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Central Issue in Deep Learning:
Credit Assignment

e What should hidden layers do?

e Established approaches:
* Backpropagation

* Stochastic relaxation in Boltzmann machines



Issues with Back'-‘?rop

e OQOver very deep nets or recurrent nets with many steps, non-
linearities compose and yield sharp non-linearity = gradients
vanish or explode

* Training deeper nets: harder optimization

* |n the extreme of non-linearity: discrete functions, can’t use
back-prop

e Biological plausibility



Blological Plausibility Issues with
Standard Backprop

1.

BP of gradient = purely linear computation, not plausible across
many neural levels

If feedback paths are used for BP, how would they know the
precise derivatives of forward-prop?

Feedback paths would have to use exactly the same weights
(transposed) as feedforward paths

Real neurons communicate via spikes

Need to clock and alternate feedforward and feedback
computation

Where would the supervised targets come from?



Issues with Boltzmann Machines

e Sampling from the MCMC of the model is required in the inner loop
of training

e As the model gets sharper, mixing between well-separated modes
stalls

O NN

Training updates

Gicious circla

Mixing
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What is the brain’s Llearning algorithm?
Cue: Spike-Timing Dependent Plasticity

e Observed
throughout the
nervous system,
especially in
cortex

e STDP: weight
increases if post-
spike just after
pre-spike,
decreases if just
before.
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Machine Learning Interpretation of
Spike-Timing Dependent Plasticity

e Suggested by Xie & Seung NIPS’99 and Hinton 2007: the STDP
update corresponds to a temporal derivative filter applied to

post-spike, around pre-spike.

* |n agreement with the above, we argue this corresponds to

AWij X Sz A‘/]
7 A
synaptic pre-spike temporal change in
change post-potential



Machine Learning Interpretation of
Spike-Timing Dependent Plasticity

AWZ']' X SZAV?

» would be SGD on objective J if

dJ
N
7o

e This corresponds to neural dynamics implementing a form of

inference wrt J, seen as a function of parameters and latent vars



STD? and Variational EMm

 Neural dynamics moving towards “improved” objective J and
parameter updates towards the same J corresponds to a
variational EM learning algorithm,

log p(x) > Egp« (12 log p(x, H)]

Approximate inference

o where J = regularized joint likelihood of observed x and latent h
J = logp(x, h) + regularizer

Generative model f Inference initial guess
All interactions between neurons (forward pass)

e Generalizes PSD (Predictive Sparse Decomposition) from
(Kavukcuoglu & LeCun 2008) with regularizer = q(h\a:)



What Inference Mechanism?

10

Simply going down on J’'s gradient corresponds to MAP
inference (disadvantage: decoder not sufficiently contractive)

Injecting noise in the process gives a form of approximate
posterior MCMC, such as Langevin MCMC

: 1 0J
h = - o0 Brownian noise

20 Oh

Or, in discrete time:
1 0J

h < h A 5 o7 - o Normal(0, 1) noise

* no rejection: biased samples, but ok, see (Welling & Teh ICML 2011)




Inference Decouples Deep Net Layers

e After inference, no need for back-prop because the joint over
layers decouples the updates of the parameters from the
different layers, e.g.
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e SoJ could be of the form

J — Z logp(h(’“)|h(k+1)) 4 logq(h(k+1)|h(k))
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But Inference Seems to Need Backprop

Iterative inference, e.g. MAP

Initialize h ~ q(h|z)
fort =1to1 do
h<+ h+0%7

Involves 0_] which has terms of the form

oh
8logp(h(k_1) |h(k))
Oh(k)

to change upper layer to make lower layer value more probable (or
the equivalent for q)
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But Inference Seems to Need Backprop

How to back-prop through one layer
without explicit derivatives?

DIFFERENCE TARGET-PROP

Result: iterative inference
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Parenthesis about auto-
encoders pmbabms&ic
Ln&erpre&aki‘.on



ularized Auto-Encoders Learn a

9
Vector Field or a Markov Chain

Transition Diskribution

e (Bengio, Vincent & Courville, TPAMI 2013) review paper
(Alain & Bengio ICLR 2013; Bengio et al, NIPS 2013)
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Denoising Auto-Encoders Leari a
Small Move Towards Higher
?T'Qbﬁbu.i&j (Alain & Bengio ICLR 2013)

e Reconstruction L. points in direction of higher probability

a log P(Qj) / gradient
Ox

T — 1 X

e Trained with input/target pair =
(corrupted X' > clean dataXl’)

e DAE > Score matching - ~If

(Vincent 2011) / A -
N _ 7/




Greneral Result abouk Denoising

(Alain & Bengio ICLR 2013)

* Non-parametric limit:
sk

r* = argmin Fl||x — r(z + 02)||]
» where zis N(0,1) noise and E[] is over p(x) and z. Then
r*(x) —x  Ologp(x)

o2 Ox

e j.e., following the reconstruction goes down the gradient
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Consistency Results
(Bengio et al NIPS 2013)

* Denoising AE are consistent estimators of the data-generating
distribution through their Markov chain (corrupt, reconstruct
and inject reconstruction error noise, repeat), so long as they
consistently estimate the conditional denoising distribution and

the Markov chain converges.

~

Making Py (X|X) match P(X|X) makes 7, (X) match P(X)

/1

truth stationary distr. truth

denoising distr.

* |n other words, if the inference mechanism corresponds to
corruption and denoising reconstruction, we are following the

8 model’s Markov chain.



Denoising Score Matching

e An alternative to maximum likelihood for continuous random
variables

 Asymptotically consistent estimator (as noises level decreases

and # examples increases
P )_ , OEnergy(x)
* Reconstruction: T(LU) — T — 0 O

e Denoising training objective, with N(0,1) noise z:

E,  llr(x+0z) — a:'HZ]

- No partition function gradient!
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Extracting Structure By Gradual
Disentangling and Manifold Unfolding
(Bengio 2014, arXiv 1407,7906)

oise

am) 1= 7
Each level transforms the data T gt
into a representation in which it T T
. . . . L g,
is easier to model, unfolding it
more, contracting the noise
d.imensi.ons ar'1d mapping the. a1, lgz P(h,h.)
signal dimensions to a factorized
(uniform-like) distribution. ath,) ’/\-J P(

min KL(Q(z, h)||P(a. k) anpo P [7

= variational auto-encoder
criterion

(Kingma & Welling ICLR 2014)
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Difference Target-Prop Estimator

e If the encoder is f(x)+noise and the decoder is g(h)+noise, then

Ologp(z|h)  f(x) = f(g(h))
Oh o5

e which is demonstrated by exploiting

log p(x|h) = log p(x, h) —log p(h)

e and the DAE score estimator theorem

r(r) —x  OJlogp(z)
o " Oz

e Considering two DAEs, one with h as “visible” and one with (x,h)
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Decomposition of the

gradient into reconstructions
e We want -

Ologp(z|h)  Odlogp(z,h) Ologp(h) fI |g
oh ~  Oh Oh

X

e which we get from two auto-encoders:
1. The (xh)to (hx) AE:  7(z, h) = (g(h), f(x))
> flz)—h _ 9logp(z,h)
o2 Oh

2. The AE with h as « visible » and x as « representation »
> flg(h)) —h _ Ologp(h)
o2 ~ oh

Ologp(z|h)  f(x)— f(g(h))

. oh o

e Result:




Same Formula us&tis.es Backpro ree
Auto-Encoder based on Targe.&- ro

e If r(x)=f(g(h)) is smooth and makes a small move away from X,
then applying r from

T=x—Ar=x—(9(f(2)) —x) =2z - g(f(2))

e should approximately give x, so g(ib) ~ T
 where -~

h=f(@) = [z — g(f(2)) @<: )

* And the encoder should be trained

on the pair(Z, h) Ipgl g =a g/ 9\
Ao N
. 7
- /
3 2 e )<
P SN— ~ ~
N AN =
' '
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Difference Target-Prop for Inexact

Inverse h; h;
. .

 Make a correction that guarantees to ;’fz hi1)
first order that the projection
estimated target is closer to the
correct target than the original value 9i

) . fi
hi—1=hi—1 — gi(h;) + gi(h;)

e Special case: feedback alignement, if
g,-(h) =Bh ,—"A

2

A A 2 A
hi_fi(hi—l)H < ||h; — h;
if 1 > maz eigen value {(I — fl(him)gi(ha))" (I = fi(hi—1)g}(h:))
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Obligatory MNIST Resulls (supervised

target-prop)
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negative log-likelihood

Targetprop can work for discrete
and/or stochastic activations
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training cost

— diff target-prop
— back-prop
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classification error (%)

Work in progress
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Generated model samples



What's Nexk?

e Experiments only involved p terms in J, but if there is going to be
multiple modalities, we need correction signals (target prop)
from above as well as from below

e Using true gradients instead of diff targetprop yielded better
final values of J after each inference iteration but a worse final
value of J after training. Why?

e Proposed theory suggests that using only a few inference
iterations should give a sufficient signal to update weights, but
experiments required 10-15.

e Updates in paper did not follow the STDP framework but used

final inference values as targets
29



Whv Noise is Needed

30

Up to now we used a MAP inference in our experiments

Adding noise appropriately makes it a biased Langevin MCMC,
making the inference procedure approximately sample from the
posterior of latent given visible

Noise may be necessary to appropriately prepare the decoder
to face the inadequacy of the higher-levels ‘prior’, by becoming
contractive

It comes up automatically in the variational auto-encoder
criterion



The Importance of Contractive Decoder

Denoising = contractive g If f bijective P(x)=P(h=f(x))|det f'(x)|
Max. determinant of f* = f expansive at P( \

data x, g contractive around o~ = am
Contraction = removes unnecessary /M

directions

Making g contractive helps to manage f g

the mismatch between P(h) and Q(h) u

Adding noise at the top-level in Q(h/x)
shows to the decoder which directions
of h need to be contracted out, making
it contractive Q(x)



Maw\g Probabilistic Interpretations e.q.
EM Denoising Score Matching

e A reconstruction function (state = state) embodies energy
gradient (to improved state) and defines neural dynamics

e Use it for inference, e.g. Langevin MCMC, i.e., update state
towards reconstruction, with some noise injected

e Given visible x, do inference to sample h ~ posterior given x

e Consider state s=(x,h) as if they were visible and perform a
denoising score matching update of parameter i.e.,

m@in ||reconstruct (corrupt(state)) — state||?

 Any energy function can be defined, but some give rise to
biologically plausible neural dynamics
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Ongoing: Impatient Learned
Approximate Inference

e Instead of waiting for the last step of inference (to be used as
target a la EM), we can ask each inference step to land where
the next step will land, i.e., to speed-up the MCMC burn-in

e j.e., target state = later in the chain
corrupted state = noisy, earlier state in the chain
reconstruction error becomes PREDICTION error

e This would result in an SDTP-like update, at every time step, not

just at the end of inference

A A A S, is a target for the
S 2
o ) S m—) S, —) S, output of A appliedto S,

\/A wants to become A2
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