
Deep	
 Learning	
 with	
 A/en0on	

Mechanisms	

	
 	

	

	

Yoshua	
 Bengio	
 	

July	
 20th,	
 2015	

Keynote	
 speech	
 at	
 Russian	
 Deep	
 Learning	
 Hackaton	

Applying an attention mechanism to

- Translation

- Speech

- Images

- Video

- Memory

2	

End-to-End Machine Translation

•  Classical	
 Machine	
 Transla@on:	
 several	
 models	
 separately	
 trained	

by	
 max.	
 likelihood,	
 brought	
 together	
 with	
 logis@c	
 regression	
 on	

top,	
 based	
 on	
 n-­‐grams	

•  Neural	
 language	
 models	
 already	
 shown	
 to	
 outperform	
 n-­‐gram	

models	
 in	
 terms	
 of	
 generaliza@on	
 power	

•  Why	
 not	
 train	
 a	
 neural	
 transla@on	
 model	
 end-­‐to-­‐end	
 to	
 es@mate	

P(target	
 sentence	
 |	
 source	
 sentence)?	
 	

3	

2014: The Year of Neural Machine
Translation Breakthrough

•  (Devlin	
 et	
 al,	
 ACL’2014)	

•  (Cho	
 et	
 al	
 EMNLP’2014)	

•  (Bahdanau,	
 Cho	
 &	
 Bengio,	
 arXiv	
 sept.	
 2014)	

•  (Jean,	
 Cho,	
 Memisevic	
 &	
 Bengio,	
 arXiv	
 dec.	
 2014)	

•  (Sutskever	
 et	
 al	
 NIPS’2014)	

Earlier	
 work:	
 (Kalchbrenner	
 &	
 Blunsom	
 et	
 al	
 2013)	

4	

Encoder-Decoder Framework
•  Intermediate	
 representa@on	
 of	
 meaning	
 	

=	
 ‘universal	
 representa@on’	

•  Encoder:	
 from	
 word	
 sequence	
 to	
 sentence	
 representa@on	

•  Decoder:	
 from	
 representa@on	
 to	
 word	
 sequence	
 distribu@on	

5	

�� �� ��

��� �� ��

�

�	�
�	�

��
�	�

French	

encoder	

English	

decoder	

French	
 sentence	

English	
 sentence	

English	

encoder	

English	

decoder	

English	
 sentence	

English	
 sentence	

Fo
r	
 b

ite
xt
	
 d
at
a	

Fo
r	
 u

ni
lin
gu
al
	
 d
at
a	

Encoder & Decoder RNN
•  Need	
 to	
 use	
 gated	
 RNN	
 such	
 as	
 LSTM	
 or	
 GRU	

6	
 e = (Economic, growth, has, slowed, down, in, recent, years, .)

1-o
f-K

 co
din

g
Co

nti
nu

ou
s-s

pa
ce

W
ord

 R
ep

res
en

tat
ion

si

wi

Re
cu

rre
nt

Sta
te hi

W
ord

 Ss
am

ple

ui

Re
cu

rre
nt

Sta
tez i

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

W
ord

 Pr
ob

ab
ilit

y

Encoder

Decoder

Vanilla	

architecture	

Bidirectional RNN for Input Side

•  Following	
 Alex	
 Graves’	
 work	
 on	
 handwri@ng	

7	

e = (Economic, growth, has, slowed, down, in, recent, years, .)

1-
of

-K
 c

od
in

g
C

on
tin

uo
us

-s
pa

ce
W

or
d

R
ep

re
se

nt
at

io
n

si

wi

B
id

ire
ct

io
na

l
R

ec
ur

re
nt

St
at

e

hi

Attention Mechanism for Deep Learning

•  Consider	
 an	
 input	
 (or	
 intermediate)	
 sequence	
 or	
 image	

•  Consider	
 an	
 upper	
 level	
 representa@on,	
 which	
 can	
 choose	

«	
 where	
 to	
 look	
 »,	
 by	
 assigning	
 a	
 weight	
 or	
 probability	
 to	
 each	

input	
 posi@on,	
 as	
 produced	
 by	
 an	
 MLP,	
 applied	
 at	
 each	
 posi@on	

8	

Lower-­‐level	

Higher-­‐level	

Soimax	
 over	
 lower	
 	

loca@ons	
 condi@oned	

on	
 context	
 at	
 lower	
 and	

higher	
 loca@ons	
 	

Attention: Many Recent Papers

•  (Xu	
 et	
 al	
 2015,	
 cap@on	
 genera@on,	
 U.	
 Montreal	
 +	
 U.	
 Toronto)	

•  (Ba	
 et	
 al	
 2014,	
 Mnih	
 et	
 al	
 2014,	
 visual	
 aken@on,	
 Google	
 DeepMind)	

•  (Chorowski	
 et	
 al	
 2014,	
 speech	
 recogni@on,	
 U.	
 Montreal)	

•  (Bahdanau	
 et	
 al	
 2014,	
 machine	
 transla@on,	
 U.	
 Montreal)	

9	

And Older Papers

•  (Larochelle	
 &	
 Hinton	
 2010,	
 MNIST,	
 U.	
 Toronto)	

•  (Graves	
 2013,	
 handwri@ng	
 genera@on)	

•  (Denil	
 et	
 al	
 2014,	
 visual	
 tracking)	

•  (Tang	
 et	
 al	
 2014,	
 genera@ve	
 models	
 of	
 images)	

	

Soft-Attention vs
Stochastic Hard-Attention

•  With	
 soi-­‐aken@on:	
 input	
 fed	
 to	
 higher	
 level	
 at	
 loca@on	
 i	
 is	
 a	

soimax-­‐weighted	
 sum	
 of	
 states	
 at	
 loca@ons	
 j	
 at	
 lower	
 level	

•  Train	
 by	
 back-­‐prop	

•  Fast	
 training	

•  With	
 stochas@c	
 hard-­‐aken@on:	
 sample	
 an	
 input	
 loca@on	

according	
 to	
 the	
 soimax	
 output	

•  Get	
 a	
 gradient	
 on	
 the	
 decisions	
 via	
 REINFORCE	
 -­‐	
 baseline	

•  Noisy	
 gradient,	
 slower	
 training	
 but	
 works	

•  Symmetry	
 breaking	

10	

Attention-Based Neural Machine
Translation

•  (Bahdanau,	
 Cho	
 &	
 Bengio,	
 arXiv	
 sept.	
 2014)	

•  (Jean,	
 Cho,	
 Memisevic	
 &	
 Bengio,	
 arXiv	
 dec.	
 2014)	

11	

A
nn

ot
at

io
n

Ve
ct

or
s

e = (Economic, growth, has, slowed, down, in, recent, years, .)

W
or

d
Ss

am
pl

e

ui

R
ec

ur
re

nt
St

at
e z i

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

+

hj

A
tte

nt
io

n
M

ec
ha

ni
sm

a
Attention
 weightj aj� =1

Related	
 to	
 earlier	
 Graves	
 2013	
 for	
 genera@ng	
 handwri@ng	

Predicted
Alignments

12	

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵

ij

of the annotation of the j-th source word and the i-th
target word (see Eq. (5)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

The encoder and decoder of the RNNenc have 1000 hidden units each.7 The encoder of the
RNNsearch consists of forward and backward recurrent neural networks (RNN) each having 1000
hidden units. Its decoder has 1000 hidden units. In both cases, we use a multilayer network with a
single maxout (Goodfellow et al., 2013) hidden layer to compute the conditional probability of each
target word (Pascanu et al., 2014).

We use a stochastic gradient descent (SGD) algorithm together with Adadelta (Zeiler, 2012) to train
each model. Each SGD updated direction is computed using a minibatch of 80 sentences. We trained
each model approximately 5 days.

7In this paper, by a ’hidden unit’, we always mean the gated hidden unit (see Sec. 3.3.1).

6

En-Fr & En-De Alignments

13	

Improvements over Pure AE Model

•  RNNenc:	
 encode	
 whole	
 sentence	

•  RNNsearch:	
 predict	
 alignment	

•  BLEU	
 score	
 on	
 full	
 test	
 set	
 (including	
 UNK)	

14	

0 10 20 30 40 50 60

Sentence length

0

5

10

15

20

25

30

B
L
E

U
sc

or
e

RNNsearch-50

RNNsearch-30

RNNenc-50

RNNenc-30

Figure 2: The BLEU scores
of the generated translations
on the test set with respect
to the lengths of the sen-
tences. The results are on
the full test set which in-
cludes sentences having un-
known words to the models.

3.3.2 Alignment Model

The alignment model should be designed considering that the model needs to be evaluated T

x

⇥
T

y

times for each sentence pair of lengths T

x

and T

y

. In order to avoid the potential issue with
computation, we use a single-layer multilayer perceptron such that

a(s

i�1, hj

) = V

a

tanh (W

a

s

i�1 + U

a

h

j

) ,

where W

a

2 Rn,n

, U

a

2 Rn,2n and V

a

2 Rn are the weight matrices. Since U

a

h

j

does not depend
on i, we can pre-compute it in advance to minimize the computational cost. A similar trick was
recently used by Devlin et al. (2014).

4 Experiment Settings

We evaluate the proposed approach on the task of English-to-French translation. We use the bilin-
gual, parallel corpora provided by ACL WMT ’14.4 As a comparison, we also report the perfor-
mance of an RNN Encoder–Decoder which was proposed recently by Cho et al. (2014a). We use
the same training procedures for the both models on the same dataset.

4.1 Dataset

WMT ’14 provide the following English-French parallel corpora: Europarl (61M words), news
commentary (5.5M), UN (421M) and two crawled corpora of 90M and 780M words respectively,
totaling 850M words. Following the procedure described in (Cho et al., 2014a), we reduce the size of
the combined corpus to have 348M words using the data selection method by Axelrod et al. (2011).5
We do not use any monolingual data other than the mentioned parallel corpora. We concatenate
news-test-2012 and news-test-2013 to make a development set, and evaluate the models on the test
set (news-test-2014) from WMT ’14 which consists of 3003 sentences not present in the training
data.

After a usual tokenization6 , we use a shortlist of 30,000 most frequent words in each language to
train our models. Any word not included in the shortlist is mapped to a special token ([UNK]). We
do not apply any other special preprocessing, such as lowercasing or stemming, to the data.

4.2 Models

We train two types of models. The first one is an RNN Encoder–Decoder (RNNenc, Cho et al.,
2014a), and the other is the proposed model, to which we refer as RNNsearch. We train each
model twice with the sentences of length up to 30 words (RNNenc-30, RNNsearch-30) and with the
sentences of length up to 50 word (RNNenc-50, RNNsearch-50).

4
http://www.statmt.org/wmt14/translation-task.html

5Available online at http://www-lium.univ-lemans.fr/
˜

schwenk/cslm_joint_paper/.
6We used the tokenization script from the open-source machine translation package, Moses.

5

Importance Sampling for Fast
Training of Neural Language Models

•  IS:	

•  During	
 training	
 of	
 neural	
 language	
 model,	
 the	
 LL	
 gradient	
 is	

•  where	

•  and	
 the	
 second	
 term	
 is	
 an	
 expecta@on	
 that	
 can	
 be	
 approximated	

by	
 normalized	
 importance	
 sampling	
 	

•  with	
 proposal	
 distribu@on	
 Q	
 to	
 sample	
 nega/ve	
 examples	
 V’	

15	

(Bengio	
 &	
 Senecal	
 2008)	

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description
In this paper, we propose a model-specific approach
that allows us to train a neural machine translation
model with a very large target vocabulary. With the
proposed approach, the computational complexity
of training becomes constant with respect to the size
of the target vocabulary. Furthermore, the proposed
approach allows us to efficiently use a fast comput-
ing device with limited memory, such as a GPU,
to train a neural machine translation model with a
much larger target vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complexity of
computing the normalization constant, we propose
here to use only a small subset V 0 of the target vo-
cabulary at each update. The proposed approach is
based on the earlier work of (Bengio and Sénécal,
2008).

Let us consider the gradient of the log-probability
of the output in Eq. (6). The gradient is composed
of a positive and negative part:

r log p(yt | y<t, x) (8)

=rE(yt)�
X

k:yk2V
p(yk | y<t, x)rE(yk),

where we define the energy E as

E(yj) = w>
j � (yj�1, zj , cj) + bj .

The second, or negative, term of the gradient is in
essence the expected gradient of the energy:

EP [rE(y)] , (9)

where P denotes p(y | y<t, x).
The main idea of the proposed approach is to ap-

proximate this expectation, or the negative term of
the gradient, by importance sampling with a small
number of samples. Given a predefined proposal
distribution Q and a set V 0 of samples from Q, we
approximate the expectation in Eq. (9) with

EP [rE(y)] ⇡
X

k:yk2V 0

!k
P

k0:yk02V 0 !k0
rE(yk),

(10)

where

!k = exp {E(yk)� logQ(yk)} . (11)

This approach allows us to compute the normal-
ization constant during training using only a small
subset of the target vocabulary, resulting in much
lower computational complexity for each parame-
ter update. Intuitively, at each parameter update, we
update only the vectors associated with the correct
word wt and with the sampled words in V

0. Once
training is over, we can use the full target vocabu-
lary to compute the output probability of each target
word.

Although the proposed approach naturally ad-
dresses the computational complexity, using this ap-
proach naively does not guarantee that the number
of parameters being updated for each sentence pair,
which includes multiple target words, is bounded
nor can be controlled. This becomes problematic
when training is done, for instance, on a GPU with
limited memory.

In practice, hence, we partition the training corpus
and define a subset V 0 of the target vocabulary for
each partition prior to training. Before training be-
gins, we sequentially examine each target sentence
in the training corpus and accumulate unique tar-
get words until the number of unique target words
reaches the predefined threshold ⌧ . The accumu-
lated vocabulary will be used for this partition of the
corpus during training. We repeat this until the end
of the training set is reached. Let us refer to the sub-
set of target words used for the i-th partition by V

0
i .

This may be understood as having a separate pro-
posal distribution Qi for each partition of the train-
ing corpus. The distribution Qi assigns equal prob-
ability mass to all the target words included in the
subset V 0

i , and zero probability mass to all the other
words, i.e.,

Qi(yk) =

8

<

:

1
|V 0

i |
if yt 2 V

0
i

0 otherwise.

This choice of proposal distribution cancels out the
correction term � logQ(yk) from the importance
weight in Eqs. (10)–(11), which makes the proposed
approach equivalent to approximating the exact out-

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description
In this paper, we propose a model-specific approach
that allows us to train a neural machine translation
model with a very large target vocabulary. With the
proposed approach, the computational complexity
of training becomes constant with respect to the size
of the target vocabulary. Furthermore, the proposed
approach allows us to efficiently use a fast comput-
ing device with limited memory, such as a GPU,
to train a neural machine translation model with a
much larger target vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complexity of
computing the normalization constant, we propose
here to use only a small subset V 0 of the target vo-
cabulary at each update. The proposed approach is
based on the earlier work of (Bengio and Sénécal,
2008).

Let us consider the gradient of the log-probability
of the output in Eq. (6). The gradient is composed
of a positive and negative part:

r log p(yt | y<t, x) (8)

=rE(yt)�
X

k:yk2V
p(yk | y<t, x)rE(yk),

where we define the energy E as

E(yj) = w>
j � (yj�1, zj , cj) + bj .

The second, or negative, term of the gradient is in
essence the expected gradient of the energy:

EP [rE(y)] , (9)

where P denotes p(y | y<t, x).
The main idea of the proposed approach is to ap-

proximate this expectation, or the negative term of
the gradient, by importance sampling with a small
number of samples. Given a predefined proposal
distribution Q and a set V 0 of samples from Q, we
approximate the expectation in Eq. (9) with

EP [rE(y)] ⇡
X

k:yk2V 0

!k
P

k0:yk02V 0 !k0
rE(yk),

(10)

where

!k = exp {E(yk)� logQ(yk)} . (11)

This approach allows us to compute the normal-
ization constant during training using only a small
subset of the target vocabulary, resulting in much
lower computational complexity for each parame-
ter update. Intuitively, at each parameter update, we
update only the vectors associated with the correct
word wt and with the sampled words in V

0. Once
training is over, we can use the full target vocabu-
lary to compute the output probability of each target
word.

Although the proposed approach naturally ad-
dresses the computational complexity, using this ap-
proach naively does not guarantee that the number
of parameters being updated for each sentence pair,
which includes multiple target words, is bounded
nor can be controlled. This becomes problematic
when training is done, for instance, on a GPU with
limited memory.

In practice, hence, we partition the training corpus
and define a subset V 0 of the target vocabulary for
each partition prior to training. Before training be-
gins, we sequentially examine each target sentence
in the training corpus and accumulate unique tar-
get words until the number of unique target words
reaches the predefined threshold ⌧ . The accumu-
lated vocabulary will be used for this partition of the
corpus during training. We repeat this until the end
of the training set is reached. Let us refer to the sub-
set of target words used for the i-th partition by V

0
i .

This may be understood as having a separate pro-
posal distribution Qi for each partition of the train-
ing corpus. The distribution Qi assigns equal prob-
ability mass to all the target words included in the
subset V 0

i , and zero probability mass to all the other
words, i.e.,

Qi(yk) =

8

<

:

1
|V 0

i |
if yt 2 V

0
i

0 otherwise.

This choice of proposal distribution cancels out the
correction term � logQ(yk) from the importance
weight in Eqs. (10)–(11), which makes the proposed
approach equivalent to approximating the exact out-

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description
In this paper, we propose a model-specific approach
that allows us to train a neural machine translation
model with a very large target vocabulary. With the
proposed approach, the computational complexity
of training becomes constant with respect to the size
of the target vocabulary. Furthermore, the proposed
approach allows us to efficiently use a fast comput-
ing device with limited memory, such as a GPU,
to train a neural machine translation model with a
much larger target vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complexity of
computing the normalization constant, we propose
here to use only a small subset V 0 of the target vo-
cabulary at each update. The proposed approach is
based on the earlier work of (Bengio and Sénécal,
2008).

Let us consider the gradient of the log-probability
of the output in Eq. (6). The gradient is composed
of a positive and negative part:

r log p(yt | y<t, x) (8)

=rE(yt)�
X

k:yk2V
p(yk | y<t, x)rE(yk),

where we define the energy E as

E(yj) = w>
j � (yj�1, zj , cj) + bj .

The second, or negative, term of the gradient is in
essence the expected gradient of the energy:

EP [rE(y)] , (9)

where P denotes p(y | y<t, x).
The main idea of the proposed approach is to ap-

proximate this expectation, or the negative term of
the gradient, by importance sampling with a small
number of samples. Given a predefined proposal
distribution Q and a set V 0 of samples from Q, we
approximate the expectation in Eq. (9) with

EP [rE(y)] ⇡
X

k:yk2V 0

!k
P

k0:yk02V 0 !k0
rE(yk),

(10)

where

!k = exp {E(yk)� logQ(yk)} . (11)

This approach allows us to compute the normal-
ization constant during training using only a small
subset of the target vocabulary, resulting in much
lower computational complexity for each parame-
ter update. Intuitively, at each parameter update, we
update only the vectors associated with the correct
word wt and with the sampled words in V

0. Once
training is over, we can use the full target vocabu-
lary to compute the output probability of each target
word.

Although the proposed approach naturally ad-
dresses the computational complexity, using this ap-
proach naively does not guarantee that the number
of parameters being updated for each sentence pair,
which includes multiple target words, is bounded
nor can be controlled. This becomes problematic
when training is done, for instance, on a GPU with
limited memory.

In practice, hence, we partition the training corpus
and define a subset V 0 of the target vocabulary for
each partition prior to training. Before training be-
gins, we sequentially examine each target sentence
in the training corpus and accumulate unique tar-
get words until the number of unique target words
reaches the predefined threshold ⌧ . The accumu-
lated vocabulary will be used for this partition of the
corpus during training. We repeat this until the end
of the training set is reached. Let us refer to the sub-
set of target words used for the i-th partition by V

0
i .

This may be understood as having a separate pro-
posal distribution Qi for each partition of the train-
ing corpus. The distribution Qi assigns equal prob-
ability mass to all the target words included in the
subset V 0

i , and zero probability mass to all the other
words, i.e.,

Qi(yk) =

8

<

:

1
|V 0

i |
if yt 2 V

0
i

0 otherwise.

This choice of proposal distribution cancels out the
correction term � logQ(yk) from the importance
weight in Eqs. (10)–(11), which makes the proposed
approach equivalent to approximating the exact out-

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description
In this paper, we propose a model-specific approach
that allows us to train a neural machine translation
model with a very large target vocabulary. With the
proposed approach, the computational complexity
of training becomes constant with respect to the size
of the target vocabulary. Furthermore, the proposed
approach allows us to efficiently use a fast comput-
ing device with limited memory, such as a GPU,
to train a neural machine translation model with a
much larger target vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complexity of
computing the normalization constant, we propose
here to use only a small subset V 0 of the target vo-
cabulary at each update. The proposed approach is
based on the earlier work of (Bengio and Sénécal,
2008).

Let us consider the gradient of the log-probability
of the output in Eq. (6). The gradient is composed
of a positive and negative part:

r log p(yt | y<t, x) (8)

=rE(yt)�
X

k:yk2V
p(yk | y<t, x)rE(yk),

where we define the energy E as

E(yj) = w>
j � (yj�1, zj , cj) + bj .

The second, or negative, term of the gradient is in
essence the expected gradient of the energy:

EP [rE(y)] , (9)

where P denotes p(y | y<t, x).
The main idea of the proposed approach is to ap-

proximate this expectation, or the negative term of
the gradient, by importance sampling with a small
number of samples. Given a predefined proposal
distribution Q and a set V 0 of samples from Q, we
approximate the expectation in Eq. (9) with

EP [rE(y)] ⇡
X

k:yk2V 0

!k
P

k0:yk02V 0 !k0
rE(yk),

(10)

where

!k = exp {E(yk)� logQ(yk)} . (11)

This approach allows us to compute the normal-
ization constant during training using only a small
subset of the target vocabulary, resulting in much
lower computational complexity for each parame-
ter update. Intuitively, at each parameter update, we
update only the vectors associated with the correct
word wt and with the sampled words in V

0. Once
training is over, we can use the full target vocabu-
lary to compute the output probability of each target
word.

Although the proposed approach naturally ad-
dresses the computational complexity, using this ap-
proach naively does not guarantee that the number
of parameters being updated for each sentence pair,
which includes multiple target words, is bounded
nor can be controlled. This becomes problematic
when training is done, for instance, on a GPU with
limited memory.

In practice, hence, we partition the training corpus
and define a subset V 0 of the target vocabulary for
each partition prior to training. Before training be-
gins, we sequentially examine each target sentence
in the training corpus and accumulate unique tar-
get words until the number of unique target words
reaches the predefined threshold ⌧ . The accumu-
lated vocabulary will be used for this partition of the
corpus during training. We repeat this until the end
of the training set is reached. Let us refer to the sub-
set of target words used for the i-th partition by V

0
i .

This may be understood as having a separate pro-
posal distribution Qi for each partition of the train-
ing corpus. The distribution Qi assigns equal prob-
ability mass to all the target words included in the
subset V 0

i , and zero probability mass to all the other
words, i.e.,

Qi(yk) =

8

<

:

1
|V 0

i |
if yt 2 V

0
i

0 otherwise.

This choice of proposal distribution cancels out the
correction term � logQ(yk) from the importance
weight in Eqs. (10)–(11), which makes the proposed
approach equivalent to approximating the exact out-

Ep[f(x)] =

Z
p(x)f(x)dx =

Z
q(x)

p(x)

q(x)
f(x)dx = Eq[

p(x)

q(x)
f(x)]

Fast GPU Training with Large
Vocabulary using Minibatch Importance
Sampling
•  (Bengio	
 &	
 Senecal	
 2008)	
 not	
 adapted	
 to	
 the	
 current	
 GPU	
 reality	

•  (Jean	
 et	
 al,	
 arXiv	
 2015)	
 uses	
 the	
 following	
 scheme:	

•  Proposal	
 Q	
 for	
 a	
 par@cular	
 word	
 yt	
 in	
 a	
 par@cular	
 minibatch	
 is	

uniform	
 among	
 the	
 words	
 present	
 in	
 the	
 minibatch	
 	

•  Just	
 op@mize	
 wrt	
 following	
 rela@ve	
 probability	
 inside	
 the	

minibatch,	
 normalizing	
 only	
 over	
 the	
 words	
 V’	
 in	
 minibatch:	

16	

(Jean	
 et	
 al,	
 arXiv	
 2015)	

put probability in Eq. (6) with

p(yt | y<t, x)

=

exp

�

w>
t � (yt�1, zt, ct) + bt

P

k:yk2V 0 exp
�

w>
k � (yt�1, zt, ct) + bk

.

It should be noted that this choice of Q makes the
estimator biased.

3.1.1 Informal Discussion on Consequence
The parametrization of the output probability in

Eq. (6) can be understood as arranging the vectors
associated with the target words such that the dot
product between the most likely, or correct, target
word’s vector and the current hidden state is maxi-
mized. The exponentiation followed by normaliza-
tion is simply a process in which the dot products
are converted into proper probabilities.

As learning continues, therefore, the vectors of
all the likely target words tend to align with each
other but not with the others. This is achieved ex-
actly by moving the vector of the correct word in
the direction of � (yt�1, zt, ct), while pushing all the
other vectors away, which happens when the gradi-
ent of the logarithm of the exact output probability
in Eq. (6) is maximized. Our approximate approach,
instead, moves the word vectors of the correct words
and of only a subset of sampled target words (those
included in V

0).

3.2 Decoding
Once the model is trained using the proposed ap-
proximation, we can use the full target vocabulary
when decoding a translation given a new source sen-
tence. Although this is advantageous as it allows the
trained model to utilize the whole vocabulary when
generating a translation, doing so may be too com-
putationally expensive, e.g., for real-time applica-
tions.

Since training puts the target word vectors in the
space so that they align well with the hidden state of
the decoder only when they are likely to be a correct
word, we can use only a subset of candidate target
words during decoding. This is similar to what we
do during training, except that at test time, we do not
have access to a set of correct target words.

The most naı̈ve way to select a subset of candi-
date target words is to take only the top-K most fre-
quent target words, where K can be adjusted to meet

the computational requirement. This, however, ef-
fectively cancels out the whole purpose of training a
model with a very large target vocabulary. Instead,
we can use an existing word alignment model to
align the source and target words in the training cor-
pus and build a dictionary. With the dictionary, for
each source sentence, we construct a target word set
consisting of the K-most frequent words (according
to the estimated unigram probability) and, using the
dictionary, at most K 0 likely target words for each
source word. K and K

0 may be chosen either to
meet the computational requirement or to maximize
the translation performance on the development set.
We call a subset constructed in either of these ways
a candidate list.

3.3 Source Words for Unknown Words
In the experiments, we evaluate the proposed ap-
proach with the neural machine translation model
called RNNsearch (Bahdanau et al., 2014) (see
Sec. 2.1.1). In this model, as a part of decoding pro-
cess, we obtain the alignments between the target
words and source locations via the alignment model
in Eq. (5).

We can use this feature to infer the source word to
which each target word was most aligned (indicated
by the largest ↵t in Eq. (5)). This is especially useful
when the model generated an [UNK] token. Once
a translation is generated given a source sentence,
each [UNK] may be replaced using a translation-
specific technique based on the aligned source word.
For instance, in the experiment, we try replacing
each [UNK] token with the aligned source word or
its most likely translation determined by another
word alignment model. Other techniques such as
transliteration may also be used to further improve
the performance (Koehn, 2010).

4 Experiments

We evaluate the proposed approach in
English!French and English!German trans-
lation tasks. We trained the neural machine
translation models using only the bilingual, parallel
corpora made available as a part of WMT ’14. For
each pair, the datasets we used are:

• English!French2:
2The preprocessed data can be found and downloaded from

Out-of-Vocabulary Words

•  During	
 training	
 the	
 model	
 is	
 asked	
 to	
 generate	
 UNK	
 for	
 OOV	

words	

•  At	
 test	
 @me,	
 when	
 UNK	
 is	
 generated,	
 we	
 use	
 a	
 forced	
 alignment	

to	
 find	
 the	
 corresponding	
 source	
 word(s)	
 and	
 output	
 them	

•  This	
 is	
 par@cularly	
 important	
 for	
 proper	
 nouns,	
 numerical	

quan@@es,	
 etc.	
 and	
 boosted	
 our	
 performance	
 significantly	
 (1.5	

BLEU	
 points)	

17	

18	

Translating from Other Sources?

- Speech

- Images

- Video

19	

A challenge
• Raw speech is sampled at 8kHz – 16kHz
⇒ at minimum 8000 numbers every second
 (44000 samples of 2 values for stereo music)

• On TIMIT:
– 2.5 words per second
– 12.5 phones per second

• The output is much shorter!

• How to align?
• How to handle different duration of output tokens?

Speech

Words Typically we go through multiple
sequence sohrtening steps

 Speech signal

Frames (100 per second,
c.a. 8 per phone)

Sub-phonemic
units (3 per phone)

Phones (5
per word)

Words

Multiple Time Scales in Speech

The	
 higher-­‐level	

sequence	
 in	
 the	

aken@on	
 architecture	

can	
 be	
 shorter	
 than	

the	
 lower-­‐level	
 one	

20	

Acoustic-to-Phones Attention Alignment

21	

Input selections made by the RNN

How to choose the context?
At each step of the generating network (that is
for each output element) compute a context
(weighted sum over frames):

𝑐௢ =෍𝛼௢௧𝑓௧

்

௧ୀଵ

𝛼௢௧ ∝ 𝑑 𝑡 − 𝔼ఈ೚షభ 𝑡 exp 𝑚 𝑠௢ିଵ, ℎ௧

Both prior and matching function 𝑚 are learned

Prior:
relative to last

selection

Match between
previous state
and each input

The prior is learned

Left-to-Right Soft Constraint

•  Whereas	
 with	
 transla@on	
 the	
 word	
 order	
 can	
 change	
 a	
 lot,	
 the	

acous@càphone@c	
 mapping	
 is	
 mostly	
 lei-­‐to-­‐right.	

•  The	
 strength	
 of	
 that	
 prior	
 can	
 be	
 learned	
 by	
 structuring	
 the	

aken@on	
 loca@on	
 probability	
 distribu@on:	

22	

End-to-end Continuous Speech
Recognition using Attention-based
Recurrent NN: First Results

(Chorowski,	
 Bahdanau,	
 Cho	
 &	
 Bengio,	
 arXiv	
 Dec.	
 2014)	
 	

23	

Numbers (at last)

•  Higher	
 levels	
 may	
 represent	
 slower	
 @me	
 scale,	
 asynchronously	

and	
 adap@vely	
 reading	
 from	
 lower	
 levels	
 (automa@c	
 soi	

segmenta@on)	

•  Challenge:	
 during	
 training,	
 the	

	
 	
 	
 	
 	
 length	
 of	
 inner	
 sequences	
 is	
 not	
 known	

•  predict	
 stopping	
 prob.	
 at	

	
 	
 	
 	
 each	
 @me	
 step	

•  weigh	
 upper	
 akn	
 weights	
 in	
 	

	
 	
 	
 	
 propor@on	
 to	
 these	
 prob.	

Ongoing Work: Multi-level Attention

24	

Image-to-Text: Caption Generation

25	

Annotation
Vectors

W
or

d
Ss

am
pl

e

ui
R

ec
ur

re
nt

St
at

e z i

f = (a, man, is, jumping, into, a, lake, .)

+

hj

A
tte

nt
io

n
M

ec
ha

ni
sm

a
Attention
 weight

j
aj� =1

C
on

vo
lu

tio
na

l N
eu

ra
l N

et
w

or
k

Paying
Attention to
Selected Parts
of the Image
While Uttering
Words

26	

Speaking about what one sees

27	

28	

The bus by the road with a clear blue sky

1. Group the Nouns
2. Order the Nouns
3. Filter Incorrect Attributes
4. Group Plurals
5. Gather Local Sub-(parse) trees
6. Create Full Trees
7. Get Final Tree, Clear Mark-Up
8. Prenominal Modifier Ordering

{ {

A woman in a bikini holding a surfboard.

And in
2015…
End-to-
End
Neural
Net

29	

!
!
!
!
!

Show, Attend and Tell: Neural
Image Caption Generation with
Visual Attention

Results	
 from	
 (Xu	
 et	
 al,	
 arXiv	
 Jan.	
 2015)	

30	

Neural Image Caption Generation with Visual Attention

Table 1. BLEU-1,2,3,4/METEOR metrics compared to other methods, † indicates a different split, (—) indicates an unknown metric, �
indicates the authors kindly provided missing metrics by personal communication, ⌃ indicates an ensemble, a indicates using AlexNet

BLEU
Dataset Model B-1 B-2 B-3 B-4 METEOR

Flickr8k

Google NIC(Vinyals et al., 2014)†⌃
Log Bilinear (Kiros et al., 2014a)�

Soft-Attention
Hard-Attention

63
65.6
67
67

41
42.4
44.8
45.7

27
27.7
29.9
31.4

—
17.7
19.5
21.3

—
17.31
18.93
20.30

Flickr30k

Google NIC†�⌃

Log Bilinear
Soft-Attention
Hard-Attention

66.3
60.0
66.7
66.9

42.3
38

43.4
43.9

27.7
25.4
28.8
29.6

18.3
17.1
19.1
19.9

—
16.88
18.49
18.46

COCO

CMU/MS Research (Chen & Zitnick, 2014)a
MS Research (Fang et al., 2014)†a

BRNN (Karpathy & Li, 2014)�
Google NIC†�⌃

Log Bilinear�
Soft-Attention
Hard-Attention

—
—

64.2
66.6
70.8
70.7
71.8

—
—

45.1
46.1
48.9
49.2
50.4

—
—

30.4
32.9
34.4
34.4
35.7

—
—

20.3
24.6
24.3
24.3
25.0

20.41
20.71

—
—

20.03
23.90
23.04

randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
(Bergstra et al., 2010) publicly available upon publication
to encourage future research in this area.

5. Experiments
We describe our experimental methodology and quantita-
tive results which validate the effectiveness of our model
for caption generation.

1https://www.whetlab.com/

5.1. Data

We report results on the popular Flickr8k and Flickr30k
dataset which has 8,000 and 30,000 images respectively
as well as the more challenging Microsoft COCO dataset
which has 82,783 images. The Flickr8k/Flickr30k dataset
both come with 5 reference sentences per image, but for the
MS COCO dataset, some of the images have references in
excess of 5 for consistency across our datasets. We applied
only basic tokenization to MS COCO so that it is consistent
with the tokenization present in Flickr8k and Flickr30k.

Results for our attention-based architecture are reported in
Table 4.2.1. We report results with the frequently used
BLEU metric2 which is the standard in the caption gen-
eration literature. We report BLEU from 1 to 4 with-
out a brevity penalty. There has been, however, criticism
of BLEU, so in addition we report another common met-
ric METEOR (Denkowski & Lavie, 2014), and compare
whenever possible.

5.2. Evaluation Procedures

A few challenges exist for comparison, which we explain
here. The first is a difference in choice of convolutional
feature extractor. For identical decoder architectures, us-
ing more recent architectures such as GoogLeNet or Ox-

2We verified that our BLEU evaluation code matches the au-
thors of Vinyals et al. (2014), Karpathy & Li (2014) and Kiros
et al. (2014b). For fairness, we only compare against results for
which we have verified that our BLEU evaluation code is the
same. With the upcoming release of the COCO evaluation server,
we will include comparison results with all other recent image
captioning models.

The Good

31	

And the Bad

32	

Attention through time for video
caption generation

•  (Yao	
 et	
 al	
 arXiv	
 1502.08029,	
 2015)	
 Video	
 Descrip/on	
 Genera/on	

Incorpora/ng	
 Spa/o-­‐Temporal	
 Features	
 and	
 a	
 SoL-­‐ANen/on	

Mechanism	

•  Aken@on	
 can	
 be	
 focused	

	
 	
 	
 	
 	
 temporally,	
 i.e.,	
 selec@ng	

	
 	
 	
 	
 	
 input	
 frames	

33	

a

man

…

…

…

…

Soft-Attention

…

Features-Extraction
Caption

Generation

…

…

Attention through time for video
caption generation (Yao et al 2015)

•  Aken@on	
 is	
 focused	
 at	

appropriate	
 frames	

depending	
 on	
 which	

word	
 is	
 generated.	

34	

Attention through time for video
caption generation (Yao et al 2015)
•  Soi-­‐aken@on	
 worked	
 best	
 in	
 this	
 sepng	

35	

Video Description Generation Incorporating Spatio-Temporal Features and a Soft-Attention Mechanism

Model Feature Bleu Meteor Perplexity
1 2 3 4 mb

non-attention GNet 77.3 60.7 49.3 39.1 38.6 28.68 33.09
GNet+3DConvnon-att 76.1 60.2 49.2 39.0 38.7 27.65 33.42

soft-attention GNet 79.1 63.2 51.2 40.6 40.3 29.00 27.89
GNet+3DConvatt 80.0 64.7 52.6 42.2 41.9 29.60 27.55

(Thomason et al., 2014) 13.68 23.9

(Venugopalan et al., 2014)
No Pretraining 31.19 26.87
Pretraining 33.29 29.07

Table 1. Attention and 3D-Conv performances evaluation on YouTube2Text. Blue 1-4, multiBlue (mb), Meteor and perplexity metrics
are reported.

Figure 3. A visualization of where the soft-attentional model “looks at” in a video, while generating the captions (captions included on
the left). Each word is mapped into a vector of ↵ in Equ. (6). Only bars in the same row are comparable, and their height reflects the
magnitude of ↵. The model is able to focus its attention on different frames of the video when generating different words in the caption.
Best viewed with zooming-in on pdf.

Model Feature Bleu Meteor Perplexity
1 2 3 4 mb

non-attention GNet 32.0 9.2 3.4 1.2 0.3 4.43 88.28
GNet+3DConvnon-att 33.6 10.4 4.3 1.8 0.7 5.73 84.41

soft-attention GNet 31.0 7.7 3.0 1.2 0.3 4.05 66.63
GNet+3DConvatt 28.2 8.2 3.1 1.3 0.7 5.6 65.44

Table 2. Attention and 3D-Conv performances evaluation on DVS. Blue 1-4, multiBlue (mb), Meteor and perplexity metrics are reported.

have encountered in this dataset is that its captions cover a
much wider domain, rending this task challenging for both
non-attention and attention models. According to Table 2,
by comparing on perplexity, the attention models improve
consistently upon non-attention models. Given the same
type of model, using GNet+3DConv. features also steadily

improves upon using GNet features alone. In fact, using
attention models offers about 20 improvement on perplex-
ity upon non-attention models. With the same model type,
using the combined features also results better Bleu and
Meteor, while the effect on Bleu and Meteor score across
model types is less obvious.

Generated	

cap@ons	

Attention Mechanisms for Memory
Access

•  Neural	
 Turing	
 Machines	
 (Graves	
 et	
 al	
 2014)	

•  and	
 Memory	
 Networks	
 (Weston	
 et	
 al	
 2014)	

•  Use	
 a	
 form	
 of	
 aken@on	
 mechanism	
 to	

control	
 the	
 read	
 and	
 write	
 access	
 into	
 a	

memory	

•  The	
 aken@on	
 mechanism	
 outputs	
 a	
 soimax	

over	
 memory	
 loca@ons	

•  For	
 efficiency,	
 the	
 soimax	
 should	
 be	
 sparse	

(mostly	
 0’s),	
 e.g.	
 maybe	
 using	
 a	
 hash-­‐table	

formula@on.	

36	

write	

read	

Sparse Access Memory for Long-Term
Dependencies
•  Whereas	
 LSTM	
 memories	
 always	
 decay	
 exponen@ally	
 (even	
 if	

slowly),	
 a	
 mental	
 state	
 stored	
 in	
 an	
 external	
 memory	
 can	
 stay	

for	
 arbitrarily	
 long	
 dura@ons,	
 un@l	
 evoked	
 for	
 read	
 or	
 write.	

•  Need	
 to	
 replace	
 the	
 soi	
 gater	
 or	
 soimax	
 aken@on	
 by	
 hard	
 one	

that	
 is	
 0	
 most	
 of	
 the	
 @me,	
 and	
 yet	
 for	
 which	
 training	
 works	

(again,	
 may	
 use	
 noisy	
 decisions	
 and/or	
 REINFORCE).	

•  Different	
 «	
 threads	
 »	
 can	
 run	
 in	
 parallel	
 if	
 we	
 view	
 the	
 memory	

as	
 an	
 associa@ve	
 one.	

37	

passive	
 copy	

access	

Conclusions

•  Aken@on	
 mechanisms	
 allow	
 the	
 learner	
 to	
 make	
 a	
 selec@on,	

soi	
 or	
 hard	

•  They	
 have	
 been	
 extremely	
 successful	
 for	
 machine	
 transla@on	

and	
 cap@on	
 genera@on	

•  They	
 could	
 be	
 interes@ng	
 for	
 speech	
 recogni@on,	
 especially	
 if	
 we	

used	
 them	
 to	
 capture	
 mul@ple	
 @me	
 scales	

•  They	
 could	
 be	
 used	
 to	
 help	
 deal	
 with	
 long-­‐term	
 dependencies,	

allowing	
 some	
 states	
 to	
 last	
 for	
 arbitrarily	
 long	

38	

MILA: Montreal Institute for Learning Algorithms

