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Encoder-Decoder Framework

Intermediate representation of meaning

= ‘universal representation’
Encoder: from word sequence to sentence representation
Decoder: from representation to word sequence distribution

For bitext data

English sentence

French sentence

For unilingual data

English sentence

English sentence

Decoder

Encoder



Attention Mechanism for Deep Learning

e Consider an input (or intermediate) sequence or image

e Consider an upper level representation, which can choose
« where to look », by assigning a weight or probability to each
input position, as produced by an MLP, applied at each position
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Higher-level

Softmax over lower
locations conditioned
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higher locations

Q0000000000000 0000

Lower-level



Content-Based & Location-Based
Attention Mechawisms

e (Graves 2013): location-based, handwriting generation
e (Bahdanau et al 2014): content-based, machine translation

e (Weston et al 2014, Graves et al 2014, Chorowski et al 2014 &
NIPS 2015): content-based + location-based, speech recognition
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end-to-End Machine Translabkion with
Recurrent Nets and Attention Mechanism

(Bahdanau et al 2014, Jean et al 2014, Gulcehre et al 2015, Jean et al 2015)
e Reached the state-of-the-art in one year, from scratch

(a) English—French (WMT-14)

NMT(A) | Google | P-SMT

NMT 32.68 30.6"
+Cand 33.28 —

+UNK 33.99 32.7°
+Ens 36.71 36.9°

37.03°

(b) English—German (WMT-15) (c) English—Czech (WMT-15)

Model Note Model Note

24.8 Neural MT 18.3 Neural MT

24.0 U.Edinburgh, Syntactic SMT 18.2 JHU, SMT+4+LM+OSM+Sparse
23.6 LIMSI/KIT 17.6 CU, Phrase SMT

22.8 U.Edinburgh, Phrase SMT 17.4 U.Edinburgh, Phrase SMT
22.7 KIT, Phrase SMT 16.1 U.Edinburgh, Syntactic SMT




IWSLT 20185 - Luong & Manning (2015) 4 S! i

TED talle MT, English-German
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Image-to-Text: Caption Greneration
with Attention

f=(a, man, is, jumping, into, a, lake, .)

Word

Recurrent
State

Attention
Mechanism

Adfnotation
Vectors

h.

J

Convolutional Neural Network

(Xu et al., 2015), (Yao et al., 2015)
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pe.akw\g about what ohe sees

_ A(0.97) stop(0.36) sign(0.19)
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The Good

- o T,

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- B mountain in the background.

gy

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.
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And the Bad

A man wearing a hat and
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a tabl A man is talking on his cell phone

with a surfboard. with a large pizza. while another man watches.
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Abtenktion on Me.morv Elements

#Recurrent networks cannot remember things for very long
»The cortex only remember things for 20 seconds
#We need a “hippocampus” (a separate memory module)
»LSTM [Hochreiter 1997], registers
»Memory networks [Weston et 2014] (FAIR), associative memory
»NTM [Graves et al. 2014], “tape”.

Attention
mechanism




Ongoing Project: Knowledge
Extraction

e Learn to fill the memory network from natural language
descriptions of facts

e Force the neural net to understand language
e Extract knowledge from documents into a usable form
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e The RNN gradient is a product of Jacobian matrices, each
associated with a step in the forward computation. To store
information robustly in a finite-dimensional state, the dynamics
must be contractive [Bengio et al 1994].

L= L(sr(s7-1(---st+1(8¢,--.))))
8_[/ — aL aST 8St+1 Storing bits
ast - aST aST—l T aSt robustly requires

sing. values<1

e Problems: _
Gradient
* sing. values of Jacobians > 1 = gradients explode - clipping
* or sing. values < 1 = gradients shrink & vanish  (Hochreiter 1991)

e or random -2 variance grows exponentially
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Grated Recurrent Uniks & LSTM

output

 Create a path where
gradients can flow for
longer with self-loop

self-loop

e Corresponds to an
eigenvalue of Jacobian
slightly less than 1

e LSTM is heavily used
(Hochreiter & Schmidhuber
1997)

* GRU light-weight version ‘ ' output gate

(Cho et al 2014)
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Delays & Hierarchies to Reach Farther

e Delays and multiple time scales, Elhihi & Bengio NIPS 1995,
Koutnik et al ICML 2014 é Q-1 Q Qt+1

A
Hierarchical RNNs (words / sentences): 0| decoder
Sordoni et al CIKM 2015, Serban et al =~~~ > context > =§ P
AAAI 2016 j

T H*!* L A

)1 .« .. 1
u 1 1[’;\{1 .2 w 1 “ \
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wow , i keep on bumping into you . yeah . i hope your mango ' sripe .



Large Memory Networlkes: Sparse Access
Memory for Long-Term Dependencies

e A mental state stored in an external memory can stay for
arbitrarily long durations, until evoked for read or write

e Forgetting = vanishing gradient.

* Memory = larger state, avoiding the need for forgetting/vanishing

17



Paths where gradient flows
unhampered Sleigenvaluel=1

e Self-loop with weight=1
e Copy operation in memory network

=» For each scalar that is so preserved, gradient can flow back
unhampered

=» And there must exist a direction in which the Jacobian
preserves vector magnitude

=» Corresponds to an eigenvalue whose magnitude is 1
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Uhi&arv Evolution RNNs

Martin Arjowski, Amar Shah & Yoshua Bengio
arXiv 1511.06464
Submitted to ICLR 2016

Large state: cannot afford O(n?) recurrent computation
Orthogonal matrices C Unitary matrices

Non-trivial to parametrize efficiently
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What if W had all Jeigenvalues|=1

Ze41 = Wihy + Vixp g
hit1 = 0(2t41)

90 9C Ohy Yohger OC 1y
v _ _ D, W7
oh,  Ohrp Oh, 5‘hT H Ohy, 5‘hT H AR A
oC
ol T peaw < -l

D —
H 1Dl = 55

2 HahT

Guaranteed no explosion, no need for gradient clipping



Building Blocks for Unitary W

U=V D V*with V fixed would have a bad ratio of
Computation O(n?) to parameters O(n), and D complex even for

orthogonal matrices

o D, adiagonal matrix with D, ; = €4, with parameters w; € R,
e R=1- 2%, a reflection matrix in the complex vector v € C",

e I, a fixed random index permutation matrix, and

o F and F!, the Fourier and inverse Fourier transforms.

\ O(n) computation & params

O(n log n) computation



Building Blocks for Unitary W

e D, a diagonal matrix with D;; ; = ¢4, with parameters w; € R,
e R=1- 2%, a reflection matrix in the complex vector v € C",

o II, afixed random index permutation matrix, and

o F and F~, the Fourier and inverse Fourier transforms.

A Recipe Inspired bj FastFood (Le et al ICML 2013)
and ACDC (Moczulski et al arXiv 2018)

W = D;R,F 'D,IIR, FD;,



Nonti‘.neari&j

We do not want to destroy the information present in the phase

UmodReLU(Z) = 9

\

OmodReLU(2) = OReLU(]2] + b)m

0

(el 40)

if
if

+b>0
+b <0
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Adding
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Seque.ul:mi. MNIST

Pixel-by-pixel permuted MNIST

Pixel-by-pixel MNIST
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_Beginning of training _ After 100 iterations
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