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Cars are now driving themselves… 

(far from perfectly, though) 



Speaking to a Bot is No Longer 
Unusual… 



March 2016: 
World Go Champion 
Beaten by Machine 



AI: The Upcoming Industrial Revolution 

First industrial revolution:  
•  Machines extending humans’ 

mechanical power 
 
 
Upcoming industrial revolution: 
•  Machines extending humans’ 

cognitive power 
•  From the digital economy to the 

AI economy 
•  Predicted growth at least 25%/yr 
•  All sectors of the economy 



A new revolution seems 
to be in the work after 

the industrial revolution. 
 

Devices are becoming 
intelligent. 

 

 
And Deep 

Learning is at 
the epicenter 

of this 
revolution. 



Breakthrough in deep learning 

A Canadian-led trio at CIFAR 
initiated the deep learning AI 
revolution 
 
•  Fundamental breakthrough 

in 2006: 
first successful recipe for 
training a deep supervised 
neural network 
•  Second major advance in 

2011, with rectifiers 
•  Breakthroughs in 

applications since then 
 

Google 

Facebook 



AI Needs Knowledge 

•  Failure of classical AI: a lot of knowledge 
is not formalized, expressed with words 

•  Solution: computer gets knowledge from 
data, learns from examples  

 
 MACHINE LEARNING 



Machine Learning, AI & No 
Free Lunch 

•  Five key ingredients for ML towards AI 
1.  Lots & lots of data 
2.  Very flexible models 
3.  Enough computing power 

4.  Powerful priors that can defeat the 
curse of dimensionality 

5.  Computationally efficient inference 
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Bypassing the curse of 
dimensionality 
We	need	to	build	composi>onality	into	our	ML	models		

Just	as	human	languages	exploit	composi>onality	to	give	
representa>ons	and	meanings	to	complex	ideas	

Exploi>ng	composi>onality	gives	an	exponen>al	gain	in	
representa>onal	power	

Distributed	representa>ons	/	embeddings:	feature	learning	

Deep	architecture:	mul>ple	levels	of	feature	learning	

Prior	assump>on:	composi>onality	is	useful	to	
describe	the	world	around	us	efficiently	
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•  Clustering,	n-grams,	Nearest-
Neighbors,	RBF	SVMs,	local	
non-parametric	density	
es>ma>on	&	predic>on,	
decision	trees,	etc.	

•  Parameters	for	each	
dis>nguishable	region	

•  #	of	dis9nguishable	regions	
is	linear	in	#	of	parameters	

Non-distributed representations 
Clustering	

11	

à	No	non-trivial	generaliza>on	to	regions	without	examples	



•  Factor	models,	PCA,	RBMs,	
Neural	Nets,	Sparse	Coding,	
Deep	Learning,	etc.	

•  Each	parameter	influences	
many	regions,	not	just	local	
neighbors	

•  #	of	dis9nguishable	regions	
grows	almost	exponen9ally	
with	#	of	parameters	

•  GENERALIZE	NON-LOCALLY	
TO	NEVER-SEEN	REGIONS	

The need for distributed 
representations 

Mul>-	
Clustering	

12	

C1	 C2	 C3	

input	

Non-mutually	
exclusive	features/
aYributes	create	a	
combinatorially	large	
set	of	dis>nguiable	
configura>ons	



Under review as a conference paper at ICLR 2015

People Lighting

Animals

Tables

Seating

Object counts in SUN

0

5000

10000

15000

Object counts of most informative objects for scene recognition

Counts of CNN units discovering each object class.

c)

d)

b)

a)    
 w

al
l

   
 w

in
d

o
w

   
 c

h
ai

r
   

 b
u

ild
in

g
   

 fl
o

o
r

   
 t

re
e

   
 c

ei
lin

g
 la

m
p

   
 c

ab
in

et
   

 c
ei

lin
g

   
 p

er
so

n
   

 p
la

n
t

   
 c

u
sh

io
n

   
 s

ky
   

 p
ic

tu
re

   
 c

u
rt

ai
n

   
 p

ai
n

ti
n

g
   

 d
o

o
r

   
 d

es
k 

la
m

p
   

 s
id

e 
ta

b
le

   
 t

ab
le

   
 b

ed
   

 b
o

o
ks

   
 p

ill
o

w
   

 m
o

u
n

ta
in

   
 c

ar
   

 p
o

t
   

 a
rm

ch
ai

r
   

 b
o

x
   

 v
as

e
   

 fl
o

w
er

s
   

 r
o

ad
   

 g
ra

ss
   

 b
o

tt
le

   
 s

h
o

es
   

 s
o

fa
   

 o
u

tl
et

   
 w

o
rk

to
p

   
 s

ig
n

   
 b

o
o

k
   

 s
co

n
ce

   
 p

la
te

   
 m

ir
ro

r
   

 c
o

lu
m

n
   

 r
u

g
   

 b
as

ke
t

   
 g

ro
u

n
d

   
 d

es
k

   
 c

o
ff

ee
 t

ab
le

   
 c

lo
ck

   
 s

h
el

ve
s

0

5

10

15

20

0

10

20

30

   
 w

al
l

   
 w

in
d

o
w

   
 c

h
ai

r
   

 b
u

ild
in

g
   

 fl
o

o
r

   
 t

re
e

   
 c

ei
lin

g
 la

m
p

   
 c

ab
in

et
   

 c
ei

lin
g

   
 p

er
so

n
   

 p
la

n
t

   
 c

u
sh

io
n

   
 s

ky
   

 p
ic

tu
re

   
 c

u
rt

ai
n

   
 p

ai
n

ti
n

g
   

 d
o

o
r

   
 d

es
k 

la
m

p
   

 s
id

e 
ta

b
le

   
 t

ab
le

   
 b

ed
   

 b
o

o
ks

   
 p

ill
o

w
   

 m
o

u
n

ta
in

   
 c

ar
   

 p
o

t
   

 a
rm

ch
ai

r
   

 b
o

x
   

 v
as

e
   

 fl
o

w
er

s
   

 r
o

ad
   

 g
ra

ss
   

 b
o

tt
le

   
 s

h
o

es
   

 s
o

fa
   

 o
u

tl
et

   
 w

o
rk

to
p

   
 s

ig
n

   
 b

o
o

k
   

 s
co

n
ce

   
 p

la
te

   
 m

ir
ro

r
   

 c
o

lu
m

n
   

 r
u

g
   

 b
as

ke
t

   
 g

ro
u

n
d

   
 d

es
k

   
 c

o
ff

ee
 t

ab
le

   
 c

lo
ck

   
 s

h
el

ve
s

Figure 9: (a) Segmentations from pool5 in Places-CNN. Many classes are encoded by several units
covering different object appearances. Each row shows the 3 top most confident images for each
unit. (b) Object frequency in SUN (only top 50 objects shown), (c) Counts of objects discovered by
pool5 in Places-CNN. (d) Frequency of most informative objects for scene classification.

4 EMERGENCE OF OBJECTS AS THE INTERNAL REPRESENTATION

As shown before, a large number of units in pool5 are devoted to detecting objects and scene-
regions (Fig. 8). But what categories are found? Is each category mapped to a single unit or are
there multiple units for each object class? Can we actually use this information to segment a scene?

4.1 WHAT OBJECT CLASSES EMERGE?

Fig. 9(a) shows some units from the Places-CNN grouped by the object class they seem to be detect-
ing. Each row shows the top three images for a particular unit that produce the strongest activations.
The segmentation shows the region of the image for which the unit is above a threshold. Each unit
seems to be selective to a particular appearance of the object. For instance, there are 6 units that
detect lamps, each unit detecting a particular type of lamp providing finer-grained discrimination;
there are 9 units selective to people, each one tuned to different scales or people doing different
tasks. ImageNet has an abundance of animals among the categories present: in the ImageNet-CNN,
out of the 256 units in pool5, there are 23 units devoted to detecting dogs or parts of dogs. The
categories found in pool5 tend to follow the target categories in ImageNet.

To answer the question of why certain objects emerge from pool5, we tested the Places-CNN on
fully annotated images from the SUN database (Xiao et al., 2014). The SUN database contains
8220 fully annotated images from the same 205 place categories used to train Places-CNN. There
are no duplicate images between SUN and Places. We use SUN instead of COCO (Lin et al., 2014)
as we need dense object annotations to study what the most informative object classes for scene
categorization are, and what the natural object frequencies in scene images are. For this study, we
manually mapped the tags given by AMT workers to the SUN categories. Fig. 9(b) shows the sorted
distribution of object counts in the SUN database which follows Zipf’s law.

One possibility is that the objects that emerge in pool5 correspond to the most frequent ones in the
database. Fig. 9(c) shows the counts of units found in pool5 for each object class (same sorting
as in Fig. 9(b)). The correlation between object frequency in the database and object frequency
discovered by the units in pool5 is 0.54. Another possibility is that the objects that emerge are the
objects that allow discriminating among scene categories. To measure the set of discriminant objects
we used the ground truth in the SUN database to measure the classification performance achieved by
each object class for scene classification. Then we count how many times each object class appears
as the most informative one. This measures the number of scene categories a particular object class
is the most useful for. The counts are shown in Fig. 9(d). Note the similarity between Fig. 9(c) and
Fig. 9(d). The correlation is 0.84 indicating that the network is automatically identifying the most
discriminative object categories to a large extent.

7

Hidden Units Discover Semantically 
Meaningful Concepts 
•  Zhou	et	al	&	Torralba,	arXiv1412.6856	,	ICLR	2015	
•  Network	trained	to	recognize	places,	not	objects	

13	

Under review as a conference paper at ICLR 2015

Figure 10: Interpretation of a picture by different layers of the Places-CNN using the tags provided
by AMT workers. The first shows the final layer output of Places-CNN. The other three show
detection results along with the confidence based on the units’ activation and the semantic tags.
Fireplace (J=5.3%, AP=22.9%)

Wardrobe (J=4.2%, AP=12.7%)

Billiard table (J=3.2%, AP=42.6%)
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Mountain (J=11.3%, AP=47.6%)

Sofa (J=10.8%, AP=36.2%)

Building (J=14.6%, AP=47.2%) Washing machine (J=3.2%, AP=34.4%)
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Figure 11: (a) Segmentation of images from the SUN database using pool5 of Places-CNN (J =
Jaccard segmentation index, AP = average precision-recall.) (b) Precision-recall curves for some
discovered objects. (c) Histogram of AP for all discovered object classes.

Note that there are 115 units in pool5 of Places-CNN not detecting objects. This could be due to
incomplete learning or a complementary texture-based or part-based representation of the scenes.

4.2 OBJECT LOCALIZATION WITHIN THE INNER LAYERS

Places-CNN is trained to do scene classification using the output of the final layer of logistic re-
gression and achieves the state-of-the-art performance. From our analysis above, many of the units
in the inner layers could perform interpretable object localization. Thus we could use this single
Places-CNN with the annotation of units to do both scene recognition and object localization in a
single forward-pass. Fig. 10 shows an example of the output of different layers of the Places-CNN
using the tags provided by AMT workers. Bounding boxes are shown around the areas where each
unit is activated within its RF above a threshold.

In Fig. 11 we evaluate the segmentation performance of the objects discovered in pool5 using the
SUN database. The performance of many units is very high which provides strong evidence that
they are indeed detecting those object classes despite being trained for scene classification.

5 CONCLUSION

We find that object detectors emerge as a result of learning to classify scene categories, showing
that a single network can support recognition at several levels of abstraction (e.g., edges, textures,
objects, and scenes) without needing multiple outputs or networks. While it is common to train a
network to do several tasks and to use the final layer as the output, here we show that reliable outputs
can be extracted at each layer. As objects are the parts that compose a scene, detectors tuned to the
objects that are discriminant between scenes are learned in the inner layers of the network. Note
that only informative objects for specific scene recognition tasks will emerge. Future work should
explore which other tasks would allow for other object classes to be learned without the explicit
supervision of object labels.

8



Each feature can be discovered 
without the need for seeing the 
exponentially large number of 
configurations of the other features 
•  Consider	a	network	whose	hidden	units	discover	the	following	

features:	
•  Person	wears	glasses	
•  Person	is	female	
•  Person	is	a	child	
•  Etc.	

If	each	of	n	feature	requires	O(k)	parameters,	need	O(nk)	examples	
	
Non-parametric	methods	would	require	O(nd)	examples	

14	

9/25/2016 sofaloca.com/themes/ypanel/ionicons/src/ios7-glasses-outline.svg
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The Depth Prior can be Exponentially  
Advantageous 
Theore>cal	arguments:	

…	
1	 2	 3	 2n 

1	 2	 3	
…	

n	

= universal approximator 2 layers of 
Logic gates 
Formal neurons 
RBF units 

Theorems on advantage of depth: 
(Hastad et al 86 & 91, Bengio et al 2007, 
Bengio & Delalleau 2011, Braverman 2011, 
Pascanu et al 2014, Montufar et al NIPS 2014) 

Some functions compactly 
represented with k layers may 
require exponential size with 2 
layers 

RBMs & auto-encoders = universal approximator 



main 

subroutine1 includes 
subsub1 code and 
subsub2 code and 
subsubsub1 code 

“Shallow” computer program 

subroutine2 includes 
subsub2 code and 
subsub3 code and 
subsubsub3 code and … 



main 

sub1 sub2 sub3 

subsub1 subsub2 subsub3 

subsubsub1 subsubsub2 
subsubsub3 

“Deep” computer program 



•  Expressiveness	of	deep	networks	with	piecewise	linear	
ac>va>on	func>ons:	exponen>al	advantage	for	depth 		
(Montufar	et	al,	NIPS	2014)	

•  Number	of	pieces	dis>nguished	for	a	network	with	depth	L	and	
ni	units	per	layer	is	at	least	

					or,	if	hidden	layers	have	width	n	and	input	has	size	n0	

18	

Exponential advantage of depth 



A Myth is Being Debunked: Local 
Minima in Neural Nets  
à Convexity is not needed 
•  (Pascanu,	Dauphin,	Ganguli,	Bengio,	arXiv	May	2014):	On	the	

saddle	point	problem	for	non-convex	opQmizaQon	

•  (Dauphin,	Pascanu,	Gulcehre,	Cho,	Ganguli,	Bengio,	NIPS’	2014):	
IdenQfying	and	aSacking	the	saddle	point	problem	in	high-

dimensional	non-convex	opQmizaQon		

•  (Choromanska,	Henaff,	Mathieu,	Ben	Arous	&	LeCun	AISTATS	
2015):	The	Loss	Surface	of	MulQlayer	Nets	

19	



Saddle Points 

•  Local	minima	dominate	in	low-D,	but	
saddle	points	dominate	in	high-D	

•  Most	local	minima	are	close	to	the	
boYom	(global	minimum	error)	

20	



2010-2012: breakthrough in  
speech recognition 

Source: Microsoft 



2012-2015: breakthrough  
in computer vision 

•  Graphics Processing Units 
(GPUs) + 10x more data 

•  1,000 object categories, 
•  Facebook: millions of faces 
•  2015: human-level 

performance 
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ImageNet Accuracy Still Improving 
Top-5 Classification task 



IT companies are racing  
into deep learning 



From computer vision to self-driving cars: 2016 



Ongoing progress: combining vision and 
natural language understanding  



With a lot more 
data… 
visual question 
answering 



Recurrent Neural Networks 
•  Selec>vely	summarize	an	input	sequence	in	a	fixed-size	state	

vector	via	a	recursive	update	

28	
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Generative RNNs 
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•  An	RNN	can	represent	a	fully-connected	directed	genera9ve	
model:	every	variable	predicted	from	all	previous	ones.	



Attention Mechanism for Deep Learning 

•  Consider	an	input	(or	intermediate)	sequence	or	image	
•  Consider	an	upper	level	representa>on,	which	can	choose	

«	where	to	look	»,	by	assigning	a	weight	or	probability	to	each	
input	posi>on,	as	produced	by	an	MLP,	applied	at	each	posi>on	

30	

Lower-level	

Higher-level	
Solmax	over	lower		
loca>ons	condi>oned	
on	context	at	lower	and	
higher	loca>ons		

•  Sol	aYen>on	(backprop)	vs	
•  Stochas>c	hard	aYen>on	(RL)	

(Bahdanau,	Cho	&	Bengio,	ICLR	2015;	Jean	et	al	ACL	2015;	Jean	et	al	WMT	2015;	

Xu	et	al	ICML	2015;	Chorowski	et	al	NIPS	2015;	Firat,	Cho	&	Bengio	2016)	



End-to-End Machine Translation with 
Recurrent Nets and Attention Mechanism 
•  Reached	the	state-of-the-art	in	one	year,	from	scratch	

31	

→

⋆

•
◦

◦

→ →

⋆
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(Bahdanau	et	al	ICLR	2015,	Jean	et	al	ACL	2015,	Gulcehre	et	al	2015,	Firat	et	al	2016)			



Neural MT Contributions from 
Montreal 
•  Sol	aYen>on	(Bahdanau	et	al	ICLR	2015)	
•  Minibatch	fast	training	with	large	vocabulary	(Jean	et	al	ACL	

2015)	
•  Combining	with	neural	language	model	(Gulcehre	et	al	2015)	
•  Subword	and	character-level	NMT	(Chung	et	al	2016)	
•  Mul>-lingual	NMT	(Firat	et	al	2016)	

32	



Google-Scale NMT Success 

•  Aler	bea>ng	the	classical	phrase-based	MT	on	the	academic	
benchmarks,	there	remained	the	ques>on:	will	it	work	on	the	
very	large	scale	datasets	like	used	for	Google	Translate?	

•  Distributed	training,	very	large	model	ensemble	
•  Not	only	does	it	work	in	terms	of	BLEU	but	it	makes	a	killing	in	

terms	of	human	evalua>on	on	Google	Translate	data	

33	

(Wu	et	al	&	Dean,	Nature,	2016)	

	

Table 8: Model ensemble results on WMT EnæDe (newstest2014). See Table 5 for a comparison against
non-ensemble models.

Model BLEU
WPM-32K (7 models) 24.54

RL-refined WPM-32K (7 models) 24.93

Table 9: Human side-by-side evaluation scores of WMT EnæFr models.
Model BLEU Side-by-side

averaged score
PBMT [15] 37.0 3.87

NMT before RL 40.35 4.46
NMT after RL 41.16 4.44

Human 4.82

The results show that even though RL refinement can achieve better BLEU scores, it barely improves the
human impression of the translation quality. This could be due to a combination of factors including: 1) the
relatively small sample size for the experiment (only 500 examples for side-by-side), 2) the improvement in
BLEU score by RL is relatively small after model ensembling (0.81), which may be at a scale that human
side-by-side evaluations are insensitive to, and 3) the possible mismatch between BLEU as a metric and
real translation quality as perceived by human raters. Table 11 contains some example translations from
PBMT, "NMT before RL" and "Human", along with the side-by-side scores that human raters assigned to
each translation.

8.7 Results on Production Data
We have carried out extensive experiments on many Google-internal production data sets. As the experiments
above cast doubt on whether RL improves the real translation quality or simply the BLEU metric, RL-based
model refinement is not used during these experiments. Given the larger volume of training data available in
the Google corpora, dropout is also not needed in these experiments.

Table 10: Side-by-side scores on production data
PBMT GNMT Human Relative

Improvement
English æ Spanish 3.594±1.58 5.031±1.09 5.140±1.04 93%
English æ French 3.518±1.70 5.032±1.22 5.215±1.03 89%
English æ Portuguese 3.675±1.64 4.856±1.29 4.973±1.17 91%
English æ Chinese 2.457±1.48 4.154±1.42 4.580±1.26 80%
Spanish æ English 3.410±1.65 4.921±1.16 4.930±1.12 99%
French æ English 3.639±1.63 5.000±1.07 5.016±1.09 99%
Portuguese æ English 3.471±1.74 5.029±1.05 5.040±1.03 99%
Chinese æ English 1.994±1.47 3.884±1.37 4.334±1.20 81%

In this section we describe our experiments with human perception of the translation quality. We asked
human raters to rate translations in a three-way side-by-side comparison. The three sides are from: 1)
translations from the production phrase-based statistical translation system used by Google, 2) translations
from our GNMT system, and 3) translations by humans fluent in both languages. Reported here in Table 10
are averaged rated scores with their standard deviations for English ¡ French, English ¡ Spanish, English ¡
Portuguese and English ¡ Chinese. All the GNMT models are wordpiece models, without model ensembling,
and use a shared source and target vocabulary with 32K wordpieces. On each pair of languages, the evaluation
data consist of 500 randomly sampled sentences from Wikipedia and news websites, and the corresponding

18



Deep Learning: Beyond Pattern 
Recognition, towards AI 

•  Many researchers believed that neural nets could at 
best be good at pattern recognition 

•  And they are really good at it! 

•  But many more ingredients needed towards AI. Recent 
progress: 

–  REASONING: with extensions of recurrent neural networks 
•  Memory networks & Neural Turing Machine 

–  PLANNING & REINFORCEMENT LEARNING: DeepMind 
(Atari and Go game playing) & Berkeley (Robotic control) 

34 



The next frontier: 
 to reason and answer questions   



The Biggest Challenge: 
Unsupervised Learning & Learning 

Commonsense Autonomously 

•  Recent progress mostly in supervised DL 
•  Real technical challenges for unsupervised DL 
•  Potential benefits: 

–  Exploit tons of unlabeled data 
–  Answer new questions about the variables observed 
–  Regularizer – transfer learning – domain adaptation 
–  Easier optimization (local training signal) 
–  Structured outputs 
–  Necessary for RL without given model or domain 

simulator 

36 



Learning « How the world ticks » 
•  So	long	as	our	machine	learning	models	«	cheat	»	by	relying	only	

on	surface	sta>s>cal	regulari>es,	they	remain	vulnerable	to	out-
of-distribu>on	examples	

•  Humans	generalize	beYer	than	other	animals	by	implicitly	
having	a	more	accurate	internal	model	of	the	underlying	causal	
rela>onships	

•  This	allows	one	to	predict	future	situa>ons	(e.g.,	the	effect	of	
planned	ac>ons)	that	are	far	from	anything	seen	before,	an	
essen>al	component	of	reasoning,	intelligence	and	science	

37	



Invariance and Disentangling 

•  Invariant	features	

•  Which	invariances?	

•  Alterna>ve:	learning	to	disentangle	factors	

•  Good	disentangling	à		
	avoid	the	curse	of	dimensionality	

38	



Learning Multiple Levels of 
Abstraction 
•  The	big	payoff	of	deep	learning	is	to	allow	learning	
higher	levels	of	abstrac>on	

•  Higher-level	abstrac>ons	disentangle	the	
factors	of	varia9on,	which	allows	much	easier	
generaliza>on	and	transfer	

39	



Adversarial nets framework 

4
0

GAN: Generative Adversarial Networks 

Generator	
Network	

Discriminator	
Network	

Fake	
Image	

Real	
Image	

Training	
Set	

Random	
Vector	

Random	
Index	

Goodfellow	et	al	NIPS	2014	



LAPGAN results •  40%	of	samples	mistaken	by	humans	for	real	photos	

•  Sharper	images	than	max.	lik.	proxys	(which	min.	KL(data|model)):		
•  GAN	objec>ve	=	compromise	between	KL(data|model)	and	KL(model|data)	

41	

(Denton et al 2015)

LAPGAN: Visual Turing Test 



Convolutional GANs 

Strided	convolu>ons,	batch	normaliza>on,	only	convolu>onal	
layers,	ReLU	and	leaky	ReLU	

42	

(Radford	et	al,	arXiv		1511.06343)	

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate in only one epoch.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated textures across multiple samples.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32⇥ 32 min-resized center crops. No data augmentation was applied to the images.

5



GAN: Interpolating in Latent Space 
If	the	model	is	good	(unfolds	the	manifold),	interpola>ng	between	
latent	values	yields	plausible	images.	
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Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

scene classification learn object detectors (Oquab et al., 2014). We demonstrate that an unsupervised
DCGAN trained on a large image dataset can also learn a hierarchy of features that are interesting.
Using guided backpropagation as proposed by (Springenberg et al., 2014), we show in Fig.5 that the
features learnt by the discriminator activate on typical parts of a bedroom, like beds and windows.
For comparison, in the same figure, we give a baseline for randomly initialized features that are not
activated on anything that is semantically relevant or interesting.

6.3 MANIPULATING THE GENERATOR REPRESENTATION

6.3.1 FORGETTING TO DRAW CERTAIN OBJECTS

In addition to the representations learnt by a discriminator, there is the question of what representa-
tions the generator learns. The quality of samples suggest that the generator learns specific object
representations for major scene components such as beds, windows, lamps, doors, and miscellaneous
furniture. In order to explore the form that these representations take, we conducted an experiment
to attempt to remove windows from the generator completely.

7
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Figure 7: Vector arithmetic for visual concepts. For each column, the Z vectors of samples are
averaged. Arithmetic was then performed on the mean vectors creating a new vector Y . The center
sample on the right hand side is produce by feeding Y as input to the generator. To demonstrate
the interpolation capabilities of the generator, uniform noise sampled with scale +-0.25 was added
to Y to produce the 8 other samples. Applying arithmetic in the input space (bottom two examples)
results in noisy overlap due to misalignment.

9



ALI: Adversarially Learned Inference 

•  Combines	ideas	
from	VAE	and	from	
GAN	
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Figure 1: The adversarially learned inference (ALI) game.

Despite the impressive progress of VAE-based approaches for learning deep directed generative
models, they still suffer from a well-recognized issue of the maximum likelihood training paradigm.
Models trained to maximize likelihood of the training data tend to be conservative, distributing
probability mass diffusely over the data space (Theis et al., 2015). In the case of learning generative
models of images, this results in almost all probability mass lying outside the relatively restrictive
subset of pixel space occupied by natural images. The direct consequence of this is that image
samples from VAE-trained models tend to be blurry (Goodfellow et al., 2014; Larsen et al., 2015).

On the other hand, GAN-based techniques are trained via an adversarial process that does not appear
to suffer from the same probability mass diffusion problem as does maximum likelihood. In the
GAN paradigm, a discriminative network is trained to distinguish between the empirical distribution
and samples produced by a generative network. Meanwhile, the generative network is trained to
produce samples intended to fool the discriminator into classifying them as true samples from
the training set. While the adversarial setting presents a challenging (and often unstable) training
paradigm, it results in a generative network capable of producing samples that exceed those of the
best VAE techniques (Radford et al., 2015; Larsen et al., 2015). Recent GAN-based convolutional
generative networks have been able to achieve dramatic improvements in the quality of synthetic
images (Radford et al., 2015; Denton et al., 2015).

While GANs learn a generative model that produces higher-quality samples, only the VAE-based
models learn an efficient mechanism for inference. For applications such as semi-supervised learning,
GANs are insufficient as they do not provide an efficient inference mechanism. Recently, efforts
have aimed to bridge the gap between VAEs and GANs, to learn generative models with higher-
quality samples while learning an efficient inference network (Larsen et al., 2015; Lamb et al., 2016;
Dosovitskiy and Brox, 2016). While this is certainly a promising research direction, VAE-GAN
hybrids tend to manifest a compromise of the strengths and weaknesses of both approaches.

In this paper, we propose a novel approach to integrate efficient inference with the GAN framework.
Our approach, called Adversarially Learned Inference (ALI), casts the learning of both an inference
machine (or encoder) and a deep directed generative model (or decoder) in an GAN-like adversarial
framework. A discriminator is trained to discriminate joint samples of the data and the corresponding
latent variable from the encoder (or approximate posterior) from joint samples from the decoder. In
opposition to the discriminator, we have two generative models, the encoder and the decoder, trained
together to fool the discriminator.

GAN is an example of how one can leverage highly effective discriminative training techniques in
service of learning deep generative networks. Here, we are effectively doubling down on the gambit
that we can exploit discriminative training. Not only are we asking the discriminator to distinguish
synthetic samples from real data, but we are requiring it to distinguish between two joint distributions
over the data space and the latent variables.

With experiments on a toy task, the Street View House Numbers (SVHN) dataset (Netzer et al.,
2011), the CIFAR-10 object recognition dataset (Krizhevsky and Hinton, 2009), the CelebA face
dataset (Liu et al., 2015) and a downsampled version of the ImageNet dataset (Russakovsky et al.,
2015), we show qualitatively that we maintain the high sample fidelity associated with the GAN
framework, while gaining the ability to perform efficient inference.
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(a) CIFAR10 samples. (b) CIFAR10 reconstructions.

Figure 2: Samples and reconstructions on the CIFAR10 dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions (e.g.,
second column contains reconstructions of the first column’s validation set samples).

(a) SVHN samples. (b) SVHN reconstructions.

Figure 3: Samples and reconstructions on the SVHN dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions.

(a) CelebA samples. (b) CelebA reconstructions.

Figure 4: Samples and reconstructions on the CelebA dataset. For the reconstructions, odd columns
are original samples from the validation set and even columns are corresponding reconstructions.

5

(a) Tiny ImageNet samples. (b) Tiny ImageNet reconstructions.

Figure 5: Samples and reconstructions on the Tiny ImageNet dataset. For the reconstructions,
odd columns are original samples from the validation set and even columns are corresponding
reconstructions.

2.5 Relationship with the Jensen-Shannon divergence

Proposition 2. Under an optimal discriminator D

⇤
, the generator minimizes the Jensen-Shanon

divergence which attains its minimum if and only if q(x, z) = p(x, z).

Proof. The proof is a straightforward extension of the proof in Goodfellow et al. (2014).

2.6 Multilayer extensions of ALI

It is straightforward to extend the ALI framework to multiple stochastic layers, i.e.,

p(x, z1, z2, . . . , zL) = p(z

L

)p(z

L�1 | z
L

) · · · p(z1 | z2, . . . , zL)p(x | z1, . . . , zL) (6)
q(x, z1, z2, . . . , zL) = q(x)p(z1 | x)p(z2 | z1,x) · · · p(z

L

| z1, . . . , zL�1,x). (7)

In this case, the discriminator takes as input either (x, ˆz1:L) ⇠ q(x, z1:L) or (˜x, z1:L) ⇠ p(x, z1:L)

and tries to determine which joint the samples were drawn from. The generator trains the distributions
q(z1:L | x), p(z1:L) and p(x | z1:L) to fool the discriminator.

3 Related Work

Other recent papers explore hybrid approaches to generative modelling. One such approach is to
relax the probabilistic interpretation of the VAE model by replacing either the KL-divergence term
or the reconstruction term with variants that have better properties. The adversarial autoencoder
model (Makhzani et al., 2015) replaces the KL-divergence term with a discriminator that is trained to
distinguish between approximate posterior and prior samples, which provides a more flexible approach
to matching the marginal q(z) and the prior. Other papers explore replacing the reconstruction term
with either GANs or auxiliary networks. Larsen et al. (2015) collapse the decoder of a VAE and the
generator of a GAN into one network in order to supplement the reconstruction loss with a learned
similarity metric. Lamb et al. (2016) use the hidden layers of a pre-trained classifier as auxiliary
reconstruction losses to help the VAE focus on higher-level details when reconstructing. Dosovitskiy
and Brox (2016) combine both ideas into a unified loss function.

ALI’s approach is also reminiscent of the adversarial autoencoder model, which employs a GAN to
distinguish between samples from the approximate posterior distribution q(z | x) and prior samples.
However, unlike adversarial autoencoders, no explicit reconstruction loss is being optimized in ALI,
and the discriminator receives joint pairs of samples (x, z) rather than marginal z samples.

6

(Dumoulin	et	al	2016)	



More Technical Challenges 

•  Learning long-term dependencies in 
recurrent neural networks 

•  Optimization challenge of training deep 
neural networks 

•  Taking advantage of feedback connections 
for attention, iterative inference & learning 

•  Incorporating “general knowledge” or 
commonsense (mostly from unsupervised 
learning) in RL 



Applications on the horizon 

Healthcare Robotics Computer Interaction 



How to Attract the Best 
Researchers in Industry 

•  Extreme current demand for deep learning 
expertise, crazy salaries and acquisitions 

•  Not enough trained PhDs, too much industry 
demand 

•  Long-term open research 
– Necessary to attract and retain the strongest 

researchers 
– Success stories: DeepMind, FAIR, OpenAI 
– Need a pipeline & portfolio of different horizons 

•  Focused research: strategic, targeted choices 
•  Untying research org. from product-driven 

R&D 



AI Corporate Research Strategy & 
Execution 

•  Difficult to reconcile 
–  short-term pressure to deliver products and sales  
–  creative & leading-edge AI research aiming at 

5-10 year horizon 
because the short-term guys have the money 
•  Need to have BOTH 

1.  a firewall between the research organization and R&D 
2.  a fluid path for people and ideas between the two 
è need to have independent funding for research and make 
it easy for (2) to happen, e.g., physical proximity, multiple 
“layers” in the pipeline. 



Open Science & Open Source 

•  Best deep learning researchers (even in 
industry) demand open science à  
– Open and early publications (arXiv) 
– Accessible open source code (github) 

•  Both are 
– Reputation building (attracts more scientists) 
– Reproducible science 
– Generate follow-ups, citations & impact 
– Responsible: contribute to the community 



Machine Learning Patents? 
•  ML scientists do not like ML patents because 

– work done at one company cannot be continued 
when the author of the work moves to another 

–  algorithm is not available to the community, reducing 
the probability of follow-up by others, thus reducing 
the scientific impact (citations) 

•  ML scientists go to places with less IP 
constraints (OpenAI, FAIR) 

•  ML patents can easily be bypassed (different 
implementation) or are abusive (math patent) 

•  Patents only used for legal defense à the same 
can be achieved by arXiv posting 
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