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Applying an attention mechanism to 
 
- Translation 
 
- Speech  
 
- Images 
 
- Video 
 
- Memory 
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End-to-End Machine Translation 

•  Classical	
  Machine	
  Transla@on:	
  several	
  models	
  separately	
  trained	
  
by	
  max.	
  likelihood,	
  brought	
  together	
  with	
  logis@c	
  regression	
  on	
  
top,	
  based	
  on	
  n-­‐grams	
  

•  Neural	
  language	
  models	
  already	
  shown	
  to	
  outperform	
  n-­‐gram	
  
models	
  in	
  terms	
  of	
  generaliza@on	
  power	
  

•  Why	
  not	
  train	
  a	
  neural	
  transla@on	
  model	
  end-­‐to-­‐end	
  to	
  es@mate	
  
P(target	
  sentence	
  |	
  source	
  sentence)?	
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2014: The Year of Neural Machine 
Translation Breakthrough 

•  (Devlin	
  et	
  al,	
  ACL’2014)	
  
•  (Cho	
  et	
  al	
  EMNLP’2014)	
  
•  (Bahdanau,	
  Cho	
  &	
  Bengio,	
  arXiv	
  sept.	
  2014)	
  
•  (Jean,	
  Cho,	
  Memisevic	
  &	
  Bengio,	
  arXiv	
  dec.	
  2014)	
  
•  (Sutskever	
  et	
  al	
  NIPS’2014)	
  

Earlier	
  work:	
  (Kalchbrenner	
  &	
  Blunsom	
  et	
  al	
  2013)	
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Encoder-Decoder Framework 
•  Intermediate	
  representa@on	
  of	
  meaning	
  	
  

=	
  ‘universal	
  representa@on’	
  
•  Encoder:	
  from	
  word	
  sequence	
  to	
  sentence	
  representa@on	
  
•  Decoder:	
  from	
  representa@on	
  to	
  word	
  sequence	
  distribu@on	
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Encoder & Decoder RNN 
•  Need	
  to	
  use	
  gated	
  RNN	
  such	
  as	
  LSTM	
  or	
  GRU	
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Bidirectional RNN for Input Side 

•  Following	
  Alex	
  Graves’	
  work	
  on	
  handwri@ng	
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Attention Mechanism for Deep Learning 

•  Consider	
  an	
  input	
  (or	
  intermediate)	
  sequence	
  or	
  image	
  
•  Consider	
  an	
  upper	
  level	
  representa@on,	
  which	
  can	
  choose	
  

«	
  where	
  to	
  look	
  »,	
  by	
  assigning	
  a	
  weight	
  or	
  probability	
  to	
  each	
  
input	
  posi@on,	
  as	
  produced	
  by	
  an	
  MLP,	
  applied	
  at	
  each	
  posi@on	
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Lower-­‐level	
  

Higher-­‐level	
  
Soimax	
  over	
  lower	
  	
  
loca@ons	
  condi@oned	
  
on	
  context	
  at	
  lower	
  and	
  
higher	
  loca@ons	
  	
  



Attention: Many Recent Papers 

•  (Xu	
  et	
  al	
  2015,	
  cap@on	
  genera@on,	
  U.	
  Montreal	
  +	
  U.	
  Toronto)	
  
•  (Ba	
  et	
  al	
  2014,	
  Mnih	
  et	
  al	
  2014,	
  visual	
  aken@on,	
  Google	
  DeepMind)	
  
•  (Chorowski	
  et	
  al	
  2014,	
  speech	
  recogni@on,	
  U.	
  Montreal)	
  
•  (Bahdanau	
  et	
  al	
  2014,	
  machine	
  transla@on,	
  U.	
  Montreal)	
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And Older Papers 

•  (Larochelle	
  &	
  Hinton	
  2010,	
  MNIST,	
  U.	
  Toronto)	
  
•  (Graves	
  2013,	
  handwri@ng	
  genera@on)	
  
•  (Denil	
  et	
  al	
  2014,	
  visual	
  tracking)	
  
•  (Tang	
  et	
  al	
  2014,	
  genera@ve	
  models	
  of	
  images)	
  
	
  



Soft-Attention vs  
Stochastic Hard-Attention 

•  With	
  soi-­‐aken@on:	
  input	
  fed	
  to	
  higher	
  level	
  at	
  loca@on	
  i	
  is	
  a	
  
soimax-­‐weighted	
  sum	
  of	
  states	
  at	
  loca@ons	
  j	
  at	
  lower	
  level	
  
•  Train	
  by	
  back-­‐prop	
  
•  Fast	
  training	
  

•  With	
  stochas@c	
  hard-­‐aken@on:	
  sample	
  an	
  input	
  loca@on	
  
according	
  to	
  the	
  soimax	
  output	
  
•  Get	
  a	
  gradient	
  on	
  the	
  decisions	
  via	
  REINFORCE	
  -­‐	
  baseline	
  
•  Noisy	
  gradient,	
  slower	
  training	
  but	
  works	
  
•  Symmetry	
  breaking	
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Attention-Based Neural Machine 
Translation 

•  (Bahdanau,	
  Cho	
  &	
  Bengio,	
  arXiv	
  sept.	
  2014)	
  
•  (Jean,	
  Cho,	
  Memisevic	
  &	
  Bengio,	
  arXiv	
  dec.	
  2014)	
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Predicted 
Alignments 
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(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵

ij

of the annotation of the j-th source word and the i-th
target word (see Eq. (5)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

The encoder and decoder of the RNNenc have 1000 hidden units each.7 The encoder of the
RNNsearch consists of forward and backward recurrent neural networks (RNN) each having 1000
hidden units. Its decoder has 1000 hidden units. In both cases, we use a multilayer network with a
single maxout (Goodfellow et al., 2013) hidden layer to compute the conditional probability of each
target word (Pascanu et al., 2014).

We use a stochastic gradient descent (SGD) algorithm together with Adadelta (Zeiler, 2012) to train
each model. Each SGD updated direction is computed using a minibatch of 80 sentences. We trained
each model approximately 5 days.

7In this paper, by a ’hidden unit’, we always mean the gated hidden unit (see Sec. 3.3.1).
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En-Fr & En-De Alignments 
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Improvements over Pure AE Model 

•  RNNenc:	
  encode	
  whole	
  sentence	
  
•  RNNsearch:	
  predict	
  alignment	
  
•  BLEU	
  score	
  on	
  full	
  test	
  set	
  (including	
  UNK)	
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Figure 2: The BLEU scores
of the generated translations
on the test set with respect
to the lengths of the sen-
tences. The results are on
the full test set which in-
cludes sentences having un-
known words to the models.

3.3.2 Alignment Model

The alignment model should be designed considering that the model needs to be evaluated T

x

⇥
T

y

times for each sentence pair of lengths T

x

and T

y

. In order to avoid the potential issue with
computation, we use a single-layer multilayer perceptron such that

a(s

i�1, hj

) = V

a

tanh (W

a

s

i�1 + U

a

h

j

) ,

where W

a

2 Rn,n

, U

a

2 Rn,2n and V

a

2 Rn are the weight matrices. Since U

a

h

j

does not depend
on i, we can pre-compute it in advance to minimize the computational cost. A similar trick was
recently used by Devlin et al. (2014).

4 Experiment Settings

We evaluate the proposed approach on the task of English-to-French translation. We use the bilin-
gual, parallel corpora provided by ACL WMT ’14.4 As a comparison, we also report the perfor-
mance of an RNN Encoder–Decoder which was proposed recently by Cho et al. (2014a). We use
the same training procedures for the both models on the same dataset.

4.1 Dataset

WMT ’14 provide the following English-French parallel corpora: Europarl (61M words), news
commentary (5.5M), UN (421M) and two crawled corpora of 90M and 780M words respectively,
totaling 850M words. Following the procedure described in (Cho et al., 2014a), we reduce the size of
the combined corpus to have 348M words using the data selection method by Axelrod et al. (2011).5
We do not use any monolingual data other than the mentioned parallel corpora. We concatenate
news-test-2012 and news-test-2013 to make a development set, and evaluate the models on the test
set (news-test-2014) from WMT ’14 which consists of 3003 sentences not present in the training
data.

After a usual tokenization6 , we use a shortlist of 30,000 most frequent words in each language to
train our models. Any word not included in the shortlist is mapped to a special token ([UNK]). We
do not apply any other special preprocessing, such as lowercasing or stemming, to the data.

4.2 Models

We train two types of models. The first one is an RNN Encoder–Decoder (RNNenc, Cho et al.,
2014a), and the other is the proposed model, to which we refer as RNNsearch. We train each
model twice with the sentences of length up to 30 words (RNNenc-30, RNNsearch-30) and with the
sentences of length up to 50 word (RNNenc-50, RNNsearch-50).

4
http://www.statmt.org/wmt14/translation-task.html

5Available online at http://www-lium.univ-lemans.fr/
˜

schwenk/cslm_joint_paper/.
6We used the tokenization script from the open-source machine translation package, Moses.
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Importance Sampling for Fast 
Training of Neural Language Models 

•  IS:	
  

•  During	
  training	
  of	
  neural	
  language	
  model,	
  the	
  LL	
  gradient	
  is	
  

•  where	
  
•  and	
  the	
  second	
  term	
  is	
  an	
  expecta@on	
  that	
  can	
  be	
  approximated	
  

by	
  normalized	
  importance	
  sampling	
  	
  

•  with	
  proposal	
  distribu@on	
  Q	
  to	
  sample	
  nega/ve	
  examples	
  V’	
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(Bengio	
  &	
  Senecal	
  2008)	
  

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description
In this paper, we propose a model-specific approach
that allows us to train a neural machine translation
model with a very large target vocabulary. With the
proposed approach, the computational complexity
of training becomes constant with respect to the size
of the target vocabulary. Furthermore, the proposed
approach allows us to efficiently use a fast comput-
ing device with limited memory, such as a GPU,
to train a neural machine translation model with a
much larger target vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complexity of
computing the normalization constant, we propose
here to use only a small subset V 0 of the target vo-
cabulary at each update. The proposed approach is
based on the earlier work of (Bengio and Sénécal,
2008).

Let us consider the gradient of the log-probability
of the output in Eq. (6). The gradient is composed
of a positive and negative part:

r log p(yt | y<t, x) (8)

=rE(yt)�
X

k:yk2V
p(yk | y<t, x)rE(yk),

where we define the energy E as

E(yj) = w>
j � (yj�1, zj , cj) + bj .

The second, or negative, term of the gradient is in
essence the expected gradient of the energy:

EP [rE(y)] , (9)

where P denotes p(y | y<t, x).
The main idea of the proposed approach is to ap-

proximate this expectation, or the negative term of
the gradient, by importance sampling with a small
number of samples. Given a predefined proposal
distribution Q and a set V 0 of samples from Q, we
approximate the expectation in Eq. (9) with

EP [rE(y)] ⇡
X

k:yk2V 0

!k
P

k0:yk02V 0 !k0
rE(yk),

(10)

where

!k = exp {E(yk)� logQ(yk)} . (11)

This approach allows us to compute the normal-
ization constant during training using only a small
subset of the target vocabulary, resulting in much
lower computational complexity for each parame-
ter update. Intuitively, at each parameter update, we
update only the vectors associated with the correct
word wt and with the sampled words in V

0. Once
training is over, we can use the full target vocabu-
lary to compute the output probability of each target
word.

Although the proposed approach naturally ad-
dresses the computational complexity, using this ap-
proach naively does not guarantee that the number
of parameters being updated for each sentence pair,
which includes multiple target words, is bounded
nor can be controlled. This becomes problematic
when training is done, for instance, on a GPU with
limited memory.

In practice, hence, we partition the training corpus
and define a subset V 0 of the target vocabulary for
each partition prior to training. Before training be-
gins, we sequentially examine each target sentence
in the training corpus and accumulate unique tar-
get words until the number of unique target words
reaches the predefined threshold ⌧ . The accumu-
lated vocabulary will be used for this partition of the
corpus during training. We repeat this until the end
of the training set is reached. Let us refer to the sub-
set of target words used for the i-th partition by V

0
i .

This may be understood as having a separate pro-
posal distribution Qi for each partition of the train-
ing corpus. The distribution Qi assigns equal prob-
ability mass to all the target words included in the
subset V 0

i , and zero probability mass to all the other
words, i.e.,

Qi(yk) =

8

<

:

1
|V 0

i |
if yt 2 V

0
i

0 otherwise.

This choice of proposal distribution cancels out the
correction term � logQ(yk) from the importance
weight in Eqs. (10)–(11), which makes the proposed
approach equivalent to approximating the exact out-

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description
In this paper, we propose a model-specific approach
that allows us to train a neural machine translation
model with a very large target vocabulary. With the
proposed approach, the computational complexity
of training becomes constant with respect to the size
of the target vocabulary. Furthermore, the proposed
approach allows us to efficiently use a fast comput-
ing device with limited memory, such as a GPU,
to train a neural machine translation model with a
much larger target vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complexity of
computing the normalization constant, we propose
here to use only a small subset V 0 of the target vo-
cabulary at each update. The proposed approach is
based on the earlier work of (Bengio and Sénécal,
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when training is done, for instance, on a GPU with
limited memory.

In practice, hence, we partition the training corpus
and define a subset V 0 of the target vocabulary for
each partition prior to training. Before training be-
gins, we sequentially examine each target sentence
in the training corpus and accumulate unique tar-
get words until the number of unique target words
reaches the predefined threshold ⌧ . The accumu-
lated vocabulary will be used for this partition of the
corpus during training. We repeat this until the end
of the training set is reached. Let us refer to the sub-
set of target words used for the i-th partition by V

0
i .

This may be understood as having a separate pro-
posal distribution Qi for each partition of the train-
ing corpus. The distribution Qi assigns equal prob-
ability mass to all the target words included in the
subset V 0

i , and zero probability mass to all the other
words, i.e.,

Qi(yk) =

8

<

:

1
|V 0

i |
if yt 2 V

0
i

0 otherwise.

This choice of proposal distribution cancels out the
correction term � logQ(yk) from the importance
weight in Eqs. (10)–(11), which makes the proposed
approach equivalent to approximating the exact out-

Ep[f(x)] =

Z
p(x)f(x)dx =

Z
q(x)

p(x)

q(x)
f(x)dx = Eq[

p(x)

q(x)
f(x)]



Fast GPU Training with Large 
Vocabulary using Minibatch Importance 
Sampling 
•  (Bengio	
  &	
  Senecal	
  2008)	
  not	
  adapted	
  to	
  the	
  current	
  GPU	
  reality	
  

•  (Jean	
  et	
  al,	
  arXiv	
  2015)	
  uses	
  the	
  following	
  scheme:	
  
•  Proposal	
  Q	
  for	
  a	
  par@cular	
  word	
  yt	
  in	
  a	
  par@cular	
  minibatch	
  is	
  
uniform	
  among	
  the	
  words	
  present	
  in	
  the	
  minibatch	
  	
  

•  Just	
  op@mize	
  wrt	
  following	
  rela@ve	
  probability	
  inside	
  the	
  
minibatch,	
  normalizing	
  only	
  over	
  the	
  words	
  V’	
  in	
  minibatch:	
  

16	
  

(Jean	
  et	
  al,	
  arXiv	
  2015)	
  

put probability in Eq. (6) with

p(yt | y<t, x)

=

exp

�

w>
t � (yt�1, zt, ct) + bt

 

P

k:yk2V 0 exp
�

w>
k � (yt�1, zt, ct) + bk

 

.

It should be noted that this choice of Q makes the
estimator biased.

3.1.1 Informal Discussion on Consequence
The parametrization of the output probability in

Eq. (6) can be understood as arranging the vectors
associated with the target words such that the dot
product between the most likely, or correct, target
word’s vector and the current hidden state is maxi-
mized. The exponentiation followed by normaliza-
tion is simply a process in which the dot products
are converted into proper probabilities.

As learning continues, therefore, the vectors of
all the likely target words tend to align with each
other but not with the others. This is achieved ex-
actly by moving the vector of the correct word in
the direction of � (yt�1, zt, ct), while pushing all the
other vectors away, which happens when the gradi-
ent of the logarithm of the exact output probability
in Eq. (6) is maximized. Our approximate approach,
instead, moves the word vectors of the correct words
and of only a subset of sampled target words (those
included in V

0).

3.2 Decoding
Once the model is trained using the proposed ap-
proximation, we can use the full target vocabulary
when decoding a translation given a new source sen-
tence. Although this is advantageous as it allows the
trained model to utilize the whole vocabulary when
generating a translation, doing so may be too com-
putationally expensive, e.g., for real-time applica-
tions.

Since training puts the target word vectors in the
space so that they align well with the hidden state of
the decoder only when they are likely to be a correct
word, we can use only a subset of candidate target
words during decoding. This is similar to what we
do during training, except that at test time, we do not
have access to a set of correct target words.

The most naı̈ve way to select a subset of candi-
date target words is to take only the top-K most fre-
quent target words, where K can be adjusted to meet

the computational requirement. This, however, ef-
fectively cancels out the whole purpose of training a
model with a very large target vocabulary. Instead,
we can use an existing word alignment model to
align the source and target words in the training cor-
pus and build a dictionary. With the dictionary, for
each source sentence, we construct a target word set
consisting of the K-most frequent words (according
to the estimated unigram probability) and, using the
dictionary, at most K 0 likely target words for each
source word. K and K

0 may be chosen either to
meet the computational requirement or to maximize
the translation performance on the development set.
We call a subset constructed in either of these ways
a candidate list.

3.3 Source Words for Unknown Words
In the experiments, we evaluate the proposed ap-
proach with the neural machine translation model
called RNNsearch (Bahdanau et al., 2014) (see
Sec. 2.1.1). In this model, as a part of decoding pro-
cess, we obtain the alignments between the target
words and source locations via the alignment model
in Eq. (5).

We can use this feature to infer the source word to
which each target word was most aligned (indicated
by the largest ↵t in Eq. (5)). This is especially useful
when the model generated an [UNK] token. Once
a translation is generated given a source sentence,
each [UNK] may be replaced using a translation-
specific technique based on the aligned source word.
For instance, in the experiment, we try replacing
each [UNK] token with the aligned source word or
its most likely translation determined by another
word alignment model. Other techniques such as
transliteration may also be used to further improve
the performance (Koehn, 2010).

4 Experiments

We evaluate the proposed approach in
English!French and English!German trans-
lation tasks. We trained the neural machine
translation models using only the bilingual, parallel
corpora made available as a part of WMT ’14. For
each pair, the datasets we used are:

• English!French2:
2The preprocessed data can be found and downloaded from



Out-of-Vocabulary Words 

•  During	
  training	
  the	
  model	
  is	
  asked	
  to	
  generate	
  UNK	
  for	
  OOV	
  
words	
  

•  At	
  test	
  @me,	
  when	
  UNK	
  is	
  generated,	
  we	
  use	
  a	
  forced	
  alignment	
  
to	
  find	
  the	
  corresponding	
  source	
  word(s)	
  and	
  output	
  them	
  

•  This	
  is	
  par@cularly	
  important	
  for	
  proper	
  nouns,	
  numerical	
  
quan@@es,	
  etc.	
  and	
  boosted	
  our	
  performance	
  significantly	
  (1.5	
  
BLEU	
  points)	
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Translating from Other Sources? 
 
- Speech 
 
- Images 
 
- Video 
 

19	
  



A challenge 
• Raw speech is sampled at 8kHz – 16kHz  
⇒ at minimum 8000 numbers every second 
     (44000 samples of 2 values for stereo music) 

• On TIMIT: 
– 2.5 words per second  
– 12.5 phones per second 

• The output is much shorter! 
 
 

• How to align?  
• How to handle different duration of output tokens? 
 

Speech 

Words Typically we go through multiple 
sequence sohrtening steps 

 Speech signal 

Frames (100 per second, 
c.a. 8 per phone) 

Sub-phonemic 
units (3 per phone) 

Phones (5 
per word) 

Words 

Multiple Time Scales in Speech 

The	
  higher-­‐level	
  
sequence	
  in	
  the	
  
aken@on	
  architecture	
  
can	
  be	
  shorter	
  than	
  
the	
  lower-­‐level	
  one	
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Acoustic-to-Phones Attention Alignment 
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Input selections made by the RNN 

 



How to choose the context? 
At each step of the generating network (that is 
for each output element) compute a context 
(weighted sum over frames): 

𝑐௢ =෍𝛼௢௧𝑓௧

்

௧ୀଵ

 

𝛼௢௧ ∝ 𝑑 𝑡 − 𝔼ఈ೚షభ 𝑡 exp 𝑚 𝑠௢ିଵ, ℎ௧  
 
 
Both prior and matching function 𝑚 are learned 
 

Prior: 
relative to last 

selection 

Match between 
previous state 
and each input 

The prior is learned 

 

Left-to-Right Soft Constraint 

•  Whereas	
  with	
  transla@on	
  the	
  word	
  order	
  can	
  change	
  a	
  lot,	
  the	
  
acous@càphone@c	
  mapping	
  is	
  mostly	
  lei-­‐to-­‐right.	
  

•  The	
  strength	
  of	
  that	
  prior	
  can	
  be	
  learned	
  by	
  structuring	
  the	
  
aken@on	
  loca@on	
  probability	
  distribu@on:	
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End-to-end Continuous Speech 
Recognition using Attention-based 
Recurrent NN: First Results 

(Chorowski,	
  Bahdanau,	
  Cho	
  &	
  Bengio,	
  arXiv	
  Dec.	
  2014)	
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Numbers (at last) 



•  Higher	
  levels	
  may	
  represent	
  slower	
  @me	
  scale,	
  asynchronously	
  
and	
  adap@vely	
  reading	
  from	
  lower	
  levels	
  (automa@c	
  soi	
  
segmenta@on)	
  

•  Challenge:	
  during	
  training,	
  the	
  
	
  	
  	
  	
  	
  length	
  of	
  inner	
  sequences	
  is	
  not	
  known	
  

•  predict	
  stopping	
  prob.	
  at	
  
	
  	
  	
  	
  each	
  @me	
  step	
  
•  weigh	
  upper	
  akn	
  weights	
  in	
  	
  
	
  	
  	
  	
  propor@on	
  to	
  these	
  prob.	
  

Ongoing Work: Multi-level Attention 
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Image-to-Text: Caption Generation 
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Paying 
Attention to 
Selected Parts 
of the Image 
While Uttering 
Words 
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Speaking about what one sees 
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The bus by the road with a clear blue sky

1. Group the Nouns
2. Order the Nouns
3. Filter Incorrect Attributes
4. Group Plurals
5. Gather Local Sub-(parse) trees
6. Create Full Trees
7. Get Final Tree, Clear Mark-Up
8. Prenominal Modifier Ordering

{ {



A woman in a bikini holding a surfboard.

And in 
2015… 
End-to-
End 
Neural 
Net 
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Show, Attend and Tell: Neural 
Image Caption Generation with 
Visual Attention 

Results	
  from	
  (Xu	
  et	
  al,	
  arXiv	
  Jan.	
  2015)	
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Neural Image Caption Generation with Visual Attention

Table 1. BLEU-1,2,3,4/METEOR metrics compared to other methods, † indicates a different split, (—) indicates an unknown metric, �
indicates the authors kindly provided missing metrics by personal communication, ⌃ indicates an ensemble, a indicates using AlexNet

BLEU
Dataset Model B-1 B-2 B-3 B-4 METEOR

Flickr8k

Google NIC(Vinyals et al., 2014)†⌃
Log Bilinear (Kiros et al., 2014a)�

Soft-Attention
Hard-Attention

63
65.6
67
67

41
42.4
44.8
45.7

27
27.7
29.9
31.4

—
17.7
19.5
21.3

—
17.31
18.93
20.30

Flickr30k

Google NIC†�⌃

Log Bilinear
Soft-Attention
Hard-Attention

66.3
60.0
66.7
66.9

42.3
38

43.4
43.9

27.7
25.4
28.8
29.6

18.3
17.1
19.1
19.9

—
16.88
18.49
18.46

COCO

CMU/MS Research (Chen & Zitnick, 2014)a
MS Research (Fang et al., 2014)†a

BRNN (Karpathy & Li, 2014)�
Google NIC†�⌃

Log Bilinear�
Soft-Attention
Hard-Attention

—
—

64.2
66.6
70.8
70.7
71.8

—
—

45.1
46.1
48.9
49.2
50.4

—
—

30.4
32.9
34.4
34.4
35.7

—
—

20.3
24.6
24.3
24.3
25.0

20.41
20.71

—
—

20.03
23.90
23.04

randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
(Bergstra et al., 2010) publicly available upon publication
to encourage future research in this area.

5. Experiments
We describe our experimental methodology and quantita-
tive results which validate the effectiveness of our model
for caption generation.

1https://www.whetlab.com/

5.1. Data

We report results on the popular Flickr8k and Flickr30k
dataset which has 8,000 and 30,000 images respectively
as well as the more challenging Microsoft COCO dataset
which has 82,783 images. The Flickr8k/Flickr30k dataset
both come with 5 reference sentences per image, but for the
MS COCO dataset, some of the images have references in
excess of 5 for consistency across our datasets. We applied
only basic tokenization to MS COCO so that it is consistent
with the tokenization present in Flickr8k and Flickr30k.

Results for our attention-based architecture are reported in
Table 4.2.1. We report results with the frequently used
BLEU metric2 which is the standard in the caption gen-
eration literature. We report BLEU from 1 to 4 with-
out a brevity penalty. There has been, however, criticism
of BLEU, so in addition we report another common met-
ric METEOR (Denkowski & Lavie, 2014), and compare
whenever possible.

5.2. Evaluation Procedures

A few challenges exist for comparison, which we explain
here. The first is a difference in choice of convolutional
feature extractor. For identical decoder architectures, us-
ing more recent architectures such as GoogLeNet or Ox-

2We verified that our BLEU evaluation code matches the au-
thors of Vinyals et al. (2014), Karpathy & Li (2014) and Kiros
et al. (2014b). For fairness, we only compare against results for
which we have verified that our BLEU evaluation code is the
same. With the upcoming release of the COCO evaluation server,
we will include comparison results with all other recent image
captioning models.



The Good 
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And the Bad 
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Attention through time for video 
caption generation 

•  (Yao	
  et	
  al	
  arXiv	
  1502.08029,	
  2015)	
  Video	
  Descrip/on	
  Genera/on	
  
Incorpora/ng	
  Spa/o-­‐Temporal	
  Features	
  and	
  a	
  SoL-­‐ANen/on	
  
Mechanism	
  

•  Aken@on	
  can	
  be	
  focused	
  
	
  	
  	
  	
  	
  temporally,	
  i.e.,	
  selec@ng	
  
	
  	
  	
  	
  	
  input	
  frames	
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Attention through time for video 
caption generation (Yao et al 2015) 

•  Aken@on	
  is	
  focused	
  at	
  
appropriate	
  frames	
  
depending	
  on	
  which	
  
word	
  is	
  generated.	
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Attention through time for video 
caption generation (Yao et al 2015) 
•  Soi-­‐aken@on	
  worked	
  best	
  in	
  this	
  sepng	
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Video Description Generation Incorporating Spatio-Temporal Features and a Soft-Attention Mechanism

Model Feature Bleu Meteor Perplexity
1 2 3 4 mb

non-attention GNet 77.3 60.7 49.3 39.1 38.6 28.68 33.09
GNet+3DConvnon-att 76.1 60.2 49.2 39.0 38.7 27.65 33.42

soft-attention GNet 79.1 63.2 51.2 40.6 40.3 29.00 27.89
GNet+3DConvatt 80.0 64.7 52.6 42.2 41.9 29.60 27.55

(Thomason et al., 2014) 13.68 23.9

(Venugopalan et al., 2014)
No Pretraining 31.19 26.87
Pretraining 33.29 29.07

Table 1. Attention and 3D-Conv performances evaluation on YouTube2Text. Blue 1-4, multiBlue (mb), Meteor and perplexity metrics
are reported.

Figure 3. A visualization of where the soft-attentional model “looks at” in a video, while generating the captions (captions included on
the left). Each word is mapped into a vector of ↵ in Equ. (6). Only bars in the same row are comparable, and their height reflects the
magnitude of ↵. The model is able to focus its attention on different frames of the video when generating different words in the caption.
Best viewed with zooming-in on pdf.

Model Feature Bleu Meteor Perplexity
1 2 3 4 mb

non-attention GNet 32.0 9.2 3.4 1.2 0.3 4.43 88.28
GNet+3DConvnon-att 33.6 10.4 4.3 1.8 0.7 5.73 84.41

soft-attention GNet 31.0 7.7 3.0 1.2 0.3 4.05 66.63
GNet+3DConvatt 28.2 8.2 3.1 1.3 0.7 5.6 65.44

Table 2. Attention and 3D-Conv performances evaluation on DVS. Blue 1-4, multiBlue (mb), Meteor and perplexity metrics are reported.

have encountered in this dataset is that its captions cover a
much wider domain, rending this task challenging for both
non-attention and attention models. According to Table 2,
by comparing on perplexity, the attention models improve
consistently upon non-attention models. Given the same
type of model, using GNet+3DConv. features also steadily

improves upon using GNet features alone. In fact, using
attention models offers about 20 improvement on perplex-
ity upon non-attention models. With the same model type,
using the combined features also results better Bleu and
Meteor, while the effect on Bleu and Meteor score across
model types is less obvious.

Generated	
  
cap@ons	
  



Attention Mechanisms for Memory 
Access 

•  Neural	
  Turing	
  Machines	
  (Graves	
  et	
  al	
  2014)	
  
•  and	
  Memory	
  Networks	
  (Weston	
  et	
  al	
  2014)	
  
•  Use	
  a	
  form	
  of	
  aken@on	
  mechanism	
  to	
  

control	
  the	
  read	
  and	
  write	
  access	
  into	
  a	
  
memory	
  

•  The	
  aken@on	
  mechanism	
  outputs	
  a	
  soimax	
  
over	
  memory	
  loca@ons	
  

•  For	
  efficiency,	
  the	
  soimax	
  should	
  be	
  sparse	
  
(mostly	
  0’s),	
  e.g.	
  maybe	
  using	
  a	
  hash-­‐table	
  
formula@on.	
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Sparse Access Memory for Long-Term 
Dependencies 
•  Whereas	
  LSTM	
  memories	
  always	
  decay	
  exponen@ally	
  (even	
  if	
  

slowly),	
  a	
  mental	
  state	
  stored	
  in	
  an	
  external	
  memory	
  can	
  stay	
  
for	
  arbitrarily	
  long	
  dura@ons,	
  un@l	
  evoked	
  for	
  read	
  or	
  write.	
  

•  Need	
  to	
  replace	
  the	
  soi	
  gater	
  or	
  soimax	
  aken@on	
  by	
  hard	
  one	
  
that	
  is	
  0	
  most	
  of	
  the	
  @me,	
  and	
  yet	
  for	
  which	
  training	
  works	
  
(again,	
  may	
  use	
  noisy	
  decisions	
  and/or	
  REINFORCE).	
  

•  Different	
  «	
  threads	
  »	
  can	
  run	
  in	
  parallel	
  if	
  we	
  view	
  the	
  memory	
  
as	
  an	
  associa@ve	
  one.	
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Conclusions 

•  Aken@on	
  mechanisms	
  allow	
  the	
  learner	
  to	
  make	
  a	
  selec@on,	
  
soi	
  or	
  hard	
  

•  They	
  have	
  been	
  extremely	
  successful	
  for	
  machine	
  transla@on	
  
and	
  cap@on	
  genera@on	
  

•  They	
  could	
  be	
  interes@ng	
  for	
  speech	
  recogni@on,	
  especially	
  if	
  we	
  
used	
  them	
  to	
  capture	
  mul@ple	
  @me	
  scales	
  

•  They	
  could	
  be	
  used	
  to	
  help	
  deal	
  with	
  long-­‐term	
  dependencies,	
  
allowing	
  some	
  states	
  to	
  last	
  for	
  arbitrarily	
  long	
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