From Attention to Memory and towards Longer-Term Dependencies

Yoshua Bengio

December 12, 2015

NIPS’2015 Reasoning, Attention & Memory Workshop
Encoder-Decoder Framework

- Intermediate representation of meaning
 = ‘universal representation’
- Encoder: from word sequence to sentence representation
- Decoder: from representation to word sequence distribution
Attention Mechanism for Deep Learning

- Consider an input (or intermediate) sequence or image
- Consider an upper level representation, which can choose «where to look», by assigning a weight or probability to each input position, as produced by an MLP, applied at each position

![Diagram showing attention mechanism]

- Softmax over lower locations conditioned on context at lower and higher locations
Content-Based & Location-Based Attention Mechanisms

- (Graves 2013): location-based, handwriting generation
- (Bahdanau et al 2014): content-based, machine translation
End-to-End Machine Translation with Recurrent Nets and Attention Mechanism

- Reached the state-of-the-art in one year, from scratch

(a) **English→French (WMT-14)**

<table>
<thead>
<tr>
<th>Model</th>
<th>Note</th>
<th>NMT(A)</th>
<th>Google</th>
<th>P-SMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMT</td>
<td></td>
<td>32.68</td>
<td>30.6*</td>
<td></td>
</tr>
<tr>
<td>+Cand</td>
<td></td>
<td>33.28</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>+UNK</td>
<td></td>
<td>33.99</td>
<td>32.7°</td>
<td></td>
</tr>
<tr>
<td>+Ens</td>
<td></td>
<td>36.71</td>
<td></td>
<td>36.9°</td>
</tr>
</tbody>
</table>

(b) **English→German (WMT-15)**

<table>
<thead>
<tr>
<th>Model</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.8</td>
<td>Neural MT</td>
</tr>
<tr>
<td>24.0</td>
<td>U.Edinburgh, Syntactic SMT</td>
</tr>
<tr>
<td>23.6</td>
<td>LIMSI/KIT</td>
</tr>
<tr>
<td>22.8</td>
<td>U.Edinburgh, Phrase SMT</td>
</tr>
<tr>
<td>22.7</td>
<td>KIT, Phrase SMT</td>
</tr>
</tbody>
</table>

(c) **English→Czech (WMT-15)**

<table>
<thead>
<tr>
<th>Model</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3</td>
<td>Neural MT</td>
</tr>
<tr>
<td>18.2</td>
<td>JHU, SMT+LM+OSM+Sparse</td>
</tr>
<tr>
<td>17.6</td>
<td>CU, Phrase SMT</td>
</tr>
<tr>
<td>17.4</td>
<td>U.Edinburgh, Phrase SMT</td>
</tr>
<tr>
<td>16.1</td>
<td>U.Edinburgh, Syntactic SMT</td>
</tr>
</tbody>
</table>
IWSLT 2015 - Luong & Manning (2015) TED talk MT, English-German

BLEU (CASED)

HTER (HE SET)

Stanford 26.18 26.02 24.96 22.51 20.08
Karlsruhe 26.02 26.02 26.02 26.02 26.02
Edinburgh 24.96 24.96 24.96 24.96 24.96
Heidelberg 22.51 22.51 22.51 22.51 22.51
PJAIT 20.08 20.08 20.08 20.08 20.08
Baseline 30.85 30.85 30.85 30.85 30.85

Stanford 16.16 21.84 22.67 23.42 28.18
Edinburgh 21.84 21.84 21.84 21.84 21.84
Karlsruhe 22.67 22.67 22.67 22.67 22.67
Heidelberg 23.42 23.42 23.42 23.42 23.42
PJAIT 28.18 28.18 28.18 28.18 28.18

-26%
Image-to-Text: Caption Generation with Attention

\[f = (\text{a, man, is, jumping, into, a, lake, .}) \]

\[\sum a_j = 1 \]
Paying Attention to Selected Parts of the Image While Uttering Words
Speaking about what one sees
The Good

A woman is throwing a **frisbee** in a park.

A **dog** is standing on a hardwood floor.

A **stop** sign is on a road with a mountain in the background.

A little **girl** sitting on a bed with a teddy bear.

A group of **people** sitting on a boat in the water.

A giraffe standing in a forest with **trees** in the background.
And the Bad

A large white bird standing in a forest.

A woman holding a clock in her hand.

A man wearing a hat and a hat on a skateboard.

A person is standing on a beach with a surfboard.

A woman is sitting at a table with a large pizza.

A man is talking on his cell phone while another man watches.
Recurrent networks cannot remember things for very long
 ▶️ The cortex only remember things for 20 seconds
We need a “hippocampus” (a separate memory module)
 ▶️ LSTM [Hochreiter 1997], registers
 ▶️ Memory networks [Weston et al 2014] (FAIR), associative memory
 ▶️ NTM [Graves et al. 2014], “tape”.

Attention on Memory Elements

![Diagram showing the attention mechanism between a recurrent network and memory elements]
Ongoing Project: Knowledge Extraction

• Learn to fill the memory network from natural language descriptions of facts
• Force the neural net to understand language
• Extract knowledge from documents into a usable form
Long-Term Dependencies

• The RNN gradient is a product of Jacobian matrices, each associated with a step in the forward computation. To store information robustly in a finite-dimensional state, the dynamics must be contractive [Bengio et al 1994].

\[
L = L(s_T(s_{T-1}(\ldots s_{t+1}(s_t, \ldots))))
\]

\[
\frac{\partial L}{\partial s_t} = \frac{\partial L}{\partial s_T} \frac{\partial s_T}{\partial s_{T-1}} \ldots \frac{\partial s_{t+1}}{\partial s_t}
\]

• Problems:
 • sing. values of Jacobians $> 1 \rightarrow$ gradients explode
 • or sing. values $< 1 \rightarrow$ gradients shrink & vanish
 • or random \rightarrow variance grows exponentially

Storing bits robustly requires sing. values < 1

Gradient clipping

(Hochreiter 1991)
Gated Recurrent Units & LSTM

- Create a path where gradients can flow for longer with self-loop
- Corresponds to an eigenvalue of Jacobian slightly less than 1
- LSTM is heavily used (Hochreiter & Schmidhuber 1997)
- GRU light-weight version (Cho et al 2014)
Delays & Hierarchies to Reach Farther

- Delays and multiple time scales, *Elhihi & Bengio NIPS 1995, Koutnik et al ICML 2014*

Hierarchical RNNs (words / sentences): *Sordoni et al CIKM 2015, Serban et al AAAI 2016*
Large Memory Networks: Sparse Access Memory for Long-Term Dependencies

- A mental state stored in an external memory can stay for arbitrarily long durations, until evoked for read or write.
- Forgetting = vanishing gradient.
- Memory = larger state, avoiding the need for forgetting/vanishing.
Paths where gradient flows unhampered $\Rightarrow |\text{eigenvalue}| = 1$

- Self-loop with weight = 1
- Copy operation in memory network

\Rightarrow For each scalar that is so preserved, gradient can flow back unhampered
\Rightarrow And there must exist a direction in which the Jacobian preserves vector magnitude
\Rightarrow Corresponds to an eigenvalue whose magnitude is 1
Unitary Evolution RNNs

Martin Arjowski, Amar Shah & Yoshua Bengio
arXiv 1511.06464
Submitted to ICLR 2016

Large state: cannot afford $O(n^2)$ recurrent computation

Orthogonal matrices \subset Unitary matrices

Non-trivial to parametrize efficiently
What if W had all $|\text{eigenvalues}| = 1$

$$z_{t+1} = W_t h_t + V_t x_{t+1}$$
$$h_{t+1} = \sigma(z_{t+1})$$

$$\frac{\partial C}{\partial h_t} = \frac{\partial C}{\partial h_T} \frac{\partial h_T}{\partial h_t} = \frac{\partial C}{\partial h_T} \prod_{k=t}^{T-1} \frac{\partial h_{k+1}}{\partial h_k} = \frac{\partial C}{\partial h_T} \prod_{k=t}^{T-1} D_{k+1} W_k^T,$$

$$\left\| \frac{\partial C}{\partial h_t} \right\| = \left\| \frac{\partial C}{\partial h_T} \prod_{k=t}^{T-1} D_{k+1} W_k^T \right\| \leq \left\| \frac{\partial C}{\partial h_T} \right\| \prod_{k=t}^{T-1} \left\| D_{k+1} W_k^T \right\| = \left\| \frac{\partial C}{\partial h_T} \right\| \prod_{k=t}^{T-1} \left\| D_{k+1} \right\|$$

$$\left\| \frac{\partial C}{\partial h_t} \right\| \leq \left\| \frac{\partial C}{\partial h_T} \prod_{k=t}^{T-1} \left\| D_{k+1} \right\| = \left\| \frac{\partial C}{\partial h_T} \right\|$$

Guaranteed no explosion, no need for gradient clipping
Building Blocks for Unitary W

$U = V D V^*$ with V fixed would have a bad ratio of Computation $O(n^2)$ to parameters $O(n)$, and D complex even for orthogonal matrices

- D, a diagonal matrix with $D_{j,j} = e^{i w_j}$, with parameters $w_j \in \mathbb{R}$,
- $R = I - 2 \frac{vv^*}{\|v\|^2}$, a reflection matrix in the complex vector $v \in \mathbb{C}^n$,
- Π, a fixed random index permutation matrix, and
- \mathcal{F} and \mathcal{F}^{-1}, the Fourier and inverse Fourier transforms.

$O(n)$ computation & params

$O(n \log n)$ computation
Building Blocks for Unitary W

- D, a diagonal matrix with $D_{j,j} = e^{iw_j}$, with parameters $w_j \in \mathbb{R}$,
- $R = I - 2\frac{vv^*}{\|v\|^2}$, a reflection matrix in the complex vector $v \in \mathbb{C}^n$,
- Π, a fixed random index permutation matrix, and
- F and F^{-1}, the Fourier and inverse Fourier transforms.

A Recipe Inspired by FastFood (Le et al ICML 2013) and ACDC (Moczulski et al arXiv 2015)

$$W = D_3 R_2 F^{-1} D_2 \Pi R_1 F D_1$$
Nonlinearity

We do not want to destroy the information present in the phase

$$\sigma_{\text{modReLU}}(z) = \begin{cases}
(\|z\| + b) \frac{z}{|z|} & \text{if } |z| + b \geq 0 \\
0 & \text{if } |z| + b < 0
\end{cases}$$

$$\sigma_{\text{modReLU}}(z) = \sigma_{\text{ReLU}}(\|z\| + b) \frac{z}{|z|}$$
uRNN so good that we do not see the error curve
Adding Problem
Sequential MNIST
What is going on? uRNN forgets at a lower rate and LSTM state gets stuck at some point.
MILA: Montreal Institute for Learning Algorithms