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Cars are now driving themselves...




What can | help you with?
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Al: The Upcoming Industrlal ReVO|ut|0n

« Machines extending humans’

« Machines extending humans’

* From the digital economy to the

Al economy
* Predicted growth at least 25%/yr

» All sectors of the economy




A new revolution seems
to be in the work after
the industrial revolution.

Devices are becoming
intelligent.

And Deep
Learning is at
the epicenter

of this
revolution.
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Breakthrough in deep learning

i

A Canadian-led trio at CIFAR L

initiated the deep learning Al &?‘;

revolution P Y =
} YOSHUA BENGIO

* Fundamental breakthrough
in 2006:

first successful recipe for GEOFF HINTON
training a deep supervised Toronto
neural network

« Second major advance in
2011, with rectifiers

Breakthroughs in

applications since then VANN LECUN

Facebook New York




Al Needs Knowledge

 Failure of classical Al: a lot of knowledge
Is not formalized, expressed with words

 Solution: computer gets knowledge from
data, learns from examples
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Machine Learning, Al & No
Free Lunch

* Five key ingredients for ML towards Al
1. Lots & lots of data

2. Very flexible models
3. Enough computing power

4. Powerful priors that can defeat the
curse of dimensionality

5. Computationally efficient inference




Bypassing the curse of
d?rﬁmhsiovmti&v

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior assumption: compositionality is useful to
describe the world around us efficiently

10



Nown-distributed representations

e Clustering, n-grams, Nearest-

Clusterin )
8 / Neighbors, RBF SVMs, local
X /\ non-parametric density
s estimation & prediction,

decision trees, etc.

e Parameters for each
distinguishable region

e # of distinguishable regions
is linear in # of parameters

LOCAL PARTITION

- No non-trivial generalization to regions without examples
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The need for distributed
repre.sev\&al:i.ovxs
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Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

Each parameter influences
many regions, not just local
neighbors

# of distinguishable regions

grows almost exponentially
with # of parameters

GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Multi-
Clustering

Cl=1
C2=0
C3=0

Sub—partition 1

Sub—partition 3
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DISTRIBUTED PARTITION \

C2

input

C3

Non-mutually
exclusive features/
attributes create a
combinatorially large
set of distinguiable
configurations



Hidden Oniks Discover Se.mam&s.cauv
Meaningful Concepts

e Zhou etal & Torralba, arXivi412.6856, ICLR 2015
e Network trained to recognize places, not objects
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Each feature can be discovered
without the weed for seeing the
exponentially large number of
configurations ofc) the other features

e Consider a network whose hidden units discover the following
features:

* Person wears glasses 2

[ )
=
i

ttttt

* Person is female

(‘J £ 22
* Personisachild v = - ‘ | ]
* Etc.
If each of n feature requires O(k) parameters, need O(nk) examples

Non-parametric methods would require O(n?) examples
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The Depth Prior can be Exponentially
Advantageous

Theoretical arguments:

g—

Logic gates

2 layers of =4 Formal neurons = universal approximator
RBF units

RBMs & auto-encoders = universal approximat
Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007,
Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014, Montufar et al NIPS 2014) 1 2 3 2n

Some functions compactly

represented with k layers may
require exponential size with 2
layers 1 2 3 n



subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



N

bsubsub1 subsubsub?

subsubsu //////////fBbSUbSUbs
subsub1 subsub? subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



Exponential advantage of depth

e Expressiveness of deep networks with piecewise linear
activation functions: exponential advantage for depth

(Montufar et al, NIPS 2014)
e Number of pieces distinguished for a network with depth L and

n; units per layer is at least
L—-1 - no no nr,
(.H LTOJ ) 2 ( j )

=1 7=0

or, if hidden layers have width n and input has size n,

n L—1)ng n
Q (W) =170 o
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A Myth is Being Debuniced: Local
Minima in Neural Nets

= Cov\ve.xilzv s nolt needed

e (Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the
saddle point problem for non-convex optimization

e (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS’ 2014):
Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization

e (Choromanska, Henaff, Mathieu, Ben Arous & LeCun AISTATS
2015): The Loss Surface of Multilayer Nets
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Saddle Poinks

* Local minima dominate in low-D, but
saddle points dominate in high-D ok

e Most local minima are close to the
bottom (global minimum error)

O e cpupe ettt O ¢

0700 0.05 0.10 0.15 0.20 0.25
Index of critical point

20

YWolfram Global Problem




2010-2012: breakthrough in
speech recognition

DEEP IMPACT

Source: Microsoft




2012-2015: breakthrough
In computer vision

Graphics Processing Units
(GPUs) + 10x more data

1,000 object categories,
Facebook: millions of faces

Person

Chair




ImageNet Accuracy Still Improving

Top-5 Classification task

100%

~ level of human
accuracy

Deep Learning

over

Conventional
Computer Vision

2013 2014 2015




IT companies are racing
into deep learning

NUANCE

: ...0
Quuown B Microsoft Bai V&R

amazon @ £/




From computer vision to self-driving cars: 2016

Holmdel, New Jersey
February 2016




Ongoing progress: combining vision and
natural language understanding

A woman is throwmg a frisbee A dog Is Standing on a hardwood A stop sign is on a road with a
In a park. floor mountain in the background




With a lot more
data...

visual question

answering




Recurrent Neural Nebworles

e Selectively summarize an input sequence in a fixed-size state
vector via a recursive update

St = FH(St—lamt)

Iy
S St—1 St+1
unfold (T} i" ﬁ?‘
f/ shared ov rtlme
X Lt—1 Lt41

St — Gt(xta Lt—1yLt—2y 4L, 331)

=» Generalizes naturally to new lengths not seen during training
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Crenerative RNNs

e An RNN can represent a fully-connected directed generative
model: every variable predicted from all previous ones.

T
P(x) = P(z1,...27) = HP(SCt|CUt—1, Tt—9,...21)
t=1

Li_1 Ly Litq

Lt = — lOg P($t|xt—17$t—2a c. 5(31)




Attention Mechanism for Deep Learning

(Bahdanau, Cho & Bengio, ICLR 2015, Jean et al ACL 2015; Jéan et al WMT 2015;
Xu et al ICML 2015; Chorowski et al NIPS 2015; Firat, Cho & Bengio 2016)

e Consider an input (or intermediate) sequence or image

e Consider an upper level representation, which can choose
« where to look », by assigning a weight or probability to each
input position, as produced by an MLP, applied at each position

0000000000000 0000

Higher-level
Softmax over lower
locations conditioned * Soft attention (backprop) vs
on context at lower ard * Stochastic hard attention (RL)

higher locations

OO0000O00O00O0O00000000

Lower-level
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End-to-End Machine Translation with
Recurrent Neks and Atkention Mechanism

(Bahdanau et al ICLR 2015, Jean et al ACL 2015, Gulcehre et al 2015, Firat et al 2016)
e Reached the state-of-the-art in one year, from scratch

(a) English—French (WMT-14)

NMT(A) | Google | P-SMT

NMT 32.68 30.6"
+Cand 33.28 —

+UNK 33.99 32.7°
+Ens 36.71 36.9°

37.03°

(b) English—German (WMT-15) (c) English—Czech (WMT-15)

Model Note Model Note

24.8 Neural MT 18.3 Neural MT

24.0 U.Edinburgh, Syntactic SMT 18.2 JHU, SMT+4+LM+OSM+Sparse
23.6 LIMSI/KIT 17.6 CU, Phrase SMT

22.8 U.Edinburgh, Phrase SMT 17.4 U.Edinburgh, Phrase SMT
22.7 KIT, Phrase SMT 16.1 U.Edinburgh, Syntactic SMT

31



Neural MT Contributions from
Mowntreal

e Soft attention (Bahdanau et al ICLR 2015)

e Minibatch fast training with large vocabulary (Jean et al ACL
2015)

e Combining with neural language model (Gulcehre et al 2015)
e Subword and character-level NMT (Chung et al 2016)
e Multi-lingual NMT (Firat et al 2016)

32



Google-Scale NMT Success

(Wu et al & Dean, Nature, 2016)

e After beating the classical phrase-based MT on the academic
benchmarks, there remained the question: will it work on the
very large scale datasets like used for Google Translate?

33

Distributed training, very large model ensemble

Not only does it work in terms of BLEU but it makes a killing in

terms of human evaluation on Google Translate data
Table 10: Side-by-side scores on production data

PBMT GNMT Human Relative
Improvement
English — Spanish 3.594+1.58 5.031+1.09 5.140+1.04 93%
English — French 3.518+1.70 5.032+1.22 5.215+1.03 89%
English — Portuguese 3.675+1.64 4.856+1.29 4.9734+1.17 91%
English — Chinese 2.4574+1.48 4.154+1.42 4.580+1.26 80%
Spanish — English 3.410+£1.65 4.921+£1.16 4.930+£1.12 99%
French — English 3.639+1.63  5.000£1.07 5.016+1.09 99%
Portuguese — English  3.471+1.74 5.0294+1.05 5.040+1.03 99%
Chinese — English 1.994+1.47 3.8844+1.37 4.334+1.20 81%




Deep Learning: Beyond Pattern
Recognition, towards Al

Many researchers believed that neural nets could at
best be good at pattern recognition

And they are really good at it!

But many more ingredients needed towards Al. Recent

progress:

— REASONING: with extensions of recurrent neural networks
* Memory networks & Neural Turing Machine

— PLANNING & REINFORCEMENT LEARNING: DeepMind
(Atari and Go game playing) & Berkeley (Robotic control)




The next frontier:
to reason and answer questions

Sam walks into the kitchen. Brian is a lion.
Sam picks up an apple. Julius is a lion.
Sam walks into the bedroom. Julius is white
Sam drops the apple. Bernhard is green

Q: Where is the apple? Q: What colour is Brian?




The Biggest Challenge:
Unsupervised Learning & Learning
Commonsense Autonomously

* Recent progress mostly in supervised DL
« Real technical challenges for unsupervised DL

« Potential benefits:
— Exploit tons of unlabeled data
— Answer new questions about the variables observed
— Regularizer — transfer learning — domain adaptation
— Easier optimization (local training signal)
— Structured outputs

— Necessary for RL without given model or domain
simulator




Learning « How the world ticks »

37

So long as our machine learning models « cheat » by relying only
on surface statistical regularities, they remain vulnerable to out-
of-distribution examples

Humans generalize better than other animals by implicitly
having a more accurate internal model of the underlying causal
relationships

This allows one to predict future situations (e.g., the effect of
planned actions) that are far from anything seen before, an
essential component of reasoning, intelligence and science



Invariance and Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality

38



Learning Multiple Levels of
Abstraction

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the

factors of variation, which allows much easier
generalization and transfer

Organizational Maturity
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GAN: Grenerative Adversarial Networlkes

Goodfellow et al NIPS 2014

D tries to
output 0

D tries to

Differentiable
function D

Differentiable

function D

X sampled
from data

X sampled
from model

Differentiable

Generator function G

Network

Randorm
Vector

iscriminator
Network

Yo

Input noise
74

Random,| Training Real
Index Set Image




LAPGAN: Visual Turing Test

(Denton et al 2015)
* 40% of samples mistaken by humans for real photos

e Sharper images than max. lik. proxys (which min. KL(data|model)):
* GAN objective = compromise between KL(data|model) and KL(model|data)

41



Convolutional GANs

(Radford et al, arXiv 1511.06343)

Strided convolutions, batch normalization, only convolutional
layers, ReLU and leaky ReLU

ol 4 ——



GAN: Interpolating in Latent Space

If the model is good (unfolds the manifold), interpolating between
latent values yields plausible images.

man man woman
43 with glasses without glasses without glasses

woman with glasses



ALI: Adversarially Learned Inference

(Dumoulin et al 2016)

e Combines ideas
from VAE and from
GAN

IIM

=1 ?

x ~ q(x)

Y
&~ px
g

z ~ p(z)

Q
8
—~
~—

z)

Figure 1: The adversarially learned inference (ALI) game.
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More Technical Challenges

Learning long-term dependencies in
recurrent neural networks

Optimization challenge of training deep
neural networks

Taking advantage of feedback connections
for attention, iterative inference & learning

Incorporating “general knowledge” or
commonsense (mostly from unsupervised
learning) in RL




Applications on the horizon

Computer Interaction Healthcare Robotics




How to Attract the Best
Researchers in Industry

Extreme current demand for deep learning
expertise, crazy salaries and acquisitions
Not enough trained PhDs, too much industry
demand

Long-term

— Necessary to attract and retain the strongest
researchers

— Success stories: DeepMind, FAIR, OpenAl
— Need a pipeline & portfolio of different horizons

-ocused research: strategic, targeted choices

Untying research org. from product-driven
R&D




Al Corporate Research Strategy &
Execution

» Difficult to reconcile
— short-term pressure to deliver products and sales

— creative & leading-edge Al research aiming at
5-10 year horizon

because the short-term guys have the money
* Need to have BOTH

1. a firewall between the research organization and R&D
2. a fluid path for people and ideas between the two

= need to have independent funding for research and make
it easy for (2) to happen, e.g., physical proximity, multiple
“layers” in the pipeline.




Open Science & Open Source

» Best deep learning researchers (even in
industry) demand open science -2

— Open and early publications (arXiv)
— Accessible open source code (github)

* Both are
— Reputation building (attracts more scientists)
— Reproducible science
— Generate follow-ups, citations & impact
— Responsible: contribute to the community




Machine Learning Patents?

ML scientists do not like ML patents because

— work done at one company cannot be continued
when the author of the work moves to another

— algorithm is not available to the community, reducing
the probability of follow-up by others, thus reducing
the scientific impact (citations)

ML scientists go to places with less |IP
constraints (OpenAl, FAIR)

ML patents can easily be bypassed (different
implementation) or are abusive (math patent)

Patents only used for legal defense - the same
can be achieved by arXiv posting
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