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Applying an attention mechanism to 
 
- Translation 
 
- Speech  
 
- Images 
 
- Video 
 
- Memory 
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End-to-End Machine Translation 

•  Classical	  Machine	  Transla@on:	  several	  models	  separately	  trained	  
by	  max.	  likelihood,	  brought	  together	  with	  logis@c	  regression	  on	  
top,	  based	  on	  n-‐grams	  

•  Neural	  language	  models	  already	  shown	  to	  outperform	  n-‐gram	  
models	  in	  terms	  of	  generaliza@on	  power	  

•  Why	  not	  train	  a	  neural	  transla@on	  model	  end-‐to-‐end	  to	  es@mate	  
P(target	  sentence	  |	  source	  sentence)?	  	  
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2014: The Year of Neural Machine 
Translation Breakthrough 

•  (Devlin	  et	  al,	  ACL’2014)	  
•  (Cho	  et	  al	  EMNLP’2014)	  
•  (Bahdanau,	  Cho	  &	  Bengio,	  arXiv	  sept.	  2014)	  
•  (Jean,	  Cho,	  Memisevic	  &	  Bengio,	  arXiv	  dec.	  2014)	  
•  (Sutskever	  et	  al	  NIPS’2014)	  

Earlier	  work:	  (Kalchbrenner	  &	  Blunsom	  et	  al	  2013)	  
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Encoder-Decoder Framework 
•  Intermediate	  representa@on	  of	  meaning	  	  

=	  ‘universal	  representa@on’	  
•  Encoder:	  from	  word	  sequence	  to	  sentence	  representa@on	  
•  Decoder:	  from	  representa@on	  to	  word	  sequence	  distribu@on	  
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Encoder & Decoder RNN 
•  Need	  to	  use	  gated	  RNN	  such	  as	  LSTM	  or	  GRU	  
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Bidirectional RNN for Input Side 

•  Following	  Alex	  Graves’	  work	  on	  handwri@ng	  
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Attention Mechanism for Deep Learning 

•  Consider	  an	  input	  (or	  intermediate)	  sequence	  or	  image	  
•  Consider	  an	  upper	  level	  representa@on,	  which	  can	  choose	  

«	  where	  to	  look	  »,	  by	  assigning	  a	  weight	  or	  probability	  to	  each	  
input	  posi@on,	  as	  produced	  by	  an	  MLP,	  applied	  at	  each	  posi@on	  
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Lower-‐level	  

Higher-‐level	  
Soimax	  over	  lower	  	  
loca@ons	  condi@oned	  
on	  context	  at	  lower	  and	  
higher	  loca@ons	  	  



Attention: Many Recent Papers 

•  (Xu	  et	  al	  2015,	  cap@on	  genera@on,	  U.	  Montreal	  +	  U.	  Toronto)	  
•  (Ba	  et	  al	  2014,	  Mnih	  et	  al	  2014,	  visual	  aken@on,	  Google	  DeepMind)	  
•  (Chorowski	  et	  al	  2014,	  speech	  recogni@on,	  U.	  Montreal)	  
•  (Bahdanau	  et	  al	  2014,	  machine	  transla@on,	  U.	  Montreal)	  
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And Older Papers 

•  (Larochelle	  &	  Hinton	  2010,	  MNIST,	  U.	  Toronto)	  
•  (Graves	  2013,	  handwri@ng	  genera@on)	  
•  (Denil	  et	  al	  2014,	  visual	  tracking)	  
•  (Tang	  et	  al	  2014,	  genera@ve	  models	  of	  images)	  
	  



Soft-Attention vs  
Stochastic Hard-Attention 

•  With	  soi-‐aken@on:	  input	  fed	  to	  higher	  level	  at	  loca@on	  i	  is	  a	  
soimax-‐weighted	  sum	  of	  states	  at	  loca@ons	  j	  at	  lower	  level	  
•  Train	  by	  back-‐prop	  
•  Fast	  training	  

•  With	  stochas@c	  hard-‐aken@on:	  sample	  an	  input	  loca@on	  
according	  to	  the	  soimax	  output	  
•  Get	  a	  gradient	  on	  the	  decisions	  via	  REINFORCE	  -‐	  baseline	  
•  Noisy	  gradient,	  slower	  training	  but	  works	  
•  Symmetry	  breaking	  

10	  



Attention-Based Neural Machine 
Translation 

•  (Bahdanau,	  Cho	  &	  Bengio,	  arXiv	  sept.	  2014)	  
•  (Jean,	  Cho,	  Memisevic	  &	  Bengio,	  arXiv	  dec.	  2014)	  
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Predicted 
Alignments 
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(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵

ij

of the annotation of the j-th source word and the i-th
target word (see Eq. (5)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

The encoder and decoder of the RNNenc have 1000 hidden units each.7 The encoder of the
RNNsearch consists of forward and backward recurrent neural networks (RNN) each having 1000
hidden units. Its decoder has 1000 hidden units. In both cases, we use a multilayer network with a
single maxout (Goodfellow et al., 2013) hidden layer to compute the conditional probability of each
target word (Pascanu et al., 2014).

We use a stochastic gradient descent (SGD) algorithm together with Adadelta (Zeiler, 2012) to train
each model. Each SGD updated direction is computed using a minibatch of 80 sentences. We trained
each model approximately 5 days.

7In this paper, by a ’hidden unit’, we always mean the gated hidden unit (see Sec. 3.3.1).
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En-Fr & En-De Alignments 
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Improvements over Pure AE Model 

•  RNNenc:	  encode	  whole	  sentence	  
•  RNNsearch:	  predict	  alignment	  
•  BLEU	  score	  on	  full	  test	  set	  (including	  UNK)	  
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Figure 2: The BLEU scores
of the generated translations
on the test set with respect
to the lengths of the sen-
tences. The results are on
the full test set which in-
cludes sentences having un-
known words to the models.

3.3.2 Alignment Model

The alignment model should be designed considering that the model needs to be evaluated T

x

⇥
T

y

times for each sentence pair of lengths T

x

and T

y

. In order to avoid the potential issue with
computation, we use a single-layer multilayer perceptron such that

a(s

i�1, hj

) = V

a

tanh (W

a

s

i�1 + U

a

h

j

) ,

where W

a

2 Rn,n

, U

a

2 Rn,2n and V

a

2 Rn are the weight matrices. Since U

a

h

j

does not depend
on i, we can pre-compute it in advance to minimize the computational cost. A similar trick was
recently used by Devlin et al. (2014).

4 Experiment Settings

We evaluate the proposed approach on the task of English-to-French translation. We use the bilin-
gual, parallel corpora provided by ACL WMT ’14.4 As a comparison, we also report the perfor-
mance of an RNN Encoder–Decoder which was proposed recently by Cho et al. (2014a). We use
the same training procedures for the both models on the same dataset.

4.1 Dataset

WMT ’14 provide the following English-French parallel corpora: Europarl (61M words), news
commentary (5.5M), UN (421M) and two crawled corpora of 90M and 780M words respectively,
totaling 850M words. Following the procedure described in (Cho et al., 2014a), we reduce the size of
the combined corpus to have 348M words using the data selection method by Axelrod et al. (2011).5
We do not use any monolingual data other than the mentioned parallel corpora. We concatenate
news-test-2012 and news-test-2013 to make a development set, and evaluate the models on the test
set (news-test-2014) from WMT ’14 which consists of 3003 sentences not present in the training
data.

After a usual tokenization6 , we use a shortlist of 30,000 most frequent words in each language to
train our models. Any word not included in the shortlist is mapped to a special token ([UNK]). We
do not apply any other special preprocessing, such as lowercasing or stemming, to the data.

4.2 Models

We train two types of models. The first one is an RNN Encoder–Decoder (RNNenc, Cho et al.,
2014a), and the other is the proposed model, to which we refer as RNNsearch. We train each
model twice with the sentences of length up to 30 words (RNNenc-30, RNNsearch-30) and with the
sentences of length up to 50 word (RNNenc-50, RNNsearch-50).

4
http://www.statmt.org/wmt14/translation-task.html

5Available online at http://www-lium.univ-lemans.fr/
˜

schwenk/cslm_joint_paper/.
6We used the tokenization script from the open-source machine translation package, Moses.
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Importance Sampling for Fast 
Training of Neural Language Models 

•  IS:	  

•  During	  training	  of	  neural	  language	  model,	  the	  LL	  gradient	  is	  

•  where	  
•  and	  the	  second	  term	  is	  an	  expecta@on	  that	  can	  be	  approximated	  

by	  normalized	  importance	  sampling	  	  

•  with	  proposal	  distribu@on	  Q	  to	  sample	  nega/ve	  examples	  V’	  

15	  

(Bengio	  &	  Senecal	  2008)	  

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description
In this paper, we propose a model-specific approach
that allows us to train a neural machine translation
model with a very large target vocabulary. With the
proposed approach, the computational complexity
of training becomes constant with respect to the size
of the target vocabulary. Furthermore, the proposed
approach allows us to efficiently use a fast comput-
ing device with limited memory, such as a GPU,
to train a neural machine translation model with a
much larger target vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complexity of
computing the normalization constant, we propose
here to use only a small subset V 0 of the target vo-
cabulary at each update. The proposed approach is
based on the earlier work of (Bengio and Sénécal,
2008).

Let us consider the gradient of the log-probability
of the output in Eq. (6). The gradient is composed
of a positive and negative part:

r log p(yt | y<t, x) (8)

=rE(yt)�
X

k:yk2V
p(yk | y<t, x)rE(yk),

where we define the energy E as

E(yj) = w>
j � (yj�1, zj , cj) + bj .

The second, or negative, term of the gradient is in
essence the expected gradient of the energy:

EP [rE(y)] , (9)

where P denotes p(y | y<t, x).
The main idea of the proposed approach is to ap-

proximate this expectation, or the negative term of
the gradient, by importance sampling with a small
number of samples. Given a predefined proposal
distribution Q and a set V 0 of samples from Q, we
approximate the expectation in Eq. (9) with

EP [rE(y)] ⇡
X

k:yk2V 0

!k
P

k0:yk02V 0 !k0
rE(yk),

(10)

where

!k = exp {E(yk)� logQ(yk)} . (11)

This approach allows us to compute the normal-
ization constant during training using only a small
subset of the target vocabulary, resulting in much
lower computational complexity for each parame-
ter update. Intuitively, at each parameter update, we
update only the vectors associated with the correct
word wt and with the sampled words in V

0. Once
training is over, we can use the full target vocabu-
lary to compute the output probability of each target
word.

Although the proposed approach naturally ad-
dresses the computational complexity, using this ap-
proach naively does not guarantee that the number
of parameters being updated for each sentence pair,
which includes multiple target words, is bounded
nor can be controlled. This becomes problematic
when training is done, for instance, on a GPU with
limited memory.

In practice, hence, we partition the training corpus
and define a subset V 0 of the target vocabulary for
each partition prior to training. Before training be-
gins, we sequentially examine each target sentence
in the training corpus and accumulate unique tar-
get words until the number of unique target words
reaches the predefined threshold ⌧ . The accumu-
lated vocabulary will be used for this partition of the
corpus during training. We repeat this until the end
of the training set is reached. Let us refer to the sub-
set of target words used for the i-th partition by V

0
i .

This may be understood as having a separate pro-
posal distribution Qi for each partition of the train-
ing corpus. The distribution Qi assigns equal prob-
ability mass to all the target words included in the
subset V 0

i , and zero probability mass to all the other
words, i.e.,

Qi(yk) =

8

<

:

1
|V 0

i |
if yt 2 V

0
i

0 otherwise.

This choice of proposal distribution cancels out the
correction term � logQ(yk) from the importance
weight in Eqs. (10)–(11), which makes the proposed
approach equivalent to approximating the exact out-
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get words until the number of unique target words
reaches the predefined threshold ⌧ . The accumu-
lated vocabulary will be used for this partition of the
corpus during training. We repeat this until the end
of the training set is reached. Let us refer to the sub-
set of target words used for the i-th partition by V

0
i .

This may be understood as having a separate pro-
posal distribution Qi for each partition of the train-
ing corpus. The distribution Qi assigns equal prob-
ability mass to all the target words included in the
subset V 0

i , and zero probability mass to all the other
words, i.e.,

Qi(yk) =

8

<

:

1
|V 0

i |
if yt 2 V

0
i

0 otherwise.

This choice of proposal distribution cancels out the
correction term � logQ(yk) from the importance
weight in Eqs. (10)–(11), which makes the proposed
approach equivalent to approximating the exact out-

Ep[f(x)] =

Z
p(x)f(x)dx =

Z
q(x)

p(x)

q(x)
f(x)dx = Eq[

p(x)

q(x)
f(x)]



Fast GPU Training with Large 
Vocabulary using Minibatch Importance 
Sampling 
•  (Bengio	  &	  Senecal	  2008)	  not	  adapted	  to	  the	  current	  GPU	  reality	  

•  (Jean	  et	  al,	  arXiv	  2015)	  uses	  the	  following	  scheme:	  
•  Proposal	  Q	  for	  a	  par@cular	  word	  yt	  in	  a	  par@cular	  minibatch	  is	  
uniform	  among	  the	  words	  present	  in	  the	  minibatch	  	  

•  Just	  op@mize	  wrt	  following	  rela@ve	  probability	  inside	  the	  
minibatch,	  normalizing	  only	  over	  the	  words	  V’	  in	  minibatch:	  
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(Jean	  et	  al,	  arXiv	  2015)	  

put probability in Eq. (6) with

p(yt | y<t, x)

=

exp

�

w>
t � (yt�1, zt, ct) + bt

 

P

k:yk2V 0 exp
�

w>
k � (yt�1, zt, ct) + bk

 

.

It should be noted that this choice of Q makes the
estimator biased.

3.1.1 Informal Discussion on Consequence
The parametrization of the output probability in

Eq. (6) can be understood as arranging the vectors
associated with the target words such that the dot
product between the most likely, or correct, target
word’s vector and the current hidden state is maxi-
mized. The exponentiation followed by normaliza-
tion is simply a process in which the dot products
are converted into proper probabilities.

As learning continues, therefore, the vectors of
all the likely target words tend to align with each
other but not with the others. This is achieved ex-
actly by moving the vector of the correct word in
the direction of � (yt�1, zt, ct), while pushing all the
other vectors away, which happens when the gradi-
ent of the logarithm of the exact output probability
in Eq. (6) is maximized. Our approximate approach,
instead, moves the word vectors of the correct words
and of only a subset of sampled target words (those
included in V

0).

3.2 Decoding
Once the model is trained using the proposed ap-
proximation, we can use the full target vocabulary
when decoding a translation given a new source sen-
tence. Although this is advantageous as it allows the
trained model to utilize the whole vocabulary when
generating a translation, doing so may be too com-
putationally expensive, e.g., for real-time applica-
tions.

Since training puts the target word vectors in the
space so that they align well with the hidden state of
the decoder only when they are likely to be a correct
word, we can use only a subset of candidate target
words during decoding. This is similar to what we
do during training, except that at test time, we do not
have access to a set of correct target words.

The most naı̈ve way to select a subset of candi-
date target words is to take only the top-K most fre-
quent target words, where K can be adjusted to meet

the computational requirement. This, however, ef-
fectively cancels out the whole purpose of training a
model with a very large target vocabulary. Instead,
we can use an existing word alignment model to
align the source and target words in the training cor-
pus and build a dictionary. With the dictionary, for
each source sentence, we construct a target word set
consisting of the K-most frequent words (according
to the estimated unigram probability) and, using the
dictionary, at most K 0 likely target words for each
source word. K and K

0 may be chosen either to
meet the computational requirement or to maximize
the translation performance on the development set.
We call a subset constructed in either of these ways
a candidate list.

3.3 Source Words for Unknown Words
In the experiments, we evaluate the proposed ap-
proach with the neural machine translation model
called RNNsearch (Bahdanau et al., 2014) (see
Sec. 2.1.1). In this model, as a part of decoding pro-
cess, we obtain the alignments between the target
words and source locations via the alignment model
in Eq. (5).

We can use this feature to infer the source word to
which each target word was most aligned (indicated
by the largest ↵t in Eq. (5)). This is especially useful
when the model generated an [UNK] token. Once
a translation is generated given a source sentence,
each [UNK] may be replaced using a translation-
specific technique based on the aligned source word.
For instance, in the experiment, we try replacing
each [UNK] token with the aligned source word or
its most likely translation determined by another
word alignment model. Other techniques such as
transliteration may also be used to further improve
the performance (Koehn, 2010).

4 Experiments

We evaluate the proposed approach in
English!French and English!German trans-
lation tasks. We trained the neural machine
translation models using only the bilingual, parallel
corpora made available as a part of WMT ’14. For
each pair, the datasets we used are:

• English!French2:
2The preprocessed data can be found and downloaded from



Out-of-Vocabulary Words 

•  During	  training	  the	  model	  is	  asked	  to	  generate	  UNK	  for	  OOV	  
words	  

•  At	  test	  @me,	  when	  UNK	  is	  generated,	  we	  use	  a	  forced	  alignment	  
to	  find	  the	  corresponding	  source	  word(s)	  and	  output	  them	  

•  This	  is	  par@cularly	  important	  for	  proper	  nouns,	  numerical	  
quan@@es,	  etc.	  and	  boosted	  our	  performance	  significantly	  (1.5	  
BLEU	  points)	  

17	  



18	  



Translating from Other Sources? 
 
- Speech 
 
- Images 
 
- Video 
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A challenge 
• Raw speech is sampled at 8kHz – 16kHz  
⇒ at minimum 8000 numbers every second 
     (44000 samples of 2 values for stereo music) 

• On TIMIT: 
– 2.5 words per second  
– 12.5 phones per second 

• The output is much shorter! 
 
 

• How to align?  
• How to handle different duration of output tokens? 
 

Speech 

Words Typically we go through multiple 
sequence sohrtening steps 

 Speech signal 

Frames (100 per second, 
c.a. 8 per phone) 

Sub-phonemic 
units (3 per phone) 

Phones (5 
per word) 

Words 

Multiple Time Scales in Speech 

The	  higher-‐level	  
sequence	  in	  the	  
aken@on	  architecture	  
can	  be	  shorter	  than	  
the	  lower-‐level	  one	  

20	  



Acoustic-to-Phones Attention Alignment 
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Input selections made by the RNN 

 



How to choose the context? 
At each step of the generating network (that is 
for each output element) compute a context 
(weighted sum over frames): 

𝑐 =𝛼௧𝑓௧

்

௧ୀଵ

 

𝛼௧ ∝ 𝑑 𝑡 − 𝔼ఈషభ 𝑡 exp 𝑚 𝑠ିଵ, ℎ௧  
 
 
Both prior and matching function 𝑚 are learned 
 

Prior: 
relative to last 

selection 

Match between 
previous state 
and each input 

The prior is learned 

 

Left-to-Right Soft Constraint 

•  Whereas	  with	  transla@on	  the	  word	  order	  can	  change	  a	  lot,	  the	  
acous@càphone@c	  mapping	  is	  mostly	  lei-‐to-‐right.	  

•  The	  strength	  of	  that	  prior	  can	  be	  learned	  by	  structuring	  the	  
aken@on	  loca@on	  probability	  distribu@on:	  
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End-to-end Continuous Speech 
Recognition using Attention-based 
Recurrent NN: First Results 

(Chorowski,	  Bahdanau,	  Cho	  &	  Bengio,	  arXiv	  Dec.	  2014)	  	  
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•  Higher	  levels	  may	  represent	  slower	  @me	  scale,	  asynchronously	  
and	  adap@vely	  reading	  from	  lower	  levels	  (automa@c	  soi	  
segmenta@on)	  

•  Challenge:	  during	  training,	  the	  
	  	  	  	  	  length	  of	  inner	  sequences	  is	  not	  known	  

•  predict	  stopping	  prob.	  at	  
	  	  	  	  each	  @me	  step	  
•  weigh	  upper	  akn	  weights	  in	  	  
	  	  	  	  propor@on	  to	  these	  prob.	  

Ongoing Work: Multi-level Attention 
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Image-to-Text: Caption Generation 
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Paying 
Attention to 
Selected Parts 
of the Image 
While Uttering 
Words 
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Speaking about what one sees 
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The bus by the road with a clear blue sky

1. Group the Nouns
2. Order the Nouns
3. Filter Incorrect Attributes
4. Group Plurals
5. Gather Local Sub-(parse) trees
6. Create Full Trees
7. Get Final Tree, Clear Mark-Up
8. Prenominal Modifier Ordering

{ {



A woman in a bikini holding a surfboard.

And in 
2015… 
End-to-
End 
Neural 
Net 
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Show, Attend and Tell: Neural 
Image Caption Generation with 
Visual Attention 

Results	  from	  (Xu	  et	  al,	  arXiv	  Jan.	  2015)	  
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Neural Image Caption Generation with Visual Attention

Table 1. BLEU-1,2,3,4/METEOR metrics compared to other methods, † indicates a different split, (—) indicates an unknown metric, �
indicates the authors kindly provided missing metrics by personal communication, ⌃ indicates an ensemble, a indicates using AlexNet

BLEU
Dataset Model B-1 B-2 B-3 B-4 METEOR

Flickr8k

Google NIC(Vinyals et al., 2014)†⌃
Log Bilinear (Kiros et al., 2014a)�

Soft-Attention
Hard-Attention

63
65.6
67
67

41
42.4
44.8
45.7

27
27.7
29.9
31.4

—
17.7
19.5
21.3

—
17.31
18.93
20.30

Flickr30k

Google NIC†�⌃

Log Bilinear
Soft-Attention
Hard-Attention

66.3
60.0
66.7
66.9

42.3
38

43.4
43.9

27.7
25.4
28.8
29.6

18.3
17.1
19.1
19.9

—
16.88
18.49
18.46

COCO

CMU/MS Research (Chen & Zitnick, 2014)a
MS Research (Fang et al., 2014)†a

BRNN (Karpathy & Li, 2014)�
Google NIC†�⌃

Log Bilinear�
Soft-Attention
Hard-Attention

—
—

64.2
66.6
70.8
70.7
71.8

—
—

45.1
46.1
48.9
49.2
50.4

—
—

30.4
32.9
34.4
34.4
35.7

—
—

20.3
24.6
24.3
24.3
25.0

20.41
20.71

—
—

20.03
23.90
23.04

randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
(Bergstra et al., 2010) publicly available upon publication
to encourage future research in this area.

5. Experiments
We describe our experimental methodology and quantita-
tive results which validate the effectiveness of our model
for caption generation.

1https://www.whetlab.com/

5.1. Data

We report results on the popular Flickr8k and Flickr30k
dataset which has 8,000 and 30,000 images respectively
as well as the more challenging Microsoft COCO dataset
which has 82,783 images. The Flickr8k/Flickr30k dataset
both come with 5 reference sentences per image, but for the
MS COCO dataset, some of the images have references in
excess of 5 for consistency across our datasets. We applied
only basic tokenization to MS COCO so that it is consistent
with the tokenization present in Flickr8k and Flickr30k.

Results for our attention-based architecture are reported in
Table 4.2.1. We report results with the frequently used
BLEU metric2 which is the standard in the caption gen-
eration literature. We report BLEU from 1 to 4 with-
out a brevity penalty. There has been, however, criticism
of BLEU, so in addition we report another common met-
ric METEOR (Denkowski & Lavie, 2014), and compare
whenever possible.

5.2. Evaluation Procedures

A few challenges exist for comparison, which we explain
here. The first is a difference in choice of convolutional
feature extractor. For identical decoder architectures, us-
ing more recent architectures such as GoogLeNet or Ox-

2We verified that our BLEU evaluation code matches the au-
thors of Vinyals et al. (2014), Karpathy & Li (2014) and Kiros
et al. (2014b). For fairness, we only compare against results for
which we have verified that our BLEU evaluation code is the
same. With the upcoming release of the COCO evaluation server,
we will include comparison results with all other recent image
captioning models.



The Good 
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And the Bad 
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Attention through time for video 
caption generation 

•  (Yao	  et	  al	  arXiv	  1502.08029,	  2015)	  Video	  Descrip/on	  Genera/on	  
Incorpora/ng	  Spa/o-‐Temporal	  Features	  and	  a	  SoL-‐ANen/on	  
Mechanism	  

•  Aken@on	  can	  be	  focused	  
	  	  	  	  	  temporally,	  i.e.,	  selec@ng	  
	  	  	  	  	  input	  frames	  
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Attention through time for video 
caption generation (Yao et al 2015) 

•  Aken@on	  is	  focused	  at	  
appropriate	  frames	  
depending	  on	  which	  
word	  is	  generated.	  
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Attention through time for video 
caption generation (Yao et al 2015) 
•  Soi-‐aken@on	  worked	  best	  in	  this	  sepng	  
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Video Description Generation Incorporating Spatio-Temporal Features and a Soft-Attention Mechanism

Model Feature Bleu Meteor Perplexity
1 2 3 4 mb

non-attention GNet 77.3 60.7 49.3 39.1 38.6 28.68 33.09
GNet+3DConvnon-att 76.1 60.2 49.2 39.0 38.7 27.65 33.42

soft-attention GNet 79.1 63.2 51.2 40.6 40.3 29.00 27.89
GNet+3DConvatt 80.0 64.7 52.6 42.2 41.9 29.60 27.55

(Thomason et al., 2014) 13.68 23.9

(Venugopalan et al., 2014)
No Pretraining 31.19 26.87
Pretraining 33.29 29.07

Table 1. Attention and 3D-Conv performances evaluation on YouTube2Text. Blue 1-4, multiBlue (mb), Meteor and perplexity metrics
are reported.

Figure 3. A visualization of where the soft-attentional model “looks at” in a video, while generating the captions (captions included on
the left). Each word is mapped into a vector of ↵ in Equ. (6). Only bars in the same row are comparable, and their height reflects the
magnitude of ↵. The model is able to focus its attention on different frames of the video when generating different words in the caption.
Best viewed with zooming-in on pdf.

Model Feature Bleu Meteor Perplexity
1 2 3 4 mb

non-attention GNet 32.0 9.2 3.4 1.2 0.3 4.43 88.28
GNet+3DConvnon-att 33.6 10.4 4.3 1.8 0.7 5.73 84.41

soft-attention GNet 31.0 7.7 3.0 1.2 0.3 4.05 66.63
GNet+3DConvatt 28.2 8.2 3.1 1.3 0.7 5.6 65.44

Table 2. Attention and 3D-Conv performances evaluation on DVS. Blue 1-4, multiBlue (mb), Meteor and perplexity metrics are reported.

have encountered in this dataset is that its captions cover a
much wider domain, rending this task challenging for both
non-attention and attention models. According to Table 2,
by comparing on perplexity, the attention models improve
consistently upon non-attention models. Given the same
type of model, using GNet+3DConv. features also steadily

improves upon using GNet features alone. In fact, using
attention models offers about 20 improvement on perplex-
ity upon non-attention models. With the same model type,
using the combined features also results better Bleu and
Meteor, while the effect on Bleu and Meteor score across
model types is less obvious.

Generated	  
cap@ons	  



Attention Mechanisms for Memory 
Access 

•  Neural	  Turing	  Machines	  (Graves	  et	  al	  2014)	  
•  and	  Memory	  Networks	  (Weston	  et	  al	  2014)	  
•  Use	  a	  form	  of	  aken@on	  mechanism	  to	  

control	  the	  read	  and	  write	  access	  into	  a	  
memory	  

•  The	  aken@on	  mechanism	  outputs	  a	  soimax	  
over	  memory	  loca@ons	  

•  For	  efficiency,	  the	  soimax	  should	  be	  sparse	  
(mostly	  0’s),	  e.g.	  maybe	  using	  a	  hash-‐table	  
formula@on.	  
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Sparse Access Memory for Long-Term 
Dependencies 
•  Whereas	  LSTM	  memories	  always	  decay	  exponen@ally	  (even	  if	  

slowly),	  a	  mental	  state	  stored	  in	  an	  external	  memory	  can	  stay	  
for	  arbitrarily	  long	  dura@ons,	  un@l	  evoked	  for	  read	  or	  write.	  

•  Need	  to	  replace	  the	  soi	  gater	  or	  soimax	  aken@on	  by	  hard	  one	  
that	  is	  0	  most	  of	  the	  @me,	  and	  yet	  for	  which	  training	  works	  
(again,	  may	  use	  noisy	  decisions	  and/or	  REINFORCE).	  

•  Different	  «	  threads	  »	  can	  run	  in	  parallel	  if	  we	  view	  the	  memory	  
as	  an	  associa@ve	  one.	  
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Conclusions 

•  Aken@on	  mechanisms	  allow	  the	  learner	  to	  make	  a	  selec@on,	  
soi	  or	  hard	  

•  They	  have	  been	  extremely	  successful	  for	  machine	  transla@on	  
and	  cap@on	  genera@on	  

•  They	  could	  be	  interes@ng	  for	  speech	  recogni@on,	  especially	  if	  we	  
used	  them	  to	  capture	  mul@ple	  @me	  scales	  

•  They	  could	  be	  used	  to	  help	  deal	  with	  long-‐term	  dependencies,	  
allowing	  some	  states	  to	  last	  for	  arbitrarily	  long	  
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