
Towards	
 Biologically	

Plausible	
 Deep	
 Learning	

	
 	

	

	

Yoshua	
 Bengio	
 	

March	
 12,	
 2015	

NYU	

Yoshua	
 Bengio,	
 Dong-­‐Hyun	
 Lee,	
 Jorg	
 Bornschein,	
 and	
 Zhouhan	

Lin,	
 arXiv	
 1502.04156	

Central Issue in Deep Learning:
Credit Assignment

•  What	
 should	
 hidden	
 layers	
 do?	

•  Established	
 approaches:	

•  BackpropagaBon	

•  StochasBc	
 relaxaBon	
 in	
 Boltzmann	
 machines	

Issues with Back-Prop
•  Over	
 very	
 deep	
 nets	
 or	
 recurrent	
 nets	
 with	
 many	
 steps,	
 non-­‐

lineariBes	
 compose	
 and	
 yield	
 sharp	
 non-­‐linearity	
 à	
 gradients	

vanish	
 or	
 explode	

•  Training	
 deeper	
 nets:	
 harder	
 opBmizaBon	

•  In	
 the	
 extreme	
 of	
 non-­‐linearity:	
 discrete	
 funcBons,	
 can’t	
 use	

back-­‐prop	

•  Biological	
 plausibility	

¢	
 =	
 ¢	
 …	

Biological Plausibility Issues with
Standard Backprop

1.  BP	
 of	
 gradient	
 =	
 purely	
 linear	
 computaBon,	
 not	
 plausible	
 across	

many	
 neural	
 levels	

2.  If	
 feedback	
 paths	
 are	
 used	
 for	
 BP,	
 how	
 would	
 they	
 know	
 the	

precise	
 derivaBves	
 of	
 forward-­‐prop?	

3.  Feedback	
 paths	
 would	
 have	
 to	
 use	
 exactly	
 the	
 same	
 weights	

(transposed)	
 as	
 feedforward	
 paths	

4.  Real	
 neurons	
 communicate	
 via	
 spikes	

5.  Need	
 to	
 clock	
 and	
 alternate	
 feedforward	
 and	
 feedback	

computaBon	

6.  Where	
 would	
 the	
 supervised	
 targets	
 come	
 from?	

4	

Issues with Boltzmann Machines
•  Sampling	
 from	
 the	
 MCMC	
 of	
 the	
 model	
 is	
 required	
 in	
 the	
 inner	
 loop	

of	
 training	

•  As	
 the	
 model	
 gets	
 sharper,	
 mixing	
 between	
 well-­‐separated	
 modes	

stalls	

5	

Training	
 updates	

Mixing	

vicious	
 circle	

What is the brain’s learning algorithm?
Cue: Spike-Timing Dependent Plasticity

•  Observed	

throughout	
 the	

nervous	
 system,	

especially	
 in	

cortex	

•  STDP:	
 weight	

increases	
 if	
 post-­‐
spike	
 just	
 a^er	

pre-­‐spike,	

decreases	
 if	
 just	

before.	

6	

Machine Learning Interpretation of
Spike-Timing Dependent Plasticity
•  Suggested	
 by	
 Xie	
 &	
 Seung	
 NIPS’99	
 and	
 Hinton	
 2007:	
 the	
 STDP	

update	
 corresponds	
 to	
 a	
 temporal	
 derivaBve	
 filter	
 applied	
 to	

post-­‐spike,	
 around	
 pre-­‐spike.	

•  In	
 agreement	
 with	
 the	
 above,	
 we	
 argue	
 this	
 corresponds	
 to	

7	

Towards Biologically Plausible Deep Learning

here.

Note that back-propagation is used not just for classical su-
pervised learning but also for many unsupervised learning
algorithms, including all kinds of auto-encoders: sparse
auto-encoders (Ranzato et al., 2007; Goodfellow et al.,
2009), denoising auto-encoders (Vincent et al., 2008),
contractive auto-encoders (Rifai et al., 2011), and more
recently, variational auto-encoders (Kingma & Welling,
2014). Other unsupervised learning algorithms exist which
do not rely on back-propagation, such as the various Boltz-
mann machine learning algorithms (Hinton & Sejnowski,
1986; Smolensky, 1986; Hinton et al., 2006; Salakhutdinov
& Hinton, 2009). Boltzmann machines are probably the
most biologically plausible learning algorithms for deep ar-
chitectures that we currently know, but they also face sev-
eral question marks in this regard, such as the weight trans-
port problem ((3) above) to achieve symmetric weights, and
the positive-phase vs negative-phase synchronization ques-
tion (similar to (5) above).

Our starting point (Sec. 2) proposes an interpretation of the
main learning rule observed in biological synapses: Spike-
Timing-Dependent Plasticity (STDP). Following up on the
ideas presented in Hinton’s 2007 talk (Hinton, 2007), we
first argue that STDP could be seen as stochastic gradient
descent if only the neuron was driven by a feedback signal
that either increases or decreases the neuron’s firing rate
in proportion to the gradient of an objective function with
respect to the neuron’s voltage potential.

In Sec. 3 we then argue that the above interpretation
suggests that neural dynamics (which creates the above
changes in neuronal activations thanks to feedback and lat-
eral connections) correspond to inference towards neural
configurations that are more consistent with each other and
with the observations (inputs, targets, or rewards). This
view extends Hinton’s supervised learning proposal to the
unsupervised generative setting. It naturally suggests that
the training procedure corresponds to a form of variational
EM (Neal & Hinton, 1999) (see Sec.3), possibly based on
MAP (maximum a posteriori) or MCMC (Markov Chain
Monte-Carlo) approximations. In Sec. 4 we show how this
mathematical framework suggests a training procedure for
a deep generative network with many layers of latent vari-
ables. However, the above interpretation would still require
to compute some gradients. Another contribution (Sec. 6)
is to show that one can estimate these gradients via an ap-
proximation that only involves ordinary neural computa-
tion and no explicit derivatives, following previous work
on target propagation (Bengio, 2014; Lee et al., 2014).

Although our primary justification for the proposed learn-
ing algorithm corresponds to a deep directed graphical
model, it turns out that the proposed learning mechanism
can be interpreted as training a denoising auto-encoder. As

discussed in Sec. 5 these alternative interpretations of the
model provide different ways to sample from it, and we
found that better samples could be obtained.

2. STDP as Stochastic Gradient Descent
Spike-Timing-Dependent Plasticity or STDP is believed to
be the main form of synaptic change in neurons (Markram
& Sakmann, 1995; Gerstner et al., 1996) and it relates the
expected change in synaptic weights to the timing differ-
ence between post-synaptic spikes and pre-synaptic spikes.
Although it is the result of experimental observations in
biological neurons, its interpretation as part of a learning
procedure that could explain learning in deep networks re-
mains unclear. This paper aims at proposing such an in-
terpretation, starting from the proposal made by Hinton
(2007), but extending these ideas towards unsupervised
generative modeling of the data.

What has been observed in STDP is that the weights change
if there is a pre-synaptic spike in the temporal vicinity of
a post-synaptic spike: that change is positive if the post-
synaptic spike happens just after the pre-synaptic spike,
negative if it happens just before. As suggested in Hin-
ton’s talk, this also corresponds to a temporal derivative fil-
ter applied to the post-synaptic firing rate, at the time of the
pre-synaptic spike. To illustrate this, consider the situation
in which two neurons Ni and Nk impinge on neuron Nj ,
and each neuron, say Ni, has a voltage potential Vi which,
when above threshold, makes the neuron send out a spike
Si with probability (called rate) Ri. If Rk increases after a
spike Si, in average (over Sk), that will increase Vj and Rj

and thus the probability of Nj’s post-synaptic spike. That
will come right after the Ni spike, yielding an increase in
the synaptic weight Wij as per STDP. However, if Rk de-
creases after a spike Si, this decreases the probability of Nj

spiking after Ni’s spike, or equivalently, making the prob-
ability of Nj’s spike occuring before Ni’s spike larger than
the probability of Nj’s spike occuring after Ni’s spike, i.e.,
making Vj and Rj smaller. According to STDP, this situ-
ation would then correspond to a decrease in the synaptic
weight. In conclusion, these arguments suggest that STDP
can be interpreted as follows:

�Wij / Si�Vj , (1)

where � indicates the temporal change, Si indicates the
pre-synaptic spike (from neuron i), and Vj indicates the
post-synaptic voltage potential (of neuron j).

Clearly, the consequence is that if the change �Vj cor-
responds to improving some objective function J , then
STDP corresponds to approximate stochastic gradient
descent in that objective function. With this view, STDP
would implement the delta rule (gradient descent on a one-
layer network) if the post-synaptic activation changes in the
direction of the gradient.

pre-­‐spike	
 temporal	
 change	
 in	

post-­‐potenBal	

synapBc	

change	

Machine Learning Interpretation of
Spike-Timing Dependent Plasticity

•  would	
 be	
 SGD	
 on	
 objecBve	
 J	
 	
 if	

•  This	
 corresponds	
 to	
 neural	
 dynamics	
 implemenBng	
 a	
 form	
 of	

inference	
 wrt	
 J,	
 seen	
 as	
 a	
 funcBon	
 of	
 parameters	
 and	
 latent	
 vars	
 	

8	

�Vj ⇡
@J

@Vj

Towards Biologically Plausible Deep Learning

here.

Note that back-propagation is used not just for classical su-
pervised learning but also for many unsupervised learning
algorithms, including all kinds of auto-encoders: sparse
auto-encoders (Ranzato et al., 2007; Goodfellow et al.,
2009), denoising auto-encoders (Vincent et al., 2008),
contractive auto-encoders (Rifai et al., 2011), and more
recently, variational auto-encoders (Kingma & Welling,
2014). Other unsupervised learning algorithms exist which
do not rely on back-propagation, such as the various Boltz-
mann machine learning algorithms (Hinton & Sejnowski,
1986; Smolensky, 1986; Hinton et al., 2006; Salakhutdinov
& Hinton, 2009). Boltzmann machines are probably the
most biologically plausible learning algorithms for deep ar-
chitectures that we currently know, but they also face sev-
eral question marks in this regard, such as the weight trans-
port problem ((3) above) to achieve symmetric weights, and
the positive-phase vs negative-phase synchronization ques-
tion (similar to (5) above).

Our starting point (Sec. 2) proposes an interpretation of the
main learning rule observed in biological synapses: Spike-
Timing-Dependent Plasticity (STDP). Following up on the
ideas presented in Hinton’s 2007 talk (Hinton, 2007), we
first argue that STDP could be seen as stochastic gradient
descent if only the neuron was driven by a feedback signal
that either increases or decreases the neuron’s firing rate
in proportion to the gradient of an objective function with
respect to the neuron’s voltage potential.

In Sec. 3 we then argue that the above interpretation
suggests that neural dynamics (which creates the above
changes in neuronal activations thanks to feedback and lat-
eral connections) correspond to inference towards neural
configurations that are more consistent with each other and
with the observations (inputs, targets, or rewards). This
view extends Hinton’s supervised learning proposal to the
unsupervised generative setting. It naturally suggests that
the training procedure corresponds to a form of variational
EM (Neal & Hinton, 1999) (see Sec.3), possibly based on
MAP (maximum a posteriori) or MCMC (Markov Chain
Monte-Carlo) approximations. In Sec. 4 we show how this
mathematical framework suggests a training procedure for
a deep generative network with many layers of latent vari-
ables. However, the above interpretation would still require
to compute some gradients. Another contribution (Sec. 6)
is to show that one can estimate these gradients via an ap-
proximation that only involves ordinary neural computa-
tion and no explicit derivatives, following previous work
on target propagation (Bengio, 2014; Lee et al., 2014).

Although our primary justification for the proposed learn-
ing algorithm corresponds to a deep directed graphical
model, it turns out that the proposed learning mechanism
can be interpreted as training a denoising auto-encoder. As

discussed in Sec. 5 these alternative interpretations of the
model provide different ways to sample from it, and we
found that better samples could be obtained.

2. STDP as Stochastic Gradient Descent
Spike-Timing-Dependent Plasticity or STDP is believed to
be the main form of synaptic change in neurons (Markram
& Sakmann, 1995; Gerstner et al., 1996) and it relates the
expected change in synaptic weights to the timing differ-
ence between post-synaptic spikes and pre-synaptic spikes.
Although it is the result of experimental observations in
biological neurons, its interpretation as part of a learning
procedure that could explain learning in deep networks re-
mains unclear. This paper aims at proposing such an in-
terpretation, starting from the proposal made by Hinton
(2007), but extending these ideas towards unsupervised
generative modeling of the data.

What has been observed in STDP is that the weights change
if there is a pre-synaptic spike in the temporal vicinity of
a post-synaptic spike: that change is positive if the post-
synaptic spike happens just after the pre-synaptic spike,
negative if it happens just before. As suggested in Hin-
ton’s talk, this also corresponds to a temporal derivative fil-
ter applied to the post-synaptic firing rate, at the time of the
pre-synaptic spike. To illustrate this, consider the situation
in which two neurons Ni and Nk impinge on neuron Nj ,
and each neuron, say Ni, has a voltage potential Vi which,
when above threshold, makes the neuron send out a spike
Si with probability (called rate) Ri. If Rk increases after a
spike Si, in average (over Sk), that will increase Vj and Rj

and thus the probability of Nj’s post-synaptic spike. That
will come right after the Ni spike, yielding an increase in
the synaptic weight Wij as per STDP. However, if Rk de-
creases after a spike Si, this decreases the probability of Nj

spiking after Ni’s spike, or equivalently, making the prob-
ability of Nj’s spike occuring before Ni’s spike larger than
the probability of Nj’s spike occuring after Ni’s spike, i.e.,
making Vj and Rj smaller. According to STDP, this situ-
ation would then correspond to a decrease in the synaptic
weight. In conclusion, these arguments suggest that STDP
can be interpreted as follows:

�Wij / Si�Vj , (1)

where � indicates the temporal change, Si indicates the
pre-synaptic spike (from neuron i), and Vj indicates the
post-synaptic voltage potential (of neuron j).

Clearly, the consequence is that if the change �Vj cor-
responds to improving some objective function J , then
STDP corresponds to approximate stochastic gradient
descent in that objective function. With this view, STDP
would implement the delta rule (gradient descent on a one-
layer network) if the post-synaptic activation changes in the
direction of the gradient.

STDP and Variational EM
•  Neural	
 dynamics	
 moving	
 towards	
 “improved”	
 objecBve	
 J	
 and	

parameter	
 updates	
 towards	
 the	
 same	
 J	
 corresponds	
 to	
 a	

variaBonal	
 EM	
 learning	
 algorithm,	
 	

•  where	
 J	
 =	
 regularized	
 joint	
 likelihood	
 of	
 observed	
 x	
 and	
 latent	
 h	

	

•  Generalizes	
 PSD	
 (PredicBve	
 Sparse	
 DecomposiBon)	
 from	

(Kavukcuoglu	
 &	
 LeCun	
 2008)	
 with	

Inference	
 iniBal	
 guess	

(forward	
 pass)	

GeneraBve	
 model	

All	
 interacBons	
 between	
 neurons	

Towards Biologically Plausible Deep Learning

3. Variational EM with Learned Approximate
Inference

To take advantage of the above statement, the dynamics of
the neural network must be such that neural activities move
towards better values of some objective function J . Hence
we would like to define such an objective function in a way
that is consistent with the actual neural computation be-
ing performed (for fixed weights W), in the sense that the
expected temporal change of the voltage potentials approx-
imately corresponds to increases in J . In this paper, we
are going to consider the voltage potentials as the central
variables of interest which influence J and consider them
as latent variables V (denoted h below to keep machine
learning interpretation general), while we will consider the
actual spike trains S as non-linear noisy corruptions of V ,
a form of quantization (with the “noise level” controlled
either by the integration time or the number of redundant
neurons in an ensemble (Legenstein & Maass, 2014). This
view makes the application of the denoising auto-encoder
theorems discussed in Sec. 5 more straightforward.

The main contribution of this paper is to propose and give
support to the hypothesis that J comes out of a variational
bound on the likelihood of the data. Variational bounds
have been proposed to justify various learning algorithms
for generative models (Hinton et al., 1995) (Sec. 7). To
keep the mapping to biology open, consider such bounds
and the associated criteria that may be derived from them,
using an abstract notation with observed variable x and la-
tent variable h. If we have a model p(x, h) of their joint
distribution, as well as some approximate inference mech-
anism defining a conditional distribution q⇤(H|x), the ob-
served data log-likelihood log p(x) can be decomposed as

log p(x) = log p(x)
X

h

q⇤(h|x)

=

X

h

q⇤(h|x) log p(x, h)q⇤(h|x)
p(h|x)q⇤(h|x)

=Eq⇤(H|x)[log p(x,H)] +H[q⇤(H|x)]
+KL(q⇤(H|x)||p(H|x)), (2)

where H[] denotes entropy and KL(||) the Kullback-
Leibler (KL) divergence, and where we have used sums but
integrals should be considered when the variables are con-
tinuous. Since both the entropy and the KL-divergence are
non-negative, we can either bound the log-likelihood via

log p(x) � Eq⇤(H|x)[log p(x,H)] +H[q⇤(H|x)], (3)

or if we care only about optimizing p,
log p(x) � Eq⇤(H|x)[log p(x,H)]. (4)

The idea of variational bounds as proxies for the log-
likelihood is that as far as optimizing p is concerned, i.e.,
dropping the entropy term which does not depend on p,

the bound becomes tight when q⇤(H|x) = p(H|x). This
suggests that q⇤(H|x) should approximate p(H|x). Fix-
ing q⇤(H|x) = p(H|x) and optimizing p with q fixed is
the EM algorithm. Here (and in general) this is not possi-
ble so we consider variational methods in which q⇤(H|x)
approximates but does not reach p(H|x).

We propose to decompose q⇤(H|x) in two components:
parametric initialization q

0

(H|x) = q(H|x) and iterative
inference, implicitly defining q⇤(H|x) = qT (H|x) via a
deterministic or stochastic update, or transition operator

qt(H|x) = A(x) qt�1

(H|x). (5)

The variational bound suggests that A(x) should gradu-
ally bring qt(H|x) closer to p(H|x). At the same time,
to make sure that a few steps will be sufficient to approach
p(H|x), one may add a term in the objective function to
make q

0

(H|x) closer to p(H|x), as well as to encourage
p(x, h) to favor solutions p(H|x) that can be easily approx-
imated by qt(H|x) even for small t.

For this purpose, consider as training objective a regular-
ized variational MAP-EM criterion (for a given x):

J = log p(x, h) + ↵ log q(h|x), (6)

where h is a free variable (for each x) initialized from
q(H|x) and then iteratively updated to approximately max-
imize J . The total objective function is just the average
of J over all examples after having performed inference
(the approximate maximization over h for each x). A
reasonable variant would not just encourage q = q

0

to
generate h (given x), but all the qt’s for t > 0 as well.
Alternatively, the iterative inference could be performed
by stochastically increasing J , i.e., via a Markov chain
which may correspond to probabilistic inference with spik-
ing neurons (Pecevski et al., 2011). The corresponding
variational MAP or variational MCMC algorithm would be
as in Algorithm 1. For the stochastic version one would in-
ject noise when updating h. Variational MCMC (de Freitas
et al., 2001) can be used to approximate the posterior, e.g.,
as in the model from Salimans et al. (2014). However, a re-
jection step does not look very biologically plausible (both
for the need of returning to a previous state and for the need
to evaluate the joint likelihood, a global quantity). On the
other hand, a biased MCMC with no rejection step, such as
the stochastic gradient Langevin MCMC of Welling & Teh
(2011) can work very well in practice.

4. Training a Deep Generative Model
There is strong biological evidence of a distinct pattern of
connectivity between cortical areas that distinguishes be-
tween “feedforward” and “feedback” connections (Douglas
et al., 1989) at the level of the microcircuit of cortex (i.e.,
feedforward and feedback connections do not land in the
same type of cells). Furthermore, the feedforward connec-

Approximate	
 inference	

J = log p(x, h) + regularizer

regularizer = ↵ q(h|x)

What Inference Mechanism?

•  Simply	
 going	
 down	
 on	
 J’s	
 gradient	
 corresponds	
 to	
 MAP	

inference	
 (disadvantage:	
 decoder	
 not	
 sufficiently	
 contracBve)	

•  InjecBng	
 noise	
 in	
 the	
 process	
 gives	
 a	
 form	
 of	
 approximate	

posterior	
 MCMC,	
 such	
 as	
 Langevin	
 MCMC	

•  Or,	
 in	
 discrete	
 Bme:	

10	

˙h =

1

2�

@J

@h
+ � Brownian noise

h h+

1

2�

@J

@h
+ � Normal(0, 1) noise

*	
 no	
 rejecBon:	
 biased	
 samples,	
 but	
 ok,	
 see	
 (Welling	
 &	
 Teh	
 ICML	
 2011)	

Inference Decouples Deep Net Layers

•  A^er	
 inference,	
 no	
 need	
 for	
 back-­‐prop	
 because	
 the	
 	
 joint	
 over	

layers	
 decouples	
 the	
 updates	
 of	
 the	
 parameters	
 from	
 the	

different	
 layers,	
 e.g.	

	

•  So	
 J	
 could	
 be	
 of	
 the	
 form	

11	

Towards Biologically Plausible Deep Learning

Algorithm 1 Variational MAP (or MCMC) SGD algorithm
for gradually improving the agreement between the values
of the latent variables h and the observed data x. q(h|x) is
a learned parametric initialization for h, p(h) is a paramet-
ric prior on the latent variables, and p(x|h) specifies how to
generate x given h. Objective function J is defined in Eq. 6
Learning rates � and ✏ respectively control the optimization
of h and of parameters ✓ (of both q and p).

Initialize h ⇠ q(h|x)
for t = 1 to T do

h h+ � @J
@h (optional: add noise for MCMC)

end for
✓ ✓ + ✏@J@✓

tions form a directed acyclic graph with nodes (areas) up-
dated in a particular order, e.g., in the visual cortex (Felle-
man & Essen, 1991). So consider Algorithm 1 with h de-
composed into multiple layers, with the conditional inde-
pendence structure of a directed graphical model structured
as a chain, both for p (going down) and for q (going up):

p(x, h) = p(x|h(1)

)

M�1Y

k=1

p(h(k)|h(k+1)

)

!
p(h(M)

)

q(h|x) = q(h(1)|x)
M�1Y

k=1

q(h(k+1)|h(k)
). (7)

This clearly decouples the updates associated with each
layer, for both h and ✓, making these updates “local” to
the layer k, based on “feedback” from layer k � 1 and
k + 1. Nonetheless, thanks to the iterative nature of the
updates of h, all the layers are interacting via both feedfor-
ward (q(h(k)|h(k�1)

)) and feedback (p(h(k)|h(k�1)

) paths.
Denoting x = h(0) to simplify notation, the h update would
thus consist in moves of the form

h(k) h(k)
+ �

@

@h(k)

⇣
log(p(h(k�1)|h(k)

)p(h(k)|h(k+1)

))

+ ↵ log(q(h(k)|h(k�1)

)q(h(k+1)|h(k)
))

⌘
,

(8)

where ↵ is as in Eq. 6. No back-propagation is needed
for the above derivatives when h(k) is on the left hand side
of the conditional probability bar. Sec. 6 deals with the
right hand side case. For the left hand side case, e.g.,
p(h(k)|h(k+1)

) a conditional Gaussian with mean µ and
variance �2, the gradient with respect to h(k) is simply
µ�h(k)

�2 . Note that there is an interesting interpretation of
such a deep model: the layers above h(k) provide a com-
plex implicitly defined prior for p(h(k)

).

5. Alternative Interpretations as Denoising
Auto-Encoder

By inspection of Algorithm 1, one can observe that this al-
gorithm trains p(x|h) and q(h|x) to form complementary

pairs of an auto-encoder (since the input of one is the tar-
get of the other and vice-versa). Note that from that point
of view any of the two can act as encoder and the other
as decoder for it, depending on whether we start from h
or from x. In the case of multiple latent layers, each pair
of conditionals q(h(k+1)|h(k)

) and p(h(k)|h(k+1)

) forms a
symmetric auto-encoder, i.e., either one can act as the en-
coder and the other as the corresponding decoder, since
they are trained with the same (h(k), h(k+1)

) pairs (but with
reversed roles of input and target).

In addition, if noise is injected, e.g., in the form of the
quantization induced by a spike train, then the trained
auto-encoders are actually denoising auto-encoders, which
means that both the encoders and decoders are contractive:
in the neighborhood of the observed (x, h) pairs, they map
neighboring “corrupted” values to the “clean” (x, h) val-
ues.

5.1. Joint Denoising Auto-Encoder with Latent
Variables

This suggests considering a special kind of “joint” denois-
ing auto-encoder which has the pair (x, h) as “visible” vari-
able, an auto-encoder that implicitly estimates an underly-
ing p(x, h). The transition operator3 for that joint visible-
latent denoising auto-encoder is the following in the case
of a single hidden layer:

(x̃, ˜h) corrupt(x, h)

h ⇠ q(h|x̃) x ⇠ p(x|˜h), (9)

where the corruption may correspond to the stochastic
quantization induced by the neuron non-linearity and spik-
ing process. In the case of a middle layer h(k) in a deeper
model, the transition operator must account for the fact that
h(k) can either be reconstructed from above or from below,
yielding, with probability say 1

2

,

h(k) ⇠ p(h(k)|˜h(k+1)

), (10)

and with one minus that probability,

h(k) ⇠ q(h(k)|˜h(k�1)

). (11)

Since this interpretation provides a different model, it also
provides a different way of generating samples. Especially
for shallow, we have found that better samples could be
obtained in this way, i.e., running the Markov chain with
the above transition operator for a few steps.

There might be a geometric interpretation for the improved
quality of the samples when they are obtained in this way,

3See Theorem 1 from Bengio et al. (2013) for the generative
interpretation of denoising auto-encoders: it basically states that
one can sample from the model implicitly estimated by a denois-
ing auto-encoder by simply alternating noise injection (corrup-
tion), encoding and decoding, these forming each step of a gener-
ative Markov chain.

Towards Biologically Plausible Deep Learning

Algorithm 1 Variational MAP (or MCMC) SGD algorithm
for gradually improving the agreement between the values
of the latent variables h and the observed data x. q(h|x) is
a learned parametric initialization for h, p(h) is a paramet-
ric prior on the latent variables, and p(x|h) specifies how to
generate x given h. Objective function J is defined in Eq. 6
Learning rates � and ✏ respectively control the optimization
of h and of parameters ✓ (of both q and p).

Initialize h ⇠ q(h|x)
for t = 1 to T do

h h+ � @J
@h (optional: add noise for MCMC)

end for
✓ ✓ + ✏@J@✓

tions form a directed acyclic graph with nodes (areas) up-
dated in a particular order, e.g., in the visual cortex (Felle-
man & Essen, 1991). So consider Algorithm 1 with h de-
composed into multiple layers, with the conditional inde-
pendence structure of a directed graphical model structured
as a chain, both for p (going down) and for q (going up):

p(x, h) = p(x|h(1)

)

M�1Y

k=1

p(h(k)|h(k+1)

)

!
p(h(M)

)

q(h|x) = q(h(1)|x)
M�1Y

k=1

q(h(k+1)|h(k)
). (7)

This clearly decouples the updates associated with each
layer, for both h and ✓, making these updates “local” to
the layer k, based on “feedback” from layer k � 1 and
k + 1. Nonetheless, thanks to the iterative nature of the
updates of h, all the layers are interacting via both feedfor-
ward (q(h(k)|h(k�1)

)) and feedback (p(h(k)|h(k�1)

) paths.
Denoting x = h(0) to simplify notation, the h update would
thus consist in moves of the form

h(k) h(k)
+ �

@

@h(k)

⇣
log(p(h(k�1)|h(k)

)p(h(k)|h(k+1)

))

+ ↵ log(q(h(k)|h(k�1)

)q(h(k+1)|h(k)
))

⌘
,

(8)

where ↵ is as in Eq. 6. No back-propagation is needed
for the above derivatives when h(k) is on the left hand side
of the conditional probability bar. Sec. 6 deals with the
right hand side case. For the left hand side case, e.g.,
p(h(k)|h(k+1)

) a conditional Gaussian with mean µ and
variance �2, the gradient with respect to h(k) is simply
µ�h(k)

�2 . Note that there is an interesting interpretation of
such a deep model: the layers above h(k) provide a com-
plex implicitly defined prior for p(h(k)

).

5. Alternative Interpretations as Denoising
Auto-Encoder

By inspection of Algorithm 1, one can observe that this al-
gorithm trains p(x|h) and q(h|x) to form complementary

pairs of an auto-encoder (since the input of one is the tar-
get of the other and vice-versa). Note that from that point
of view any of the two can act as encoder and the other
as decoder for it, depending on whether we start from h
or from x. In the case of multiple latent layers, each pair
of conditionals q(h(k+1)|h(k)

) and p(h(k)|h(k+1)

) forms a
symmetric auto-encoder, i.e., either one can act as the en-
coder and the other as the corresponding decoder, since
they are trained with the same (h(k), h(k+1)

) pairs (but with
reversed roles of input and target).

In addition, if noise is injected, e.g., in the form of the
quantization induced by a spike train, then the trained
auto-encoders are actually denoising auto-encoders, which
means that both the encoders and decoders are contractive:
in the neighborhood of the observed (x, h) pairs, they map
neighboring “corrupted” values to the “clean” (x, h) val-
ues.

5.1. Joint Denoising Auto-Encoder with Latent
Variables

This suggests considering a special kind of “joint” denois-
ing auto-encoder which has the pair (x, h) as “visible” vari-
able, an auto-encoder that implicitly estimates an underly-
ing p(x, h). The transition operator3 for that joint visible-
latent denoising auto-encoder is the following in the case
of a single hidden layer:

(x̃, ˜h) corrupt(x, h)

h ⇠ q(h|x̃) x ⇠ p(x|˜h), (9)

where the corruption may correspond to the stochastic
quantization induced by the neuron non-linearity and spik-
ing process. In the case of a middle layer h(k) in a deeper
model, the transition operator must account for the fact that
h(k) can either be reconstructed from above or from below,
yielding, with probability say 1

2

,

h(k) ⇠ p(h(k)|˜h(k+1)

), (10)

and with one minus that probability,

h(k) ⇠ q(h(k)|˜h(k�1)

). (11)

Since this interpretation provides a different model, it also
provides a different way of generating samples. Especially
for shallow, we have found that better samples could be
obtained in this way, i.e., running the Markov chain with
the above transition operator for a few steps.

There might be a geometric interpretation for the improved
quality of the samples when they are obtained in this way,

3See Theorem 1 from Bengio et al. (2013) for the generative
interpretation of denoising auto-encoders: it basically states that
one can sample from the model implicitly estimated by a denois-
ing auto-encoder by simply alternating noise injection (corrup-
tion), encoding and decoding, these forming each step of a gener-
ative Markov chain.

J =

X

k

log p(h(k)|h(k+1)
) + log q(h(k+1)|h(k)

)

But Inference Seems to Need Backprop

IteraBve	
 inference,	
 e.g.	
 MAP	
 	

	

	

	

	

	

Involves	
 	
 	
 	
 	
 	
 	
 	
 which	
 has	
 terms	
 	
 of	
 the	
 form	

	

	

	

to	
 change	
 upper	
 layer	
 to	
 make	
 lower	
 layer	
 value	
 more	
 probable	
 (or	

the	
 equivalent	
 for	
 q)	

	
 12	

Towards Biologically Plausible Deep Learning

Algorithm 1 Variational MAP (or MCMC) SGD algorithm
for gradually improving the agreement between the values
of the latent variables h and the observed data x. q(h|x) is
a learned parametric initialization for h, p(h) is a paramet-
ric prior on the latent variables, and p(x|h) specifies how to
generate x given h. Objective function J is defined in Eq. 6
Learning rates � and ✏ respectively control the optimization
of h and of parameters ✓ (of both q and p).

Initialize h ⇠ q(h|x)
for t = 1 to T do

h h+ � @J
@h (optional: add noise for MCMC)

end for
✓ ✓ + ✏@J@✓

tions form a directed acyclic graph with nodes (areas) up-
dated in a particular order, e.g., in the visual cortex (Felle-
man & Essen, 1991). So consider Algorithm 1 with h de-
composed into multiple layers, with the conditional inde-
pendence structure of a directed graphical model structured
as a chain, both for p (going down) and for q (going up):

p(x, h) = p(x|h(1)

)

M�1Y

k=1

p(h(k)|h(k+1)

)

!
p(h(M)

)

q(h|x) = q(h(1)|x)
M�1Y

k=1

q(h(k+1)|h(k)
). (7)

This clearly decouples the updates associated with each
layer, for both h and ✓, making these updates “local” to
the layer k, based on “feedback” from layer k � 1 and
k + 1. Nonetheless, thanks to the iterative nature of the
updates of h, all the layers are interacting via both feedfor-
ward (q(h(k)|h(k�1)

)) and feedback (p(h(k)|h(k�1)

) paths.
Denoting x = h(0) to simplify notation, the h update would
thus consist in moves of the form

h(k) h(k)
+ �

@

@h(k)

⇣
log(p(h(k�1)|h(k)

)p(h(k)|h(k+1)

))

+ ↵ log(q(h(k)|h(k�1)

)q(h(k+1)|h(k)
))

⌘
,

(8)

where ↵ is as in Eq. 6. No back-propagation is needed
for the above derivatives when h(k) is on the left hand side
of the conditional probability bar. Sec. 6 deals with the
right hand side case. For the left hand side case, e.g.,
p(h(k)|h(k+1)

) a conditional Gaussian with mean µ and
variance �2, the gradient with respect to h(k) is simply
µ�h(k)

�2 . Note that there is an interesting interpretation of
such a deep model: the layers above h(k) provide a com-
plex implicitly defined prior for p(h(k)

).

5. Alternative Interpretations as Denoising
Auto-Encoder

By inspection of Algorithm 1, one can observe that this al-
gorithm trains p(x|h) and q(h|x) to form complementary

pairs of an auto-encoder (since the input of one is the tar-
get of the other and vice-versa). Note that from that point
of view any of the two can act as encoder and the other
as decoder for it, depending on whether we start from h
or from x. In the case of multiple latent layers, each pair
of conditionals q(h(k+1)|h(k)

) and p(h(k)|h(k+1)

) forms a
symmetric auto-encoder, i.e., either one can act as the en-
coder and the other as the corresponding decoder, since
they are trained with the same (h(k), h(k+1)

) pairs (but with
reversed roles of input and target).

In addition, if noise is injected, e.g., in the form of the
quantization induced by a spike train, then the trained
auto-encoders are actually denoising auto-encoders, which
means that both the encoders and decoders are contractive:
in the neighborhood of the observed (x, h) pairs, they map
neighboring “corrupted” values to the “clean” (x, h) val-
ues.

5.1. Joint Denoising Auto-Encoder with Latent
Variables

This suggests considering a special kind of “joint” denois-
ing auto-encoder which has the pair (x, h) as “visible” vari-
able, an auto-encoder that implicitly estimates an underly-
ing p(x, h). The transition operator3 for that joint visible-
latent denoising auto-encoder is the following in the case
of a single hidden layer:

(x̃, ˜h) corrupt(x, h)

h ⇠ q(h|x̃) x ⇠ p(x|˜h), (9)

where the corruption may correspond to the stochastic
quantization induced by the neuron non-linearity and spik-
ing process. In the case of a middle layer h(k) in a deeper
model, the transition operator must account for the fact that
h(k) can either be reconstructed from above or from below,
yielding, with probability say 1

2

,

h(k) ⇠ p(h(k)|˜h(k+1)

), (10)

and with one minus that probability,

h(k) ⇠ q(h(k)|˜h(k�1)

). (11)

Since this interpretation provides a different model, it also
provides a different way of generating samples. Especially
for shallow, we have found that better samples could be
obtained in this way, i.e., running the Markov chain with
the above transition operator for a few steps.

There might be a geometric interpretation for the improved
quality of the samples when they are obtained in this way,

3See Theorem 1 from Bengio et al. (2013) for the generative
interpretation of denoising auto-encoders: it basically states that
one can sample from the model implicitly estimated by a denois-
ing auto-encoder by simply alternating noise injection (corrup-
tion), encoding and decoding, these forming each step of a gener-
ative Markov chain.

@ log p(h(k�1)|h(k)
)

@h(k)

@J

@h

But Inference Seems to Need Backprop

How	
 to	
 back-­‐prop	
 through	
 one	
 layer	

without	
 explicit	
 derivaBves?	

	

	
 	
 DIFFERENCE	
 TARGET-­‐PROP	

	

Result:	
 itera3ve	
 inference	

climbs	
 J	
 even	
 though	
 no	

gradients	
 were	
 ever	
 computed	

and	
 no	
 animal	
 was	
 harmed!	

13	
 0 5 10 15 20
MAP iteration

55

50

45

40

35

30

av
er

ag
e

lo
g

p(
x,

 h
)

Parenthesis about auto-
encoders probabilistic

interpretation

14	

Regularized Auto-Encoders Learn a
Vector Field or a Markov Chain
Transition Distribution
•  (Bengio,	
 Vincent	
 &	
 Courville,	
 TPAMI	
 2013)	
 review	
 paper	

•  (Alain	
 &	
 Bengio	
 ICLR	
 2013;	
 Bengio	
 et	
 al,	
 NIPS	
 2013)	

15	

Denoising Auto-Encoders Learn a
Small Move Towards Higher
Probability
•  ReconstrucBon	
 	
 	
 	
 	
 points	
 in	
 direcBon	
 of	
 higher	
 probability	

•  Trained	
 with	
 input/target	
 pair	
 =	

	
 	
 	
 (corrupted	
 	
 	
 	
 	
 à	
 clean	
 data	
 	
 	
 	
)	

	

•  DAE	
 à	
 Score	
 matching	

	
 	
 	
 	
 	
 (Vincent	
 2011)	

x̂� x / @ logP (x)

@x

x̂

x̂

x̃

x̃

x

x

gradient	

(Alain	
 &	
 Bengio	
 ICLR	
 2013)	

	

General Result about Denoising

•  Non-­‐parametric	
 limit:	

•  where	
 z	
 is	
 N(0,1)	
 noise	
 and	
 E[.]	
 is	
 over	
 p(x)	
 and	
 z.	
 Then	

•  i.e.,	
 following	
 the	
 reconstrucBon	
 goes	
 down	
 the	
 gradient	

17	

r

⇤
(x)� x

�

2
=

@ log p(x)

@x

r

⇤ = argminrE[||x� r(x+ �z)||2]

(Alain	
 &	
 Bengio	
 ICLR	
 2013)	

	

Consistency Results
(Bengio et al NIPS 2013)

18	

•  Denoising	
 AE	
 are	
 consistent	
 esBmators	
 of	
 the	
 data-­‐generaBng	

distribuBon	
 through	
 their	
 Markov	
 chain	
 (corrupt,	
 reconstruct	

and	
 inject	
 reconstrucBon	
 error	
 noise,	
 repeat),	
 so	
 long	
 as	
 they	

consistently	
 esBmate	
 the	
 condiBonal	
 denoising	
 distribuBon	
 and	

the	
 Markov	
 chain	
 converges.	

•  In	
 other	
 words,	
 if	
 the	
 inference	
 mechanism	
 corresponds	
 to	

corrupBon	
 and	
 denoising	
 reconstrucBon,	
 we	
 are	
 following	
 the	

model’s	
 Markov	
 chain.	

Making P✓n(X|X̃) match P(X|X̃) makes ⇡n(X) match P(X)

truth	
 denoising	
 distr.	
 staBonary	
 distr.	
 truth	

Denoising Score Matching

•  An	
 alternaBve	
 to	
 maximum	
 likelihood	
 for	
 conBnuous	
 random	

variables	

•  AsymptoBcally	
 consistent	
 esBmator	
 (as	
 noises	
 level	
 decreases	

and	
 #	
 examples	
 increases)	

•  ReconstrucBon:	

•  Denoising	
 training	
 objecBve,	
 with	
 N(0,1)	
 noise	
 z:	

à	
 No	
 parBBon	
 funcBon	
 gradient!	

	

19	

r(x) = x� �

2 @Energy(x)

@x

E

x,z

[||r(x+ �z)� x||2]

Extracting Structure By Gradual
Disentangling and Manifold Unfolding
(Bengio 2014, arXiv 1407.7906)
Each	
 level	
 transforms	
 the	
 data	

into	
 a	
 representaBon	
 in	
 which	
 it	

is	
 easier	
 to	
 model,	
 unfolding	
 it	

more,	
 contracBng	
 the	
 noise	

dimensions	
 and	
 mapping	
 the	

signal	
 dimensions	
 to	
 a	
 factorized	

(uniform-­‐like)	
 distribuBon.	

	

	

=	
 variaBonal	
 auto-­‐encoder	

criterion	
 	

(Kingma	
 &	
 Welling	
 ICLR	
 2014)	

20	

Q(x)	

f1	

g1	

Q(h1)	

P(h1)	

fL	
 gL	

Q(hL)	

P(hL)	
 no

ise
	

signal	

…	

P(x|h1)	

Q(h1|x)	

Q(h2|h1)	
 f2	
 P(h2|h1)	
 g2	

minKL(Q(x, h)||P (x, h))

Close parenthesis

21	

Difference Target-Prop Estimator

•  If	
 the	
 encoder	
 is	
 f(x)+noise	
 and	
 the	
 decoder	
 is	
 g(h)+noise,	
 then	

•  which	
 is	
 demonstrated	
 by	
 exploiBng	

•  and	
 the	
 DAE	
 score	
 esBmator	
 theorem	

•  Considering	
 two	
 DAEs,	
 one	
 with	
 h	
 as	
 “visible”	
 and	
 one	
 with	
 (x,h)	
 	
 	

22	

@ log p(x|h)
@h

⇡ f(x)� f(g(h))

�

2
h

log p(x|h) = log p(x, h)� log p(h)

Towards Biologically Plausible Deep Learning

compared to the directed generative model that was defined
earlier. Denote q⇤(x) the empirical distribution of the data,
which defines a joint q⇤(h, x) = q⇤(x)q⇤(h|x). Consider
the likely situation where p(x, h) is not well matched to
q⇤(h, x) because for example the parametrization of p(h)
is not powerful enough to capture the complex structure in
the empirical distribution q⇤(h) obtained by mapping the
training data through the encoder and inference q⇤(h|x).
Typically, q⇤(x) would concentrate on a manifold and the
encoder would not be able to completely unfold it, so that
q⇤(h) would contain complicated structure with pockets or
manifolds of high probability. If p(h) is a simple factorized
model, then it will generate values of h that do not corre-
spond well to those seen by the decoder p(x|h) when it
was trained, and these out-of-manifold samples in h-space
are likely to be mapped to out-of-manifold samples in x-
space. One solution to this problem is to increase the ca-
pacity of p(h) (e.g., by adding more layers on top of h).
Another is to make q(h|x) more powerful (which again can
be achieved by increasing the depth of the model, but this
time by inserting additional layers below h). Now, there
is a cheap way of obtaining a very deep directed graphical
model, by unfolding the Markov chain of an MCMC-based
generative model for a fixed number of steps, i.e., consid-
ering each step of the Markov chain as an extra “layer”
in a deep directed generative model, with shared parame-
ters across these layers. As we have seen that there is such
an interpretation via the joint denoising auto-encoder over
both latent and visible, this idea can be immediately ap-
plied. We know that each step of the Markov chain opera-
tor moves its input distribution closer to the stationary dis-
tribution of the chain. So if we start from samples from a
very broad (say factorized) prior p(h) and we iteratively en-
code/decode them (injecting noise appropriately as during
training) by successively sampling from p(x|h) and then
from q(h|x), the resulting h samples should end up look-
ing more like those seen during training (i.e., from q⇤(h)).

5.2. Latent Variables as Corruption
There is another interpretation of the training procedure,
also as a denoising auto-encoder, which has the advantage
of producing a generative procedure that is the same as the
inference procedure except for x being unclamped.

We return again to the generative interpretation of the de-
noising criterion for auto-encoders, but this time we con-
sider the non-parametric process q⇤(h|x) as a kind of cor-
ruption of x that yields the h used as input for reconstruct-
ing the observed x via p(x|h). Under that interpretation,
a valid generative procedure consists at each step in first
performing inference, i.e., sampling h from q⇤(h|x), and
second sampling from p(x|h). Iterating these steps gener-
ates x’s according to the Markov chain whose stationary
distribution is an estimator of the data generating distribu-
tion that produced the training x’s (Bengio et al., 2013).

This view does not care about how q⇤(h|x) is constructed,
but it tells us that if p(x|h) is trained to maximize recon-
struction probability, then we can sample in this way from
the implicitly estimated model.

We have also found good results using this procedure (Al-
gorithm 2 below), and from the point of view of biological
plausibility, it would make more sense that “generating”
should involve the same operations as “inference”, except
for the input being observed or not.

6. Targetprop instead of Backprop
In Algorithm 1 and the related stochastic variants Eq. 8
suggests that back-propagation (through one layer) is still
needed when h(k) is on the right hand side of the con-
ditional probability bar, e.g., to compute @p(h(k�1

)|h(k)
)

@h(k) .
Such a gradient is also the basic building block in back-
propagation for supervised learning: we need to back-prop
through one layer, e.g. to make h(k) more “compatible”
with h(k�1). This provides a kind error signal, which in
the case of unsupervised learning comes from the sensors,
and in the case of supervised learning, comes from the layer
holding the observed “target”.

Based on recent theoretical results on denoising auto-
encoders, we propose the following estimator (up to a scal-
ing constant) of the required gradient, which is related to
previous work on “target propagation” (Bengio, 2014; Lee
et al., 2014) or targetprop for short. To make notation sim-
pler, we focus below on the case of two layers h and x with
“encoder” q(h|x) and “decoder” p(x|h), and we want to
estimate @ log p(x|h)

@h . We start with the special case where
p(x|h) is a Gaussian with mean g(h) and q(h|x) is Gaus-
sian with mean f(x), i.e., f and g are the deterministic
components of the encoder and decoder respectively. The
proposed estimator is then

c
�h =

f(x)� f(g(h))

�2

h

, (12)

where �2

h is the variance of the noise injected in q(h|x).

Let us now justify this estimator. Theorem 2 by Alain
& Bengio (2013) states that in a denoising auto-encoder
with reconstruction function r(x) = decode(encode(x)),
a well-trained auto-encoder estimates the log-score via the
difference between its reconstruction and its input:

r(x)� x

�2

! @ log p(x)

@x
,

where �2 is the variance of injected noise, and p(x) is the
implicitly estimated density. We are now going to con-
sider two denoising auto-encoders and apply this theorem
to them. First, we note that the gradient @ log p(x|h)

@h that we
wish to estimate can be decomposed as follows:

@ log p(x|h)
@h

=

@ log p(x, h)

@h
� @ log p(h)

@h
.

Decomposition of the
gradient into reconstructions
•  We	
 want	

•  which	
 we	
 get	
 from	
 two	
 auto-­‐encoders:	

1.  The	
 (x,h)	
 to	
 (h,x)	
 AE:	

	
 	
 	
 	
 	
 	
 	
 	
 à	

	

2.  	
 The	
 AE	
 with	
 h	
 as	
 «	
 visible	
 »	
 and	
 x	
 as	
 «	
 representaBon	
 »	

	
 	
 	
 	
 	
 	
 	
 	
 	
 à	

•  Result:	

	

23	

@ log p(x|h)
@h

=

@ log p(x, h)

@h

� @ log p(h)

@h

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Towards Biologically Plausible Deep Learning

Hence it is enough to estimate @ log p(x,h)
@h as well as

@ log p(h)
@h . The second one can be estimated by consider-

ing the auto-encoder which estimates p(h) implicitly and
for which g is the encoder (with g(h) the “code” for h) and
f is the decoder (with f(g(h)) the “reconstruction” of h).
Hence we have that f(g(h))�h

�2
h

is an estimator of @ log p(h)
@h .

The other gradient can be estimated by considering the joint
denoising auto-encoder over (x, h) introduced in the previ-
ous section. The (noise-free) reconstruction function for
that auto-encoder is

r(x, h) = (g(h), f(x)).

Hence f(x)�h
�2
h

is an estimator of @ log p(x,h)
@h . Combining the

two estimators, we get
(f(x)� h)

�2

h

� (f(g(h))� h)

�2

h

=

f(x)� f(g(h))

�2

h

,

which corresponds to Eq. 12.

Figure 1. The optimal h for maximizing p(x|h) is ˜

h s.t. g(

˜

h) =

x. Since the encoder f and decoder g are approximate inverses
of each other, their composition makes a small move �x. Eq. 12
is obtained by assuming that by considering an x̃ at x � � and
applying f �g, one would approximately recover x, which should
be true if the changes are small and the functions smooth (see Lee
& Bengio (2014) for a detailed derivation).

Another way to obtain the same formula from a geomet-
ric perspective is illustrated in Figure 1. It was introduced
in Lee & Bengio (2014) in the context of a backprop-free
algorithm for training a denoising auto-encoder.

7. Related Work

The main inspiration for the proposed framework is the
biological implementation of back-propagation proposed
by Hinton (2007). In that talk, Hinton suggests that STDP
corresponds to a gradient update step with the gradient on
the voltage potential corresponding to its temporal deriva-
tive. To obtain the supervised back-propagation update in
the proposed scenario would require symmetric weights
and synchronization of the computations in terms of feed-
forward and feedback phases.

Our proposal extends these ideas to include unsupervised
learning, avoids the need for symmetric weights, and ex-
ploits inference to obtain targets and a probabilistic inter-
pretation as the optimization of a variational bound on the

Algorithm 2 Inference, training and generative procedures
used in Experiment 1, for a model with three layers x, h

1

,
h
2

. fi() is the feedforward map from layer i � 1 to layer
i and gi() is the feedback map from layer i to layer i � 1,
with x = h

0

being layer 0.
Define INFERENCE(x, N=15, �=0.1, ↵=0.001):
Feedforward pass: h

1

 f
1

(x), h
2

 f
2

(h
1

)

for t = 1 to N do

h
2

 h
2

+ �(f
2

(h
1

)� f
2

(g
2

(h
2

)))

h
1

 h
1

+ �(f
1

(x)� f
1

(g
1

(h
1

))) + ↵(g
2

(h
2

)� h
1

)

end for

Return h
1

, h
2

Define TRAIN()
for x in training set do

do INFERENCE(x)
train each layer (both fl and gl) by taking Gaussian-
corrupted value of other layer as input and the clean
inferred value as target (i.e. applying the delta rule).
For the top sigmoid layer, we sample 3 binary values
and average them as a spike-like corruption.

end for

Compute the mean and variance of the h
2

values inferred
in the training set. Multiply the variances by 4. Define
p(h

2

) as sampling from this Gaussian.

Define GENERATE():
Sample h

2

from p(H
2

)

for t = 1 to 3 do

h
1

, h
2

 INFERENCE(x,↵ = 0.3)
x g

1

(h
1

)

end for

Return x

likelihood. There is also an interesting connection with an
earlier proposal for a more biologically plausible imple-
mentation of supervised back-propagation (Xie & Seung,
2003) which also relies on iterative inference (a determin-
istic relaxation in that case), but needs symmetric weights.

Another important inspiration is Predictive Sparse Decom-
position (PSD) (Kavukcuoglu et al., 2008). PSD is a spe-
cial case of Algorithm 1 when there is only one layer and
the encoder q(h|x), decoder p(x|h), and prior p(h) have a
specific form which makes p(x, h) a sparse coding model
and q(h|x) a fast parametric approximation of the correct
posterior. Our proposal extends PSD by providing a justi-
fication for the training criterion as a variational bound, by
generalizing to multiple layers of latent variables, and by
providing associated generative procedures.

The combination of a parametric approximate inference
machine (the encoder) and a generative decoder (each with
possibly several layers of latent variables) is an old theme

f	
 g	

h	

x	

f(x)� h

�

2
⇡ @ log p(x, h)

@h

f(g(h))� h

�2
⇡ @ log p(h)

@h

@ log p(x|h)
@h

⇡ f(x)� f(g(h))

�

2
h

Same Formula justifies Backprop-free
Auto-Encoder based on Target-Prop
•  If	
 r(x)=f(g(h))	
 is	
 smooth	
 and	
 makes	
 a	
 small	
 move	
 away	
 from	
 x,	

then	
 applying	
 r	
 from	
 	

•  should	
 approximately	
 give	
 x,	
 so	

•  where	

•  And	
 the	
 encoder	
 should	
 be	
 trained	

on	
 the	
 pair	

	

24	

x̃ = x��x = x� (g(f(x))� x) = 2x� g(f(x))

g(h̃) ⇡ x

h̃ = f(x̃) = f(2x� g(f(x)))

(x̃, h̃)

Difference Target Propagation
hi ĥi

hi�1 ĥi�1

fi
gi

ĥi�1 = hi�1 � gi(hi) + gi(ĥi)

fi(ĥi�1) = fi(hi�1 � gi(hi) + gi(ĥi))

⇡ fi(hi�1 + g0i(hi)(ĥi � hi))

⇡ fi(hi�1) + f 0
i(hi�1)g

0
i(hi)(ĥi � hi)

���ĥi � fi(ĥi�1)
���
2
<

���ĥi � hi

���
2

if 1 > max eigen value

h
(I � f

0
i(hi�1)g

0
i(hi))

T
(I � f

0
i(hi�1)g

0
i(hi))

i

g don’t need to be inverse mapping ! !
if this condition is satisfied

fi(ĥi�1)

But we can get exact target if

if ĥi ⇡ hi

ĥi � fi(ĥi�1) ⇡ [I � f 0
i(hi�1)g

0
i(hi)] (ĥi � hi)

fi(gi(ĥi)) = ĥi

•  Make	
 a	
 correcBon	
 that	
 guarantees	
 to	

first	
 order	
 that	
 the	
 projecBon	

esBmated	
 target	
 is	
 closer	
 to	
 the	

correct	
 target	
 than	
 the	
 original	
 value	

•  Special	
 case:	
 feedback	
 alignement,	
 if	

gi(h)	
 =	
 B	
 h	

25	

Difference Target-Prop for Inexact
Inverse

Difference Target Propagation
hi ĥi

hi�1 ĥi�1

fi
gi

ĥi�1 = hi�1 � gi(hi) + gi(ĥi)

fi(ĥi�1) = fi(hi�1 � gi(hi) + gi(ĥi))

⇡ fi(hi�1 + g0i(hi)(ĥi � hi))

⇡ fi(hi�1) + f 0
i(hi�1)g

0
i(hi)(ĥi � hi)

���ĥi � fi(ĥi�1)
���
2
<

���ĥi � hi

���
2

if 1 > max eigen value

h
(I � f

0
i(hi�1)g

0
i(hi))

T
(I � f

0
i(hi�1)g

0
i(hi))

i

g don’t need to be inverse mapping ! !
if this condition is satisfied

fi(ĥi�1)

But we can get exact target if

if ĥi ⇡ hi

ĥi � fi(ĥi�1) ⇡ [I � f 0
i(hi�1)g

0
i(hi)] (ĥi � hi)

fi(gi(ĥi)) = ĥi

Obligatory MNIST Results (supervised
target-prop)

Blah	

26	

Experimental Result

• We used hyper-parameters for the best valid error respectively

• Test error :  
1.73% : target prop with high regression  
1.62% : difference target prop,  
1.44% : back-prop, respective learning rates

↵ = 0.99

Experimental Result

• Left graph : Hyper-parameters for the best valid error

• Right graph : Hyper-parameters for the best training cost at
100 epoch

• Target prop is sometimes faster than back-prop though it is
usually overfitting, but it can solve under-fitting problem (ex -
very deep net, highly non-linear net and discrete net)

Hyper-­‐opBmizing	
 for	

validaBon	
 error	

Hyper-­‐opBmizing	
 for	

validaBon	
 error	

Hyper-­‐opBmizing	
 for	

validaBon	
 error	

Hyper-­‐op=mizing	
 for	

training	
 error	

Targetprop can work for discrete
and/or stochastic activations

Work	
 in	
 progress	

27	

Experimental Result

• We used hyper-parameters for the best valid error

• Test error :  
~2.5% (discrete networks with 3 hidden layers),  
~2.5% (discrete networks with 2 hidden layers),  
 5~6% (just training top classifier with 2 hidden : back-prop)

Iterated Target-Prop Generative Deep
Learning Experiments on MNIST

Generated	
 model	
 samples	

28	

InpainBng	
 missing	

values	
 (starBng	

from	
 noise)	

Original	
 examples	
 InpainBng	

starBng	
 point	

Inpainted	

What’s Next?
•  Experiments	
 only	
 involved	
 p	
 terms	
 in	
 J,	
 but	
 if	
 there	
 is	
 going	
 to	
 be	

mulBple	
 modaliBes,	
 we	
 need	
 correcBon	
 signals	
 (target	
 prop)	

from	
 above	
 as	
 well	
 as	
 from	
 below	

•  Using	
 true	
 gradients	
 instead	
 of	
 diff	
 targetprop	
 yielded	
 beyer	

final	
 values	
 of	
 J	
 a^er	
 each	
 inference	
 iteraBon	
 but	
 a	
 worse	
 final	

value	
 of	
 J	
 a^er	
 training.	
 Why?	

•  Proposed	
 theory	
 suggests	
 that	
 using	
 only	
 a	
 few	
 inference	

iteraBons	
 should	
 give	
 a	
 sufficient	
 signal	
 to	
 update	
 weights,	
 but	

experiments	
 required	
 10-­‐15.	

•  Updates	
 in	
 paper	
 did	
 not	
 follow	
 the	
 STDP	
 framework	
 but	
 used	

final	
 inference	
 values	
 as	
 targets	

29	

Why Noise is Needed

•  Up	
 to	
 now	
 we	
 used	
 a	
 MAP	
 inference	
 in	
 our	
 experiments	

•  Adding	
 noise	
 appropriately	
 makes	
 it	
 a	
 biased	
 Langevin	
 MCMC,	

making	
 the	
 inference	
 procedure	
 approximately	
 sample	
 from	
 the	

posterior	
 of	
 latent	
 given	
 visible	

•  Noise	
 may	
 be	
 necessary	
 to	
 appropriately	
 prepare	
 the	
 decoder	

to	
 face	
 the	
 inadequacy	
 of	
 the	
 higher-­‐levels	
 ‘prior’,	
 by	
 becoming	

contracBve	

•  It	
 comes	
 up	
 automaBcally	
 in	
 the	
 variaBonal	
 auto-­‐encoder	

criterion	

30	

The Importance of Contractive Decoder
•  Denoising	
 à	
 contracBve	
 g	

•  Max.	
 determinant	
 of	
 f’	
 à	
 f	
 expansive	
 at	

data	
 x,	
 g	
 contracBve	
 around	
 	

•  ContracBon	
 à	
 removes	
 unnecessary	

direcBons	

•  Making	
 g	
 contracBve	
 helps	
 to	
 manage	

the	
 mismatch	
 between	
 P(h)	
 and	
 Q(h)	

•  Adding	
 noise	
 at	
 the	
 top-­‐level	
 in	
 Q(h|x)	

shows	
 to	
 the	
 decoder	
 which	
 direcBons	

of	
 h	
 need	
 to	
 be	
 contracted	
 out,	
 making	

it	
 contracBve	
 Q(x)	

f	
 g	

Q(h)	

P(h)	

If	
 f	
 bijec\ve	
 P(x)=P(h=f(x))|det	
 f’(x)|	

Many Probabilistic Interpretations e.g.
EM Denoising Score Matching

•  A	
 reconstrucBon	
 funcBon	
 (state	
 à	
 state)	
 embodies	
 energy	

gradient	
 (to	
 improved	
 state)	
 and	
 defines	
 neural	
 dynamics	

•  Use	
 it	
 for	
 inference,	
 e.g.	
 Langevin	
 MCMC,	
 i.e.,	
 update	
 state	

towards	
 reconstrucBon,	
 with	
 some	
 noise	
 injected	

•  Given	
 visible	
 x,	
 do	
 inference	
 to	
 sample	
 h	
 ~	
 posterior	
 given	
 x	

•  Consider	
 state	
 s=(x,h)	
 as	
 if	
 they	
 were	
 visible	
 and	
 perform	
 a	

denoising	
 score	
 matching	
 update	
 of	
 parameter	
 i.e.,	

•  Any	
 energy	
 funcBon	
 can	
 be	
 defined,	
 but	
 some	
 give	
 rise	
 to	

biologically	
 plausible	
 neural	
 dynamics	

32	

min

✓
||reconstruct(corrupt(state))� state||2

Ongoing: Impatient Learned
Approximate Inference

•  Instead	
 of	
 waiBng	
 for	
 the	
 last	
 step	
 of	
 inference	
 (to	
 be	
 used	
 as	

target	
 a	
 la	
 EM),	
 we	
 can	
 ask	
 each	
 inference	
 step	
 to	
 land	
 where	

the	
 next	
 step	
 will	
 land,	
 i.e.,	
 to	
 speed-­‐up	
 the	
 MCMC	
 burn-­‐in	

•  i.e.,	
 target	
 state	
 =	
 later	
 in	
 the	
 chain	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 corrupted	
 state	
 =	
 noisy,	
 earlier	
 state	
 in	
 the	
 chain	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 reconstruc=on	
 error	
 becomes	
 PREDICTION	
 error	

•  This	
 	
 would	
 result	
 in	
 an	
 SDTP-­‐like	
 update,	
 at	
 every	
 Bme	
 step,	
 not	

just	
 at	
 the	
 end	
 of	
 inference	

33	

S0	
 S1	
 S2	
 S3	

A	
 A	
 A	
 S2	
 is	
 a	
 target	
 for	
 the	
 	

output	
 of	
 A	
 applied	
 to	
 S0	

A	
 wants	
 to	
 become	
 A2	

MILA: Montreal Institute for Learning Algorithms

