Deep Learning with Attention Mechanisms

Yoshua Bengio

July 20th, 2015

PLUG: **Deep Learning**, MIT Press book in preparation, draft chapters online for feedback Keynote speech at Russian Deep Learning Hackaton

Applying an attention mechanism to

- Translation
- Speech
- Images
- Video
- Memory

End-to-End Machine Translation

- Classical Machine Translation: several models separately trained by max. likelihood, brought together with logistic regression on top, based on n-grams
- Neural language models already shown to outperform n-gram models in terms of generalization power
- Why not train a neural translation model end-to-end to estimate P(target sentence | source sentence)?

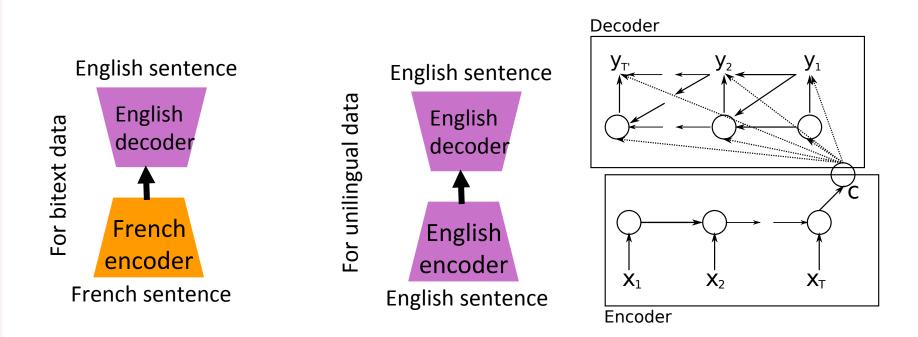
2014: The Year of Neural Machine Translation Breakthrough

- (Devlin et al, ACL'2014)
- (Cho et al EMNLP'2014)
- (Bahdanau, Cho & Bengio, arXiv sept. 2014)
- (Jean, Cho, Memisevic & Bengio, arXiv dec. 2014)
- (Sutskever et al NIPS'2014)

Earlier work: (Kalchbrenner & Blunsom et al 2013)

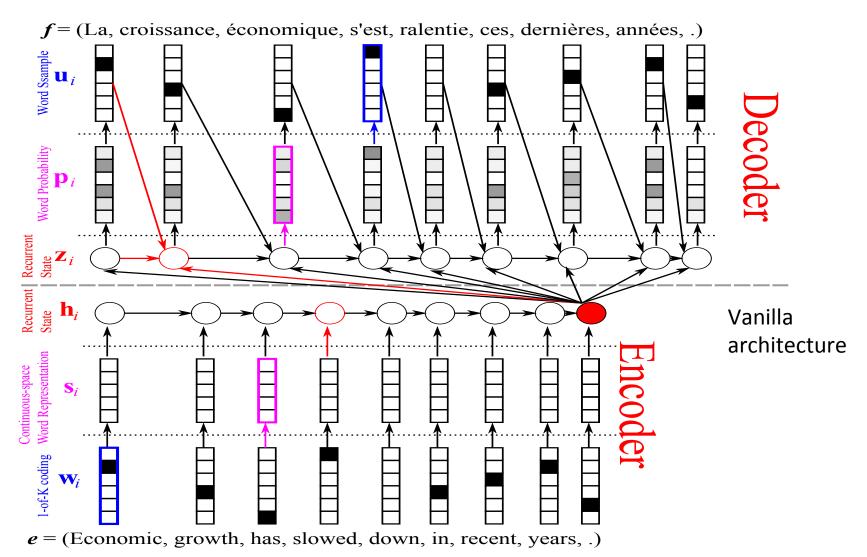
Encoder-Decoder Framework

- Intermediate representation of meaning
 - = 'universal representation'
- Encoder: from word sequence to sentence representation
- Decoder: from representation to word sequence distribution



Encoder & Decoder RNN

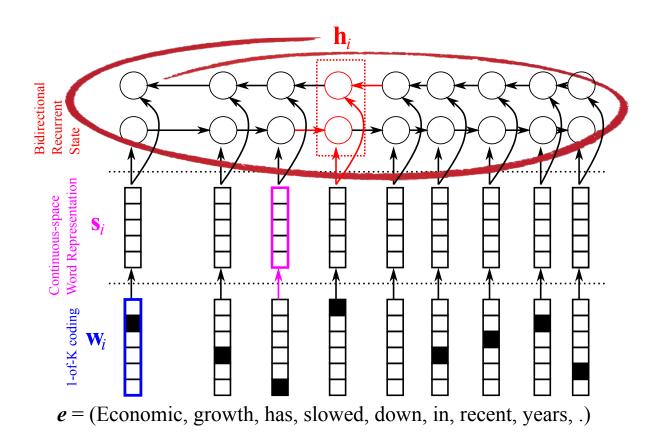
• Need to use gated RNN such as LSTM or GRU



6

Bidirectional RNN for Input Side

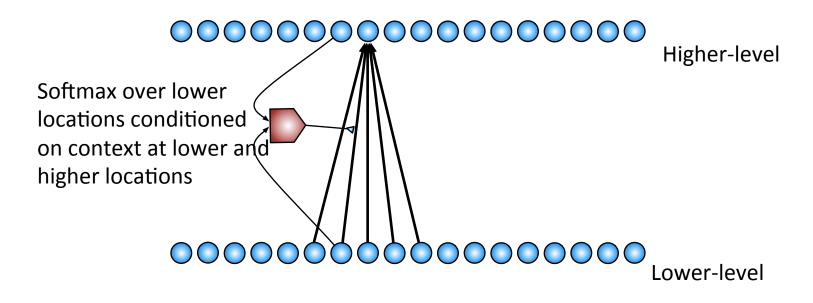
Following Alex Graves' work on handwriting



Attention Mechanism for Deep Learning

- Consider an input (or intermediate) sequence or image
- Consider an upper level representation, which can choose

 where to look », by assigning a weight or probability to each
 input position, as produced by an MLP, applied at each position



Attention: Many Recent Papers

- (Xu et al 2015, caption generation, U. Montreal + U. Toronto)
- (Ba et al 2014, Mnih et al 2014, visual attention, Google DeepMind)
- (Chorowski et al 2014, speech recognition, U. Montreal)
- (Bahdanau et al 2014, machine translation, U. Montreal)

And Older Papers

- (Larochelle & Hinton 2010, MNIST, U. Toronto)
- (Graves 2013, handwriting generation)
- (Denil et al 2014, visual tracking)
- (Tang et al 2014, generative models of images)

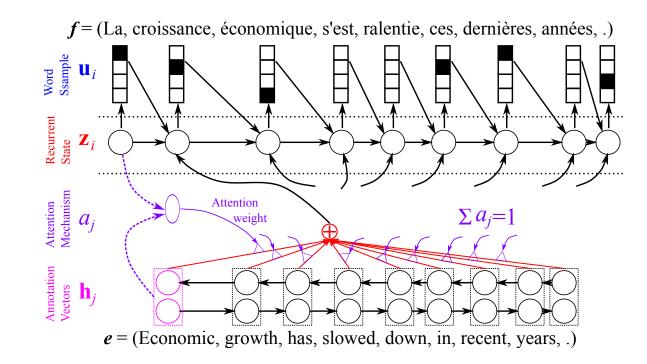
Soft-Attention vs Stochastic Hard-Attention

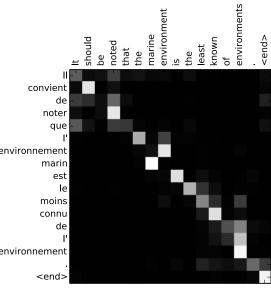
- With soft-attention: input fed to higher level at location **i** is a softmax-weighted sum of states at locations **j** at lower level
 - Train by back-prop
 - Fast training
- With stochastic hard-attention: sample an input location according to the softmax output
 - Get a gradient on the decisions via REINFORCE baseline
 - Noisy gradient, slower training but works
 - Symmetry breaking

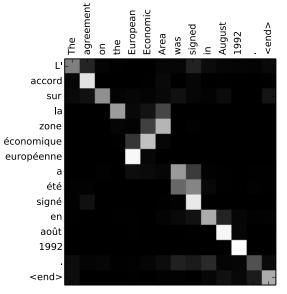
Attention-Based Neural Machine Translation

Related to earlier Graves 2013 for generating handwriting

- (Bahdanau, Cho & Bengio, arXiv sept. 2014)
- (Jean, Cho, Memisevic & Bengio, arXiv dec. 2014)







Destruction

La destruction de

P

équipement

signifie

que

Syrie

peut plus produire

la

ne

de

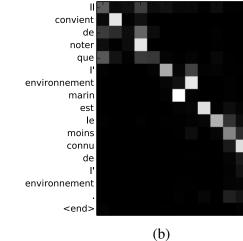
nouvelles armes

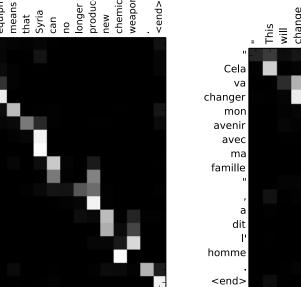
chimiques

<end>

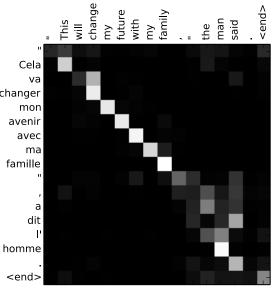
the

5



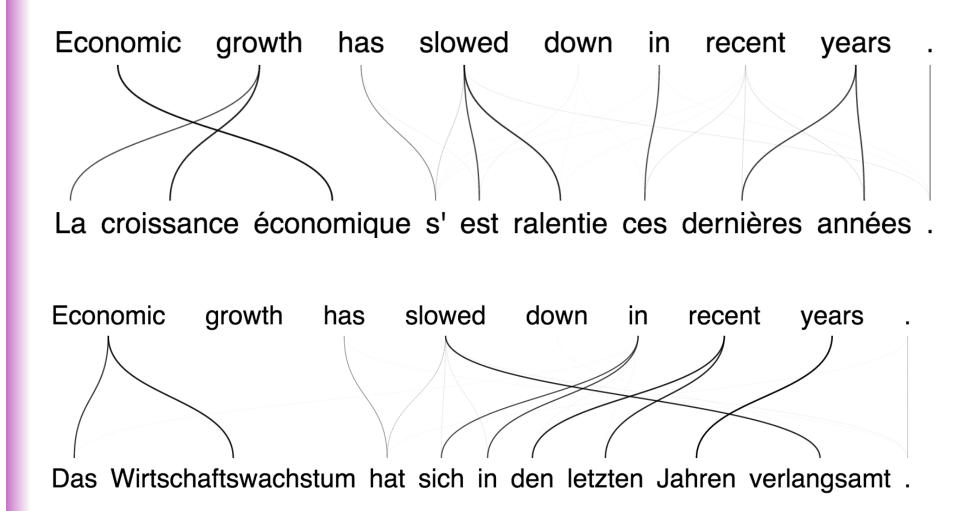


Predicted Alignments

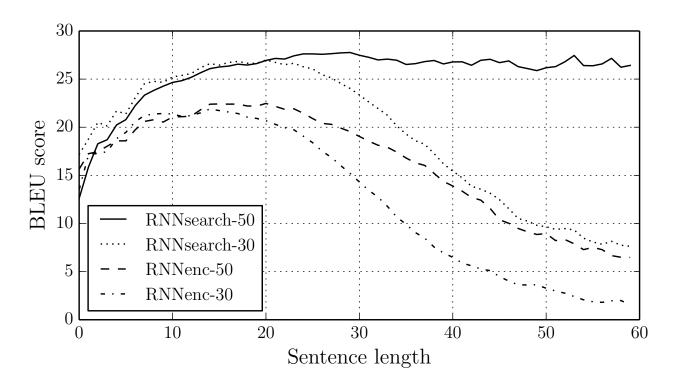


(c)

En-Fr & En-De Alignments



Improvements over Pure AE Model



- RNNenc: encode whole sentence
- RNNsearch: predict alignment
- BLEU score on full test set (including UNK)

Importance Sampling for Fast Training of Neural Language Models

(Bengio & Senecal 2008)

• IS:
$$E_p[f(x)] = \int p(x)f(x)dx = \int q(x)\frac{p(x)}{q(x)}f(x)dx = E_q[\frac{p(x)}{q(x)}f(x)]$$

• During training of neural language model, the LL gradient is $\nabla \log p(y_t \mid y_{< t}, x)$

$$= \nabla \mathcal{E}(y_t) - \sum_{k: y_k \in V} p(y_k \mid y_{< t}, x) \nabla \mathcal{E}(y_k)$$

- where $\mathcal{E}(y_j) = \mathbf{w}_j^\top \phi\left(y_{j-1}, z_j, c_j\right) + b_j$
- and the second term is an expectation that can be approximated by normalized importance sampling

$$\mathbb{E}_P\left[\nabla \mathcal{E}(y)\right] \approx \sum_{k: y_k \in V'} \frac{\omega_k}{\sum_{k': y_{k'} \in V'} \omega_{k'}} \nabla \mathcal{E}(y_k)$$

with proposal distribution Q to sample negative examples V'

$$\omega_k = \exp\left\{\mathcal{E}(y_k) - \log Q(y_k)\right\}$$

Fast GPU Training with Large Vocabulary using Minibatch Importance Sampling (Jean et al, arXiv 2015)

- (Bengio & Senecal 2008) not adapted to the current GPU reality
- (Jean et al, arXiv 2015) uses the following scheme:
 - Proposal Q for a particular word y_t in a particular minibatch is uniform among the words present in the minibatch
 - Just optimize wrt following relative probability inside the minibatch, normalizing only over the words V' in minibatch:

$$p(y_t \mid y_{< t}, x) = \frac{\exp\left\{\mathbf{w}_t^\top \phi\left(y_{t-1}, z_t, c_t\right) + b_t\right\}}{\sum_{k: y_k \in V'} \exp\left\{\mathbf{w}_k^\top \phi\left(y_{t-1}, z_t, c_t\right) + b_k\right\}}$$

Out-of-Vocabulary Words

- During training the model is asked to generate UNK for OOV words
- At test time, when UNK is generated, we use a forced alignment to find the corresponding source word(s) and output them
- This is particularly important for proper nouns, numerical quantities, etc. and boosted our performance significantly (1.5 BLEU points)

And, the rest is history..

	NMT(A)	NMT(A)-LV	Google	P-9	SMT	
Basic NMT	29.48	32.68	30.6*			
+Candidate List	_	33.28	_	33.3*	37.03•	
+UNK Replace	32.49	33.99	32.7°	55.5		
+Ensemble	-	36.71	36.9°	1		

(a) English \rightarrow French

	NMT(A)	NMT(A)-LV	P-SMT
Basic NMT	16.02	16.95	
+Candidate List	_	17.51	20.67°
+UNK Replace	18.27	18.87	20.07
+Ensemble	-	20.98	

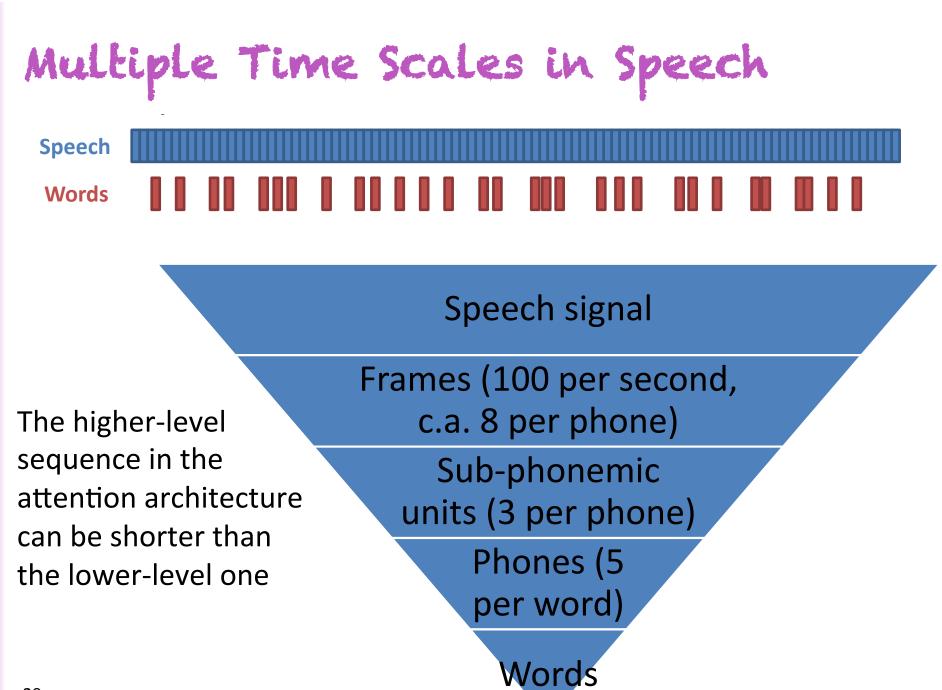
(b) **English**→**German**

NMT(A): (Bahdanau et al., 2014), NMT(A)-LV: (Jean et al., 2014),

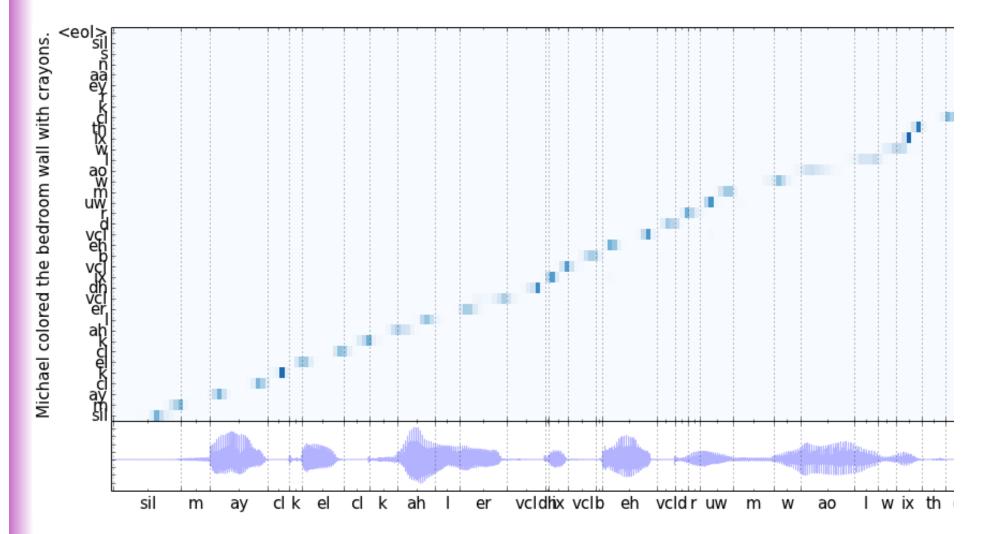
- (*): (Sutskever et al., 2014), (°): (Luong et al., 2014),
- (●): (Durrani et al., 2014), (*): (Cho et al., 2014), (◊): (Buck et al., 2014) = ∽०००

Translating from Other Sources?

- Speech
- Images
- Video



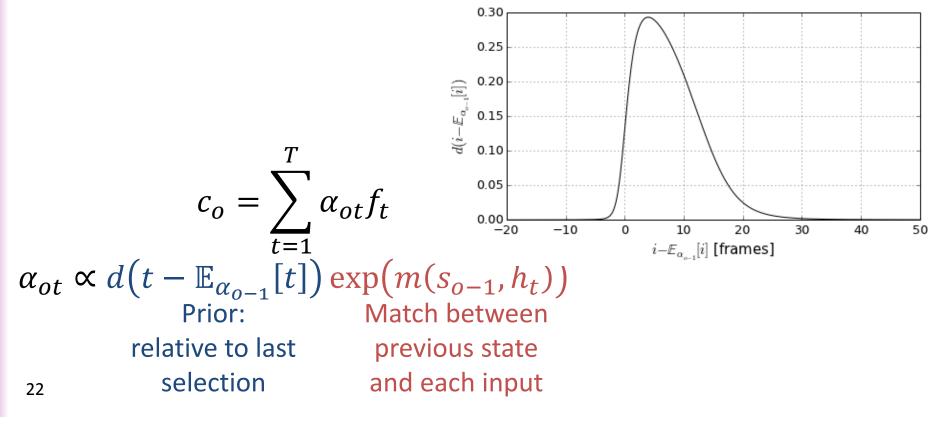
Acoustic-to-Phones Attention Alignment



21

Left-to-Right Soft Constraint

- Whereas with translation the word order can change a lot, the acoustic
 -> phonetic mapping is mostly left-to-right.
- The strength of that prior can be learned by structuring the attention location probability distribution:



End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results

(Chorowski, Bahdanau, Cho & Bengio, arXiv Dec. 2014)

Model	DEV	TEST					
Kaldi TIMIT s5 recipe with basic scorer							
Speaker independent triphone GMM-HMM	23.15%	24.32%					
Speaker adapted triphone GMM-HMM	20.56%	21.65%					
DBN-HMM with SMBR training	17.55%	18.79%					
DBN-HMM with SMBR training and greedy search	32.02%	33.00%					
Proposed model with the basic scorer							
Maxout network with per-frame training	18.41%	19.68%					
RNN model with frozen acoustic layer	17.53%	18.68%					
RNN model trained end-to-end	16.88%	18.57%					
RNN model trained end-to-end with greedy search	17.06%	18.61%					
References							
Deep RNN Transducer (Graves et al., 2013b)	N/A	17.7%					

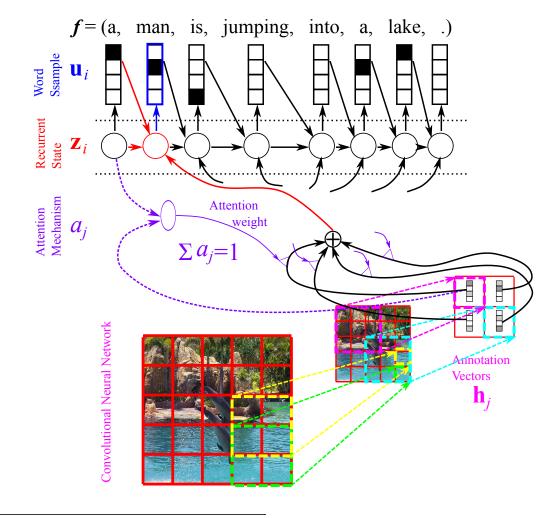
Ongoing Work: Multi-level Attention

 Higher levels may represent slower time scale, asynchronously and adaptively reading from lower levels (automatic soft segmentation)

000

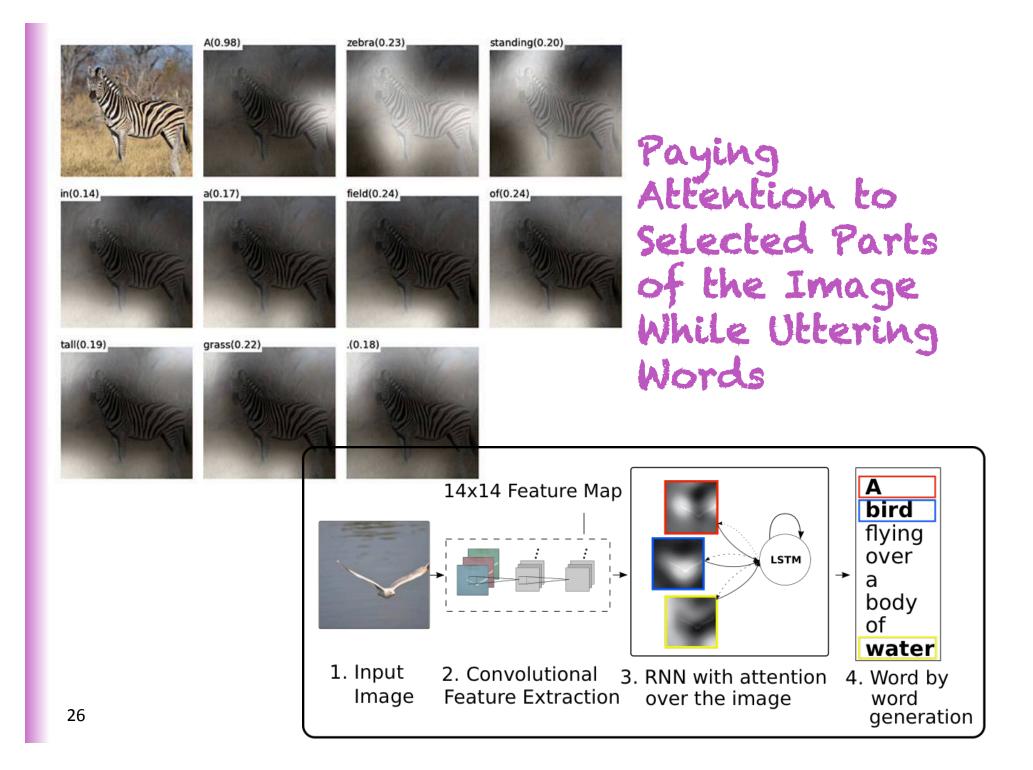
- Challenge: during training, the length of inner sequences is not known
 - predict stopping prob. at each time step
 - weigh upper attn weights in proportion to these prob.

Image-to-Text: Caption Generation



(Xu et al., 2015), (Yao et al., 2015)

< □ > < □ > < □ > < □ > < □ > < □ >



Speaking about what one sees

is(0.22)

with(0.28)

the(0.21)

on(0.25)

a(0.30)

background(0.11)

a(0.21)

mountain(0.44)

.(0.13)

road(0.26)

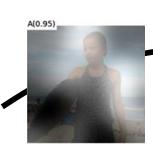
in(0.37)

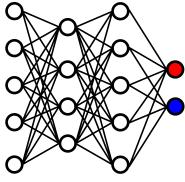
Let's go back 2.5 years back in time.. (Mitchell et al., 2012)

	stuff:	sky id:	.999 1	
	► stuff:	atts: b. box: road id: atts:		blue:0.945 white:0.501 clear:0.020
The bus by the road with a clear blue sky	object: preps:	 b. box: bus id: atts: b. box: id 1, id 2: by 	(1,236 188,94) .307 3 black:0.872, (38,38 366,29) id 1, id 3: by	red:0.244
 Group the Nouns Order the Nouns Filter Incorrect Attribut Group Plurals Gather Local Sub-(part Create Full Trees Get Final Tree, Clear M Prenominal Modifier O 	se) tree Mark-U	р		

And in 2015... End-to-End Neural A woman in a bikini holding a surfboard. 🔿 Net

surfboard(0.34)





bikini(0.44)

The neural nets successfully learned to

- map a phrase in one language to that in another language
- extract semantics [and syntax] of a sentence
- separate different objects in an image
- separate the background from foreground objects
- create a syntactically and semantically correct sentence

a(0.32)

Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Results from (Xu et al, arXiv Jan. 2015)

Table 1. BLEU-1,2,3,4/METEOR metrics compared to other methods, \dagger indicates a different split, (—) indicates an unknown metric, \circ indicates the authors kindly provided missing metrics by personal communication, Σ indicates an ensemble, *a* indicates using AlexNet

		BLEU				
Dataset	Model	B-1	B-2	B-3	B-4	METEOR
	Google NIC(Vinyals et al., 2014) ^{†Σ}	63	41	27		
Flickr8k	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
THERIOR	Soft-Attention	67	44.8	29.9	19.5	18.93
	Hard-Attention	67	45.7	31.4	21.3	20.30
	Google NIC ^{$\dagger \circ \Sigma$}	66.3	42.3	27.7	18.3	
Flickr30k	Log Bilinear	60.0	38	25.4	17.1	16.88
FIICKI JUK	Soft-Attention	66.7	43.4	28.8	19.1	18.49
	Hard-Attention	66.9	43.9	29.6	19.9	18.46
	CMU/MS Research (Chen & Zitnick, 2014) ^a					20.41
	MS Research (Fang et al., 2014) ^{$\dagger a$}					20.71
СОСО	BRNN (Karpathy & Li, 2014)°	64.2	45.1	30.4	20.3	
	Google NIC ^{$\dagger \circ \Sigma$}	66.6	46.1	32.9	24.6	
	Log Bilinear ^o	70.8	48.9	34.4	24.3	20.03
	Soft-Attention	70.7	49.2	34.4	24.3	23.90
	Hard-Attention	71.8	50.4	35.7	25.0	23.04

The Good

A woman is throwing a <u>frisbee</u> in a park.

A $\underline{\text{dog}}$ is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with <u>trees</u> in the background.

And the Bad

A large white <u>bird</u> standing in a forest.

A woman holding a <u>clock</u> in her hand.

A man wearing a hat and a hat on a <u>skateboard</u>.

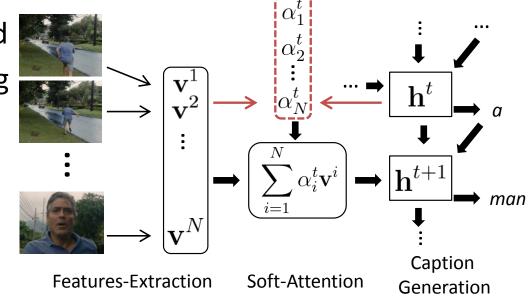
A person is standing on a beach with a <u>surfboard.</u>

A woman is sitting at a table with a large pizza.

A man is talking on his cell phone while another man watches.

Attention through time for video caption generation

- (Yao et al arXiv 1502.08029, 2015) Video Description Generation Incorporating Spatio-Temporal Features and a Soft-Attention Mechanism
- Attention can be focused temporally, i.e., selecting input frames

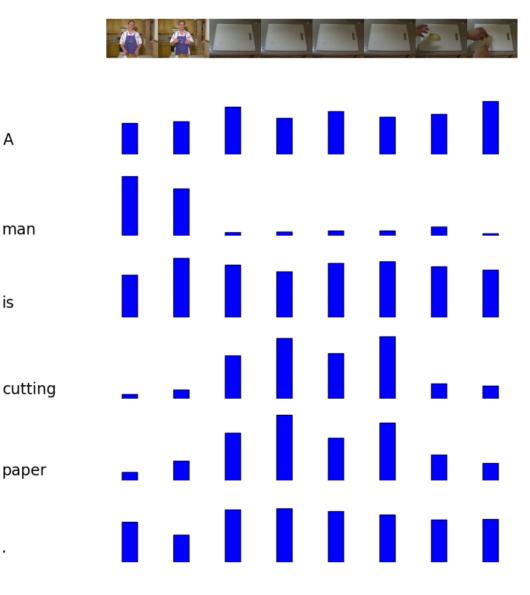


Attention through time for video caption generation (Yao et al 2015)

А

is

Attention is focused at appropriate frames depending on which word is generated.



Attention through time for video caption generation (Yao et al 2015)

• Soft-attention worked best in this setting

Model	Feature	Bleu				Meteor	Perplexity	
MOUEI		1	2	3	4	mb		
non-attention	GNet	32.0	9.2	3.4	1.2	0.3	4.43	88.28
	GNet+3DConv _{non-att}	33.6	10.4	4.3	1.8	0.7	5.73	84.41
soft-attention	GNet	31.0	7.7	3.0	1.2	0.3	4.05	66.63
	GNet+3DConv _{att}	28.2	8.2	3.1	1.3	0.7	5.6	65.44

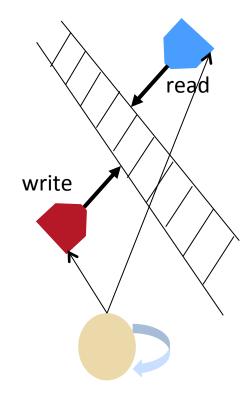
Corpus: She rushes out. Test_sample: The woman turns away.

Generated captions

Corpus: SOMEONE sits with his arm around SOMEONE. He nuzzles her cheek, then kisses tenderly. Test_sample: SOMEONE sits beside SOMEONE. Corpus: SOMEONE shuts the door. Test_sample: as he turns on his way to the door , SOMEONE turns away.

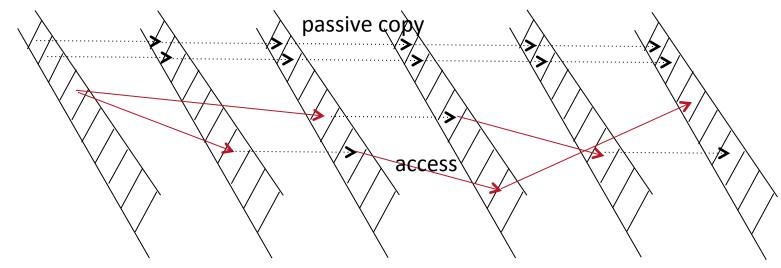
Attention Mechanisms for Memory Access

- Neural Turing Machines (Graves et al 2014)
- and Memory Networks (Weston et al 2014)
- Use a form of attention mechanism to control the read and write access into a memory
- The attention mechanism outputs a softmax over memory locations
- For efficiency, the softmax should be sparse (mostly 0's), e.g. maybe using a hash-table formulation.



Sparse Access Memory for Long-Term Dependencies

- Whereas LSTM memories always decay exponentially (even if slowly), a mental state stored in an external memory can stay for arbitrarily long durations, until evoked for read or write.
- Need to replace the soft gater or softmax attention by hard one that is 0 most of the time, and yet for which training works (again, may use noisy decisions and/or REINFORCE).
- Different « threads » can run in parallel if we view the memory as an associative one.



Conclusions

- Attention mechanisms allow the learner to make a selection, soft or hard
- They have been extremely successful for machine translation and caption generation
- They could be interesting for speech recognition, especially if we used them to capture multiple time scales
- They could be used to help deal with long-term dependencies, allowing some states to last for arbitrarily long

MILA: Montreal Institute for Learning Algorithms

