ric prior on the latent variables, and p(x|h) specifies how to
generate x given h. Objective function J is defined in Eq. 6
Learning rates � and ✏ respectively control the optimization
of h and of parameters ✓ (of both q and p).

Initialize h ⇠ q(h|x)
for t = 1 to T do

h h+ � @J
@h (optional: add noise for MCMC)

end for
✓  ✓ + ✏@J@✓

tions form a directed acyclic graph with nodes (areas) up-
dated in a particular order, e.g., in the visual cortex (Felle-
man & Essen, 1991). So consider Algorithm 1 with h de-
composed into multiple layers, with the conditional inde-
pendence structure of a directed graphical model structured
as a chain, both for p (going down) and for q (going up):

p(x, h) = p(x|h(1)

)

 
M�1Y

k=1

p(h(k)|h(k+1)

)

!
p(h(M)

)

q(h|x) = q(h(1)|x)
M�1Y

k=1

q(h(k+1)|h(k)
). (7)

This clearly decouples the updates associated with each
layer, for both h and ✓, making these updates “local” to
the layer k, based on “feedback” from layer k � 1 and
k + 1. Nonetheless, thanks to the iterative nature of the
updates of h, all the layers are interacting via both feedfor-
ward (q(h(k)|h(k�1)

)) and feedback (p(h(k)|h(k�1)

) paths.
Denoting x = h(0) to simplify notation, the h update would
thus consist in moves of the form

h(k)  h(k)
+ �

@

@h(k)

⇣
log(p(h(k�1)|h(k)

)p(h(k)|h(k+1)

))

+ ↵ log(q(h(k)|h(k�1)

)q(h(k+1)|h(k)
))

⌘
,

(8)

where ↵ is as in Eq. 6. No back-propagation is needed
for the above derivatives when h(k) is on the left hand side
of the conditional probability bar. Sec. 6 deals with the
right hand side case. For the left hand side case, e.g.,
p(h(k)|h(k+1)

) a conditional Gaussian with mean µ and
variance �2, the gradient with respect to h(k) is simply
µ�h(k)

�2 . Note that there is an interesting interpretation of
such a deep model: the layers above h(k) provide a com-
plex implicitly defined prior for p(h(k)

).

5. Alternative Interpretations as Denoising
Auto-Encoder

By inspection of Algorithm 1, one can observe that this al-
gorithm trains p(x|h) and q(h|x) to form complementary

pairs of an auto-encoder (since the input of one is the tar-
get of the other and vice-versa). Note that from that point
of view any of the two can act as encoder and the other
as decoder for it, depending on whether we start from h
or from x. In the case of multiple latent layers, each pair
of conditionals q(h(k+1)|h(k)

) and p(h(k)|h(k+1)

) forms a
symmetric auto-encoder, i.e., either one can act as the en-
coder and the other as the corresponding decoder, since
they are trained with the same (h(k), h(k+1)

) pairs (but with
reversed roles of input and target).

In addition, if noise is injected, e.g., in the form of the
quantization induced by a spike train, then the trained
auto-encoders are actually denoising auto-encoders, which
means that both the encoders and decoders are contractive:
in the neighborhood of the observed (x, h) pairs, they map
neighboring “corrupted” values to the “clean” (x, h) val-
ues.

5.1. Joint Denoising Auto-Encoder with Latent
Variables

This suggests considering a special kind of “joint” denois-
ing auto-encoder which has the pair (x, h) as “visible” vari-
able, an auto-encoder that implicitly estimates an underly-
ing p(x, h). The transition operator3 for that joint visible-
latent denoising auto-encoder is the following in the case
of a single hidden layer:

(x̃, ˜h) corrupt(x, h)

h ⇠ q(h|x̃) x ⇠ p(x|˜h), (9)

where the corruption may correspond to the stochastic
quantization induced by the neuron non-linearity and spik-
ing process. In the case of a middle layer h(k) in a deeper
model, the transition operator must account for the fact that
h(k) can either be reconstructed from above or from below,
yielding, with probability say 1

2

,

h(k) ⇠ p(h(k)|˜h(k+1)

), (10)

and with one minus that probability,

h(k) ⇠ q(h(k)|˜h(k�1)

). (11)

Since this interpretation provides a different model, it also
provides a different way of generating samples. Especially
for shallow, we have found that better samples could be
obtained in this way, i.e., running the Markov chain with
the above transition operator for a few steps.

There might be a geometric interpretation for the improved
quality of the samples when they are obtained in this way,

3See Theorem 1 from Bengio et al. (2013) for the generative
interpretation of denoising auto-encoders: it basically states that
one can sample from the model implicitly estimated by a denois-
ing auto-encoder by simply alternating noise injection (corrup-
tion), encoding and decoding, these forming each step of a gener-
ative Markov chain.
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Algorithm 1 Variational MAP (or MCMC) SGD algorithm
for gradually improving the agreement between the values
of the latent variables h and the observed data x. q(h|x) is
a learned parametric initialization for h, p(h) is a paramet-
ric prior on the latent variables, and p(x|h) specifies how to
generate x given h. Objective function J is defined in Eq. 6
Learning rates � and ✏ respectively control the optimization
of h and of parameters ✓ (of both q and p).

Initialize h ⇠ q(h|x)
for t = 1 to T do

h h+ � @J
@h (optional: add noise for MCMC)

end for
✓  ✓ + ✏@J@✓

tions form a directed acyclic graph with nodes (areas) up-
dated in a particular order, e.g., in the visual cortex (Felle-
man & Essen, 1991). So consider Algorithm 1 with h de-
composed into multiple layers, with the conditional inde-
pendence structure of a directed graphical model structured
as a chain, both for p (going down) and for q (going up):

p(x, h) = p(x|h(1)

)

 
M�1Y

k=1

p(h(k)|h(k+1)

)

!
p(h(M)

)

q(h|x) = q(h(1)|x)
M�1Y

k=1

q(h(k+1)|h(k)
). (7)

This clearly decouples the updates associated with each
layer, for both h and ✓, making these updates “local” to
the layer k, based on “feedback” from layer k � 1 and
k + 1. Nonetheless, thanks to the iterative nature of the
updates of h, all the layers are interacting via both feedfor-
ward (q(h(k)|h(k�1)

)) and feedback (p(h(k)|h(k�1)

) paths.
Denoting x = h(0) to simplify notation, the h update would
thus consist in moves of the form

h(k)  h(k)
+ �

@

@h(k)

⇣
log(p(h(k�1)|h(k)

)p(h(k)|h(k+1)

))

+ ↵ log(q(h(k)|h(k�1)

)q(h(k+1)|h(k)
))

⌘
,

(8)

where ↵ is as in Eq. 6. No back-propagation is needed
for the above derivatives when h(k) is on the left hand side
of the conditional probability bar. Sec. 6 deals with the
right hand side case. For the left hand side case, e.g.,
p(h(k)|h(k+1)

) a conditional Gaussian with mean µ and
variance �2, the gradient with respect to h(k) is simply
µ�h(k)

�2 . Note that there is an interesting interpretation of
such a deep model: the layers above h(k) provide a com-
plex implicitly defined prior for p(h(k)

).

5. Alternative Interpretations as Denoising
Auto-Encoder

By inspection of Algorithm 1, one can observe that this al-
gorithm trains p(x|h) and q(h|x) to form complementary

pairs of an auto-encoder (since the input of one is the tar-
get of the other and vice-versa). Note that from that point
of view any of the two can act as encoder and the other
as decoder for it, depending on whether we start from h
or from x. In the case of multiple latent layers, each pair
of conditionals q(h(k+1)|h(k)

) and p(h(k)|h(k+1)

) forms a
symmetric auto-encoder, i.e., either one can act as the en-
coder and the other as the corresponding decoder, since
they are trained with the same (h(k), h(k+1)

) pairs (but with
reversed roles of input and target).

In addition, if noise is injected, e.g., in the form of the
quantization induced by a spike train, then the trained
auto-encoders are actually denoising auto-encoders, which
means that both the encoders and decoders are contractive:
in the neighborhood of the observed (x, h) pairs, they map
neighboring “corrupted” values to the “clean” (x, h) val-
ues.

5.1. Joint Denoising Auto-Encoder with Latent
Variables

This suggests considering a special kind of “joint” denois-
ing auto-encoder which has the pair (x, h) as “visible” vari-
able, an auto-encoder that implicitly estimates an underly-
ing p(x, h). The transition operator3 for that joint visible-
latent denoising auto-encoder is the following in the case
of a single hidden layer:

(x̃, ˜h) corrupt(x, h)

h ⇠ q(h|x̃) x ⇠ p(x|˜h), (9)

where the corruption may correspond to the stochastic
quantization induced by the neuron non-linearity and spik-
ing process. In the case of a middle layer h(k) in a deeper
model, the transition operator must account for the fact that
h(k) can either be reconstructed from above or from below,
yielding, with probability say 1

2

,

h(k) ⇠ p(h(k)|˜h(k+1)

), (10)

and with one minus that probability,

h(k) ⇠ q(h(k)|˜h(k�1)

). (11)

Since this interpretation provides a different model, it also
provides a different way of generating samples. Especially
for shallow, we have found that better samples could be
obtained in this way, i.e., running the Markov chain with
the above transition operator for a few steps.

There might be a geometric interpretation for the improved
quality of the samples when they are obtained in this way,

3See Theorem 1 from Bengio et al. (2013) for the generative
interpretation of denoising auto-encoders: it basically states that
one can sample from the model implicitly estimated by a denois-
ing auto-encoder by simply alternating noise injection (corrup-
tion), encoding and decoding, these forming each step of a gener-
ative Markov chain.

J =

X

k

log p(h(k)|h(k+1)
) + log q(h(k+1)|h(k)

)
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Algorithm 1 Variational MAP (or MCMC) SGD algorithm
for gradually improving the agreement between the values
of the latent variables h and the observed data x. q(h|x) is
a learned parametric initialization for h, p(h) is a paramet-
ric prior on the latent variables, and p(x|h) specifies how to
generate x given h. Objective function J is defined in Eq. 6
Learning rates � and ✏ respectively control the optimization
of h and of parameters ✓ (of both q and p).

Initialize h ⇠ q(h|x)
for t = 1 to T do

h h+ � @J
@h (optional: add noise for MCMC)

end for
✓  ✓ + ✏@J@✓

tions form a directed acyclic graph with nodes (areas) up-
dated in a particular order, e.g., in the visual cortex (Felle-
man & Essen, 1991). So consider Algorithm 1 with h de-
composed into multiple layers, with the conditional inde-
pendence structure of a directed graphical model structured
as a chain, both for p (going down) and for q (going up):

p(x, h) = p(x|h(1)

)

 
M�1Y

k=1

p(h(k)|h(k+1)

)

!
p(h(M)

)

q(h|x) = q(h(1)|x)
M�1Y

k=1

q(h(k+1)|h(k)
). (7)

This clearly decouples the updates associated with each
layer, for both h and ✓, making these updates “local” to
the layer k, based on “feedback” from layer k � 1 and
k + 1. Nonetheless, thanks to the iterative nature of the
updates of h, all the layers are interacting via both feedfor-
ward (q(h(k)|h(k�1)

)) and feedback (p(h(k)|h(k�1)

) paths.
Denoting x = h(0) to simplify notation, the h update would
thus consist in moves of the form

h(k)  h(k)
+ �

@

@h(k)

⇣
log(p(h(k�1)|h(k)

)p(h(k)|h(k+1)

))

+ ↵ log(q(h(k)|h(k�1)

)q(h(k+1)|h(k)
))

⌘
,

(8)

where ↵ is as in Eq. 6. No back-propagation is needed
for the above derivatives when h(k) is on the left hand side
of the conditional probability bar. Sec. 6 deals with the
right hand side case. For the left hand side case, e.g.,
p(h(k)|h(k+1)

) a conditional Gaussian with mean µ and
variance �2, the gradient with respect to h(k) is simply
µ�h(k)

�2 . Note that there is an interesting interpretation of
such a deep model: the layers above h(k) provide a com-
plex implicitly defined prior for p(h(k)

).

5. Alternative Interpretations as Denoising
Auto-Encoder

By inspection of Algorithm 1, one can observe that this al-
gorithm trains p(x|h) and q(h|x) to form complementary

pairs of an auto-encoder (since the input of one is the tar-
get of the other and vice-versa). Note that from that point
of view any of the two can act as encoder and the other
as decoder for it, depending on whether we start from h
or from x. In the case of multiple latent layers, each pair
of conditionals q(h(k+1)|h(k)

) and p(h(k)|h(k+1)

) forms a
symmetric auto-encoder, i.e., either one can act as the en-
coder and the other as the corresponding decoder, since
they are trained with the same (h(k), h(k+1)

) pairs (but with
reversed roles of input and target).

In addition, if noise is injected, e.g., in the form of the
quantization induced by a spike train, then the trained
auto-encoders are actually denoising auto-encoders, which
means that both the encoders and decoders are contractive:
in the neighborhood of the observed (x, h) pairs, they map
neighboring “corrupted” values to the “clean” (x, h) val-
ues.

5.1. Joint Denoising Auto-Encoder with Latent
Variables

This suggests considering a special kind of “joint” denois-
ing auto-encoder which has the pair (x, h) as “visible” vari-
able, an auto-encoder that implicitly estimates an underly-
ing p(x, h). The transition operator3 for that joint visible-
latent denoising auto-encoder is the following in the case
of a single hidden layer:

(x̃, ˜h) corrupt(x, h)

h ⇠ q(h|x̃) x ⇠ p(x|˜h), (9)

where the corruption may correspond to the stochastic
quantization induced by the neuron non-linearity and spik-
ing process. In the case of a middle layer h(k) in a deeper
model, the transition operator must account for the fact that
h(k) can either be reconstructed from above or from below,
yielding, with probability say 1

2

,

h(k) ⇠ p(h(k)|˜h(k+1)

), (10)

and with one minus that probability,

h(k) ⇠ q(h(k)|˜h(k�1)

). (11)

Since this interpretation provides a different model, it also
provides a different way of generating samples. Especially
for shallow, we have found that better samples could be
obtained in this way, i.e., running the Markov chain with
the above transition operator for a few steps.

There might be a geometric interpretation for the improved
quality of the samples when they are obtained in this way,

3See Theorem 1 from Bengio et al. (2013) for the generative
interpretation of denoising auto-encoders: it basically states that
one can sample from the model implicitly estimated by a denois-
ing auto-encoder by simply alternating noise injection (corrup-
tion), encoding and decoding, these forming each step of a gener-
ative Markov chain.

@ log p(h(k�1)|h(k)
)

@h(k)

@J
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Regularized Auto-Encoders Learn a 
Vector Field or a Markov Chain 
Transition Distribution 
•  (Bengio,	
  Vincent	
  &	
  Courville,	
  TPAMI	
  2013)	
  review	
  paper	
  
•  (Alain	
  &	
  Bengio	
  ICLR	
  2013;	
  Bengio	
  et	
  al,	
  NIPS	
  2013)	
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Denoising Auto-Encoders Learn a 
Small Move Towards Higher 
Probability 
•  ReconstrucBon	
  	
  	
  	
  	
  points	
  in	
  direcBon	
  of	
  higher	
  probability	
  

•  Trained	
  with	
  input/target	
  pair	
  =	
  
	
  	
  	
  (corrupted	
  	
  	
  	
  	
  à	
  clean	
  data	
  	
  	
  	
  )	
  
	
  
•  DAE	
  à	
  Score	
  matching	
  
	
  	
  	
  	
  	
  (Vincent	
  2011)	
  

x̂� x / @ logP (x)

@x

x̂

x̂

x̃

x̃

x

x

gradient	
  

(Alain	
  &	
  Bengio	
  ICLR	
  2013)	
  
	
  



General Result about Denoising 

•  Non-­‐parametric	
  limit:	
  

•  where	
  z	
  is	
  N(0,1)	
  noise	
  and	
  E[.]	
  is	
  over	
  p(x)	
  and	
  z.	
  Then	
  

•  i.e.,	
  following	
  the	
  reconstrucBon	
  goes	
  down	
  the	
  gradient	
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(x)� x
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2
=

@ log p(x)

@x

r

⇤ = argminrE[||x� r(x+ �z)||2]

(Alain	
  &	
  Bengio	
  ICLR	
  2013)	
  
	
  



Consistency Results  
(Bengio et al NIPS 2013) 
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•  Denoising	
  AE	
  are	
  consistent	
  esBmators	
  of	
  the	
  data-­‐generaBng	
  
distribuBon	
  through	
  their	
  Markov	
  chain	
  (corrupt,	
  reconstruct	
  
and	
  inject	
  reconstrucBon	
  error	
  noise,	
  repeat),	
  so	
  long	
  as	
  they	
  
consistently	
  esBmate	
  the	
  condiBonal	
  denoising	
  distribuBon	
  and	
  
the	
  Markov	
  chain	
  converges.	
  

•  In	
  other	
  words,	
  if	
  the	
  inference	
  mechanism	
  corresponds	
  to	
  
corrupBon	
  and	
  denoising	
  reconstrucBon,	
  we	
  are	
  following	
  the	
  
model’s	
  Markov	
  chain.	
  

Making P✓n(X|X̃) match P(X|X̃) makes ⇡n(X) match P(X)

truth	
  denoising	
  distr.	
   staBonary	
  distr.	
   truth	
  



Denoising Score Matching 

•  An	
  alternaBve	
  to	
  maximum	
  likelihood	
  for	
  conBnuous	
  random	
  
variables	
  

•  AsymptoBcally	
  consistent	
  esBmator	
  (as	
  noises	
  level	
  decreases	
  
and	
  #	
  examples	
  increases)	
  

•  ReconstrucBon:	
  
•  Denoising	
  training	
  objecBve,	
  with	
  N(0,1)	
  noise	
  z:	
  

à	
  No	
  parBBon	
  funcBon	
  gradient!	
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[||r(x+ �z)� x||2]



Extracting Structure By Gradual 
Disentangling and Manifold Unfolding 
(Bengio 2014, arXiv 1407.7906)  
Each	
  level	
  transforms	
  the	
  data	
  
into	
  a	
  representaBon	
  in	
  which	
  it	
  
is	
  easier	
  to	
  model,	
  unfolding	
  it	
  
more,	
  contracBng	
  the	
  noise	
  
dimensions	
  and	
  mapping	
  the	
  
signal	
  dimensions	
  to	
  a	
  factorized	
  
(uniform-­‐like)	
  distribuBon.	
  
	
  
	
  
=	
  variaBonal	
  auto-­‐encoder	
  
criterion	
  	
  
(Kingma	
  &	
  Welling	
  ICLR	
  2014)	
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Difference Target-Prop Estimator 

•  If	
  the	
  encoder	
  is	
  f(x)+noise	
  and	
  the	
  decoder	
  is	
  g(h)+noise,	
  then	
  

•  which	
  is	
  demonstrated	
  by	
  exploiBng	
  

•  and	
  the	
  DAE	
  score	
  esBmator	
  theorem	
  

•  Considering	
  two	
  DAEs,	
  one	
  with	
  h	
  as	
  “visible”	
  and	
  one	
  with	
  (x,h)	
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@ log p(x|h)
@h

⇡ f(x)� f(g(h))

�

2
h

log p(x|h) = log p(x, h)� log p(h)

Towards Biologically Plausible Deep Learning

compared to the directed generative model that was defined
earlier. Denote q⇤(x) the empirical distribution of the data,
which defines a joint q⇤(h, x) = q⇤(x)q⇤(h|x). Consider
the likely situation where p(x, h) is not well matched to
q⇤(h, x) because for example the parametrization of p(h)
is not powerful enough to capture the complex structure in
the empirical distribution q⇤(h) obtained by mapping the
training data through the encoder and inference q⇤(h|x).
Typically, q⇤(x) would concentrate on a manifold and the
encoder would not be able to completely unfold it, so that
q⇤(h) would contain complicated structure with pockets or
manifolds of high probability. If p(h) is a simple factorized
model, then it will generate values of h that do not corre-
spond well to those seen by the decoder p(x|h) when it
was trained, and these out-of-manifold samples in h-space
are likely to be mapped to out-of-manifold samples in x-
space. One solution to this problem is to increase the ca-
pacity of p(h) (e.g., by adding more layers on top of h).
Another is to make q(h|x) more powerful (which again can
be achieved by increasing the depth of the model, but this
time by inserting additional layers below h). Now, there
is a cheap way of obtaining a very deep directed graphical
model, by unfolding the Markov chain of an MCMC-based
generative model for a fixed number of steps, i.e., consid-
ering each step of the Markov chain as an extra “layer”
in a deep directed generative model, with shared parame-
ters across these layers. As we have seen that there is such
an interpretation via the joint denoising auto-encoder over
both latent and visible, this idea can be immediately ap-
plied. We know that each step of the Markov chain opera-
tor moves its input distribution closer to the stationary dis-
tribution of the chain. So if we start from samples from a
very broad (say factorized) prior p(h) and we iteratively en-
code/decode them (injecting noise appropriately as during
training) by successively sampling from p(x|h) and then
from q(h|x), the resulting h samples should end up look-
ing more like those seen during training (i.e., from q⇤(h)).

5.2. Latent Variables as Corruption
There is another interpretation of the training procedure,
also as a denoising auto-encoder, which has the advantage
of producing a generative procedure that is the same as the
inference procedure except for x being unclamped.

We return again to the generative interpretation of the de-
noising criterion for auto-encoders, but this time we con-
sider the non-parametric process q⇤(h|x) as a kind of cor-
ruption of x that yields the h used as input for reconstruct-
ing the observed x via p(x|h). Under that interpretation,
a valid generative procedure consists at each step in first
performing inference, i.e., sampling h from q⇤(h|x), and
second sampling from p(x|h). Iterating these steps gener-
ates x’s according to the Markov chain whose stationary
distribution is an estimator of the data generating distribu-
tion that produced the training x’s (Bengio et al., 2013).

This view does not care about how q⇤(h|x) is constructed,
but it tells us that if p(x|h) is trained to maximize recon-
struction probability, then we can sample in this way from
the implicitly estimated model.

We have also found good results using this procedure (Al-
gorithm 2 below), and from the point of view of biological
plausibility, it would make more sense that “generating”
should involve the same operations as “inference”, except
for the input being observed or not.

6. Targetprop instead of Backprop
In Algorithm 1 and the related stochastic variants Eq. 8
suggests that back-propagation (through one layer) is still
needed when h(k) is on the right hand side of the con-
ditional probability bar, e.g., to compute @p(h(k�1

)|h(k)
)

@h(k) .
Such a gradient is also the basic building block in back-
propagation for supervised learning: we need to back-prop
through one layer, e.g. to make h(k) more “compatible”
with h(k�1). This provides a kind error signal, which in
the case of unsupervised learning comes from the sensors,
and in the case of supervised learning, comes from the layer
holding the observed “target”.

Based on recent theoretical results on denoising auto-
encoders, we propose the following estimator (up to a scal-
ing constant) of the required gradient, which is related to
previous work on “target propagation” (Bengio, 2014; Lee
et al., 2014) or targetprop for short. To make notation sim-
pler, we focus below on the case of two layers h and x with
“encoder” q(h|x) and “decoder” p(x|h), and we want to
estimate @ log p(x|h)

@h . We start with the special case where
p(x|h) is a Gaussian with mean g(h) and q(h|x) is Gaus-
sian with mean f(x), i.e., f and g are the deterministic
components of the encoder and decoder respectively. The
proposed estimator is then

c
�h =

f(x)� f(g(h))

�2

h

, (12)

where �2

h is the variance of the noise injected in q(h|x).

Let us now justify this estimator. Theorem 2 by Alain
& Bengio (2013) states that in a denoising auto-encoder
with reconstruction function r(x) = decode(encode(x)),
a well-trained auto-encoder estimates the log-score via the
difference between its reconstruction and its input:

r(x)� x

�2

! @ log p(x)

@x
,

where �2 is the variance of injected noise, and p(x) is the
implicitly estimated density. We are now going to con-
sider two denoising auto-encoders and apply this theorem
to them. First, we note that the gradient @ log p(x|h)

@h that we
wish to estimate can be decomposed as follows:

@ log p(x|h)
@h

=

@ log p(x, h)

@h
� @ log p(h)

@h
.



Decomposition of the 
gradient into reconstructions 
•  We	
  want	
  

•  which	
  we	
  get	
  from	
  two	
  auto-­‐encoders:	
  
1.  The	
  (x,h)	
  to	
  (h,x)	
  AE:	
  
	
  	
  	
  	
  	
  	
  	
  	
  à	
  
	
  
2.  	
  The	
  AE	
  with	
  h	
  as	
  «	
  visible	
  »	
  and	
  x	
  as	
  «	
  representaBon	
  »	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  à	
  

•  Result:	
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Towards Biologically Plausible Deep Learning

Hence it is enough to estimate @ log p(x,h)
@h as well as

@ log p(h)
@h . The second one can be estimated by consider-

ing the auto-encoder which estimates p(h) implicitly and
for which g is the encoder (with g(h) the “code” for h) and
f is the decoder (with f(g(h)) the “reconstruction” of h).
Hence we have that f(g(h))�h

�2
h

is an estimator of @ log p(h)
@h .

The other gradient can be estimated by considering the joint
denoising auto-encoder over (x, h) introduced in the previ-
ous section. The (noise-free) reconstruction function for
that auto-encoder is

r(x, h) = (g(h), f(x)).

Hence f(x)�h
�2
h

is an estimator of @ log p(x,h)
@h . Combining the

two estimators, we get
(f(x)� h)

�2

h

� (f(g(h))� h)

�2

h

=

f(x)� f(g(h))

�2

h

,

which corresponds to Eq. 12.

Figure 1. The optimal h for maximizing p(x|h) is ˜

h s.t. g(

˜

h) =

x. Since the encoder f and decoder g are approximate inverses
of each other, their composition makes a small move �x. Eq. 12
is obtained by assuming that by considering an x̃ at x � � and
applying f �g, one would approximately recover x, which should
be true if the changes are small and the functions smooth (see Lee
& Bengio (2014) for a detailed derivation).

Another way to obtain the same formula from a geomet-
ric perspective is illustrated in Figure 1. It was introduced
in Lee & Bengio (2014) in the context of a backprop-free
algorithm for training a denoising auto-encoder.

7. Related Work

The main inspiration for the proposed framework is the
biological implementation of back-propagation proposed
by Hinton (2007). In that talk, Hinton suggests that STDP
corresponds to a gradient update step with the gradient on
the voltage potential corresponding to its temporal deriva-
tive. To obtain the supervised back-propagation update in
the proposed scenario would require symmetric weights
and synchronization of the computations in terms of feed-
forward and feedback phases.

Our proposal extends these ideas to include unsupervised
learning, avoids the need for symmetric weights, and ex-
ploits inference to obtain targets and a probabilistic inter-
pretation as the optimization of a variational bound on the

Algorithm 2 Inference, training and generative procedures
used in Experiment 1, for a model with three layers x, h

1

,
h
2

. fi() is the feedforward map from layer i � 1 to layer
i and gi() is the feedback map from layer i to layer i � 1,
with x = h

0

being layer 0.
Define INFERENCE(x, N=15, �=0.1, ↵=0.001):
Feedforward pass: h

1

 f
1

(x), h
2

 f
2

(h
1

)

for t = 1 to N do

h
2

 h
2

+ �(f
2

(h
1

)� f
2

(g
2

(h
2

)))

h
1

 h
1

+ �(f
1

(x)� f
1

(g
1

(h
1

))) + ↵(g
2

(h
2

)� h
1

)

end for

Return h
1

, h
2

Define TRAIN()
for x in training set do

do INFERENCE(x)
train each layer (both fl and gl) by taking Gaussian-
corrupted value of other layer as input and the clean
inferred value as target (i.e. applying the delta rule).
For the top sigmoid layer, we sample 3 binary values
and average them as a spike-like corruption.

end for

Compute the mean and variance of the h
2

values inferred
in the training set. Multiply the variances by 4. Define
p(h

2

) as sampling from this Gaussian.

Define GENERATE():
Sample h

2

from p(H
2

)

for t = 1 to 3 do

h
1

, h
2

 INFERENCE(x,↵ = 0.3)
x g

1

(h
1

)

end for

Return x

likelihood. There is also an interesting connection with an
earlier proposal for a more biologically plausible imple-
mentation of supervised back-propagation (Xie & Seung,
2003) which also relies on iterative inference (a determin-
istic relaxation in that case), but needs symmetric weights.

Another important inspiration is Predictive Sparse Decom-
position (PSD) (Kavukcuoglu et al., 2008). PSD is a spe-
cial case of Algorithm 1 when there is only one layer and
the encoder q(h|x), decoder p(x|h), and prior p(h) have a
specific form which makes p(x, h) a sparse coding model
and q(h|x) a fast parametric approximation of the correct
posterior. Our proposal extends PSD by providing a justi-
fication for the training criterion as a variational bound, by
generalizing to multiple layers of latent variables, and by
providing associated generative procedures.

The combination of a parametric approximate inference
machine (the encoder) and a generative decoder (each with
possibly several layers of latent variables) is an old theme

f	
   g	
  

h	
  

x	
  

f(x)� h

�

2
⇡ @ log p(x, h)

@h

f(g(h))� h

�2
⇡ @ log p(h)

@h

@ log p(x|h)
@h

⇡ f(x)� f(g(h))

�

2
h



Same Formula justifies Backprop-free 
Auto-Encoder based on Target-Prop 
•  If	
  r(x)=f(g(h))	
  is	
  smooth	
  and	
  makes	
  a	
  small	
  move	
  away	
  from	
  x,	
  

then	
  applying	
  r	
  from	
  	
  

•  should	
  approximately	
  give	
  x,	
  so	
  
•  where	
  

•  And	
  the	
  encoder	
  should	
  be	
  trained	
  
on	
  the	
  pair	
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x̃ = x��x = x� (g(f(x))� x) = 2x� g(f(x))

g(h̃) ⇡ x

h̃ = f(x̃) = f(2x� g(f(x)))

(x̃, h̃)



Difference Target Propagation
hi ĥi

hi�1 ĥi�1

fi
gi

ĥi�1 = hi�1 � gi(hi) + gi(ĥi)

fi(ĥi�1) = fi(hi�1 � gi(hi) + gi(ĥi))

⇡ fi(hi�1 + g0i(hi)(ĥi � hi))

⇡ fi(hi�1) + f 0
i(hi�1)g

0
i(hi)(ĥi � hi)

���ĥi � fi(ĥi�1)
���
2
<

���ĥi � hi

���
2

if 1 > max eigen value

h
(I � f

0
i(hi�1)g

0
i(hi))

T
(I � f

0
i(hi�1)g

0
i(hi))

i

g don’t need to be inverse mapping ! !
if this condition is satisfied 

fi(ĥi�1)

But we can get exact target if        

if ĥi ⇡ hi

ĥi � fi(ĥi�1) ⇡ [I � f 0
i(hi�1)g

0
i(hi)] (ĥi � hi)

fi(gi(ĥi)) = ĥi

•  Make	
  a	
  correcBon	
  that	
  guarantees	
  to	
  
first	
  order	
  that	
  the	
  projecBon	
  
esBmated	
  target	
  is	
  closer	
  to	
  the	
  
correct	
  target	
  than	
  the	
  original	
  value	
  

•  Special	
  case:	
  feedback	
  alignement,	
  if	
  
gi(h)	
  =	
  B	
  h	
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Difference Target-Prop for Inexact 
Inverse 

Difference Target Propagation
hi ĥi

hi�1 ĥi�1

fi
gi

ĥi�1 = hi�1 � gi(hi) + gi(ĥi)

fi(ĥi�1) = fi(hi�1 � gi(hi) + gi(ĥi))

⇡ fi(hi�1 + g0i(hi)(ĥi � hi))

⇡ fi(hi�1) + f 0
i(hi�1)g

0
i(hi)(ĥi � hi)

���ĥi � fi(ĥi�1)
���
2
<

���ĥi � hi

���
2

if 1 > max eigen value

h
(I � f

0
i(hi�1)g

0
i(hi))

T
(I � f

0
i(hi�1)g

0
i(hi))

i

g don’t need to be inverse mapping ! !
if this condition is satisfied 

fi(ĥi�1)

But we can get exact target if        

if ĥi ⇡ hi

ĥi � fi(ĥi�1) ⇡ [I � f 0
i(hi�1)g

0
i(hi)] (ĥi � hi)

fi(gi(ĥi)) = ĥi



Obligatory MNIST Results (supervised 
target-prop) 

Blah	
  

26	
  

Experimental Result

• We used hyper-parameters for the best valid error respectively 

• Test error :  
1.73% : target prop with high regression   
1.62% : difference target prop,  
1.44% : back-prop, respective learning rates 

↵ = 0.99

Experimental Result

• Left graph : Hyper-parameters for the best valid error 

• Right graph : Hyper-parameters for the best training cost at 
100 epoch 

• Target prop is sometimes faster than back-prop though it is 
usually overfitting, but it can solve under-fitting problem (ex -  
very deep net, highly non-linear net and discrete net) 

Hyper-­‐opBmizing	
  for	
  
validaBon	
  error	
  

Hyper-­‐opBmizing	
  for	
  
validaBon	
  error	
  

Hyper-­‐opBmizing	
  for	
  
validaBon	
  error	
  

Hyper-­‐op=mizing	
  for	
  
training	
  error	
  



Targetprop can work for discrete 
and/or stochastic activations 

Work	
  in	
  progress	
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Experimental Result

• We used hyper-parameters for the best valid error 

• Test error :  
~2.5% (discrete networks with 3 hidden layers),  
~2.5% (discrete networks with 2 hidden layers),  
 5~6% (just training top classifier with 2 hidden : back-prop)



Iterated Target-Prop Generative Deep 
Learning Experiments on MNIST 

Generated	
  model	
  samples	
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InpainBng	
  missing	
  
values	
  (starBng	
  
from	
  noise)	
  

Original	
  examples	
   InpainBng	
  
starBng	
  point	
  

Inpainted	
  



What’s Next? 
•  Experiments	
  only	
  involved	
  p	
  terms	
  in	
  J,	
  but	
  if	
  there	
  is	
  going	
  to	
  be	
  

mulBple	
  modaliBes,	
  we	
  need	
  correcBon	
  signals	
  (target	
  prop)	
  
from	
  above	
  as	
  well	
  as	
  from	
  below	
  

•  Using	
  true	
  gradients	
  instead	
  of	
  diff	
  targetprop	
  yielded	
  beyer	
  
final	
  values	
  of	
  J	
  a^er	
  each	
  inference	
  iteraBon	
  but	
  a	
  worse	
  final	
  
value	
  of	
  J	
  a^er	
  training.	
  Why?	
  

•  Proposed	
  theory	
  suggests	
  that	
  using	
  only	
  a	
  few	
  inference	
  
iteraBons	
  should	
  give	
  a	
  sufficient	
  signal	
  to	
  update	
  weights,	
  but	
  
experiments	
  required	
  10-­‐15.	
  

•  Updates	
  in	
  paper	
  did	
  not	
  follow	
  the	
  STDP	
  framework	
  but	
  used	
  
final	
  inference	
  values	
  as	
  targets	
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Why Noise is Needed 

•  Up	
  to	
  now	
  we	
  used	
  a	
  MAP	
  inference	
  in	
  our	
  experiments	
  

•  Adding	
  noise	
  appropriately	
  makes	
  it	
  a	
  biased	
  Langevin	
  MCMC,	
  
making	
  the	
  inference	
  procedure	
  approximately	
  sample	
  from	
  the	
  
posterior	
  of	
  latent	
  given	
  visible	
  

•  Noise	
  may	
  be	
  necessary	
  to	
  appropriately	
  prepare	
  the	
  decoder	
  
to	
  face	
  the	
  inadequacy	
  of	
  the	
  higher-­‐levels	
  ‘prior’,	
  by	
  becoming	
  
contracBve	
  

•  It	
  comes	
  up	
  automaBcally	
  in	
  the	
  variaBonal	
  auto-­‐encoder	
  
criterion	
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The Importance of Contractive Decoder 
•  Denoising	
  à	
  contracBve	
  g	
  
•  Max.	
  determinant	
  of	
  f’	
  à	
  f	
  expansive	
  at	
  

data	
  x,	
  g	
  contracBve	
  around	
  	
  
•  ContracBon	
  à	
  removes	
  unnecessary	
  

direcBons	
  
•  Making	
  g	
  contracBve	
  helps	
  to	
  manage	
  

the	
  mismatch	
  between	
  P(h)	
  and	
  Q(h)	
  
•  Adding	
  noise	
  at	
  the	
  top-­‐level	
  in	
  Q(h|x)	
  

shows	
  to	
  the	
  decoder	
  which	
  direcBons	
  
of	
  h	
  need	
  to	
  be	
  contracted	
  out,	
  making	
  
it	
  contracBve	
   Q(x)	
  

f	
   g	
  

Q(h)	
  

P(h)	
  
If	
  f	
  bijec\ve	
  P(x)=P(h=f(x))|det	
  f’(x)|	
  



Many Probabilistic Interpretations e.g. 
EM Denoising Score Matching 

•  A	
  reconstrucBon	
  funcBon	
  (state	
  à	
  state)	
  embodies	
  energy	
  
gradient	
  (to	
  improved	
  state)	
  and	
  defines	
  neural	
  dynamics	
  

•  Use	
  it	
  for	
  inference,	
  e.g.	
  Langevin	
  MCMC,	
  i.e.,	
  update	
  state	
  
towards	
  reconstrucBon,	
  with	
  some	
  noise	
  injected	
  

•  Given	
  visible	
  x,	
  do	
  inference	
  to	
  sample	
  h	
  ~	
  posterior	
  given	
  x	
  
•  Consider	
  state	
  s=(x,h)	
  as	
  if	
  they	
  were	
  visible	
  and	
  perform	
  a	
  

denoising	
  score	
  matching	
  update	
  of	
  parameter	
  i.e.,	
  

•  Any	
  energy	
  funcBon	
  can	
  be	
  defined,	
  but	
  some	
  give	
  rise	
  to	
  
biologically	
  plausible	
  neural	
  dynamics	
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min

✓
||reconstruct(corrupt(state))� state||2



Ongoing: Impatient Learned 
Approximate Inference 

•  Instead	
  of	
  waiBng	
  for	
  the	
  last	
  step	
  of	
  inference	
  (to	
  be	
  used	
  as	
  
target	
  a	
  la	
  EM),	
  we	
  can	
  ask	
  each	
  inference	
  step	
  to	
  land	
  where	
  
the	
  next	
  step	
  will	
  land,	
  i.e.,	
  to	
  speed-­‐up	
  the	
  MCMC	
  burn-­‐in	
  

•  i.e.,	
  target	
  state	
  =	
  later	
  in	
  the	
  chain	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  corrupted	
  state	
  =	
  noisy,	
  earlier	
  state	
  in	
  the	
  chain	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  reconstruc=on	
  error	
  becomes	
  PREDICTION	
  error	
  
•  This	
  	
  would	
  result	
  in	
  an	
  SDTP-­‐like	
  update,	
  at	
  every	
  Bme	
  step,	
  not	
  

just	
  at	
  the	
  end	
  of	
  inference	
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S0	
   S1	
   S2	
   S3	
  
A	
   A	
   A	
   S2	
  is	
  a	
  target	
  for	
  the	
  	
  

output	
  of	
  A	
  applied	
  to	
  S0	
  

A	
  wants	
  to	
  become	
  A2	
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