
Deep	 Learning	 with	 A/en0on	
Mechanisms	

	 	
	
	

Yoshua	 Bengio	 	
July	 20th,	 2015	

Keynote	 speech	 at	 Russian	 Deep	 Learning	 Hackaton	

Applying an attention mechanism to

- Translation

- Speech

- Images

- Video

- Memory

2	

End-to-End Machine Translation

•  Classical	 Machine	 Transla@on:	 several	 models	 separately	 trained	
by	 max.	 likelihood,	 brought	 together	 with	 logis@c	 regression	 on	
top,	 based	 on	 n-‐grams	

•  Neural	 language	 models	 already	 shown	 to	 outperform	 n-‐gram	
models	 in	 terms	 of	 generaliza@on	 power	

•  Why	 not	 train	 a	 neural	 transla@on	 model	 end-‐to-‐end	 to	 es@mate	
P(target	 sentence	 |	 source	 sentence)?	 	

3	

2014: The Year of Neural Machine
Translation Breakthrough

•  (Devlin	 et	 al,	 ACL’2014)	
•  (Cho	 et	 al	 EMNLP’2014)	
•  (Bahdanau,	 Cho	 &	 Bengio,	 arXiv	 sept.	 2014)	
•  (Jean,	 Cho,	 Memisevic	 &	 Bengio,	 arXiv	 dec.	 2014)	
•  (Sutskever	 et	 al	 NIPS’2014)	

Earlier	 work:	 (Kalchbrenner	 &	 Blunsom	 et	 al	 2013)	

4	

Encoder-Decoder Framework
•  Intermediate	 representa@on	 of	 meaning	 	

=	 ‘universal	 representa@on’	
•  Encoder:	 from	 word	 sequence	 to	 sentence	 representa@on	
•  Decoder:	 from	 representa@on	 to	 word	 sequence	 distribu@on	

5	

�� �� ��

��� �� ��

�

�	�
�	�

��
�	�

French	
encoder	

English	
decoder	

French	 sentence	

English	 sentence	

English	
encoder	

English	
decoder	

English	 sentence	

English	 sentence	

Fo
r	 b

ite
xt
	 d
at
a	

Fo
r	 u

ni
lin
gu
al
	 d
at
a	

Encoder & Decoder RNN
•  Need	 to	 use	 gated	 RNN	 such	 as	 LSTM	 or	 GRU	

6	 e = (Economic, growth, has, slowed, down, in, recent, years, .)

1-o
f-K

 co
din

g
Co

nti
nu

ou
s-s

pa
ce

W
ord

 R
ep

res
en

tat
ion

si

wi

Re
cu

rre
nt

Sta
te hi

W
ord

 Ss
am

ple

ui

Re
cu

rre
nt

Sta
tez i

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

ip

W
ord

 Pr
ob

ab
ilit

y

Encoder

Decoder

Vanilla	
architecture	

Bidirectional RNN for Input Side

•  Following	 Alex	 Graves’	 work	 on	 handwri@ng	

7	

e = (Economic, growth, has, slowed, down, in, recent, years, .)

1-
of

-K
 c

od
in

g
C

on
tin

uo
us

-s
pa

ce
W

or
d

R
ep

re
se

nt
at

io
n

si

wi

B
id

ire
ct

io
na

l
R

ec
ur

re
nt

St
at

e

hi

Attention Mechanism for Deep Learning

•  Consider	 an	 input	 (or	 intermediate)	 sequence	 or	 image	
•  Consider	 an	 upper	 level	 representa@on,	 which	 can	 choose	

«	 where	 to	 look	 »,	 by	 assigning	 a	 weight	 or	 probability	 to	 each	
input	 posi@on,	 as	 produced	 by	 an	 MLP,	 applied	 at	 each	 posi@on	

8	

Lower-‐level	

Higher-‐level	
Soimax	 over	 lower	 	
loca@ons	 condi@oned	
on	 context	 at	 lower	 and	
higher	 loca@ons	 	

Attention: Many Recent Papers

•  (Xu	 et	 al	 2015,	 cap@on	 genera@on,	 U.	 Montreal	 +	 U.	 Toronto)	
•  (Ba	 et	 al	 2014,	 Mnih	 et	 al	 2014,	 visual	 aken@on,	 Google	 DeepMind)	
•  (Chorowski	 et	 al	 2014,	 speech	 recogni@on,	 U.	 Montreal)	
•  (Bahdanau	 et	 al	 2014,	 machine	 transla@on,	 U.	 Montreal)	

9	

And Older Papers

•  (Larochelle	 &	 Hinton	 2010,	 MNIST,	 U.	 Toronto)	
•  (Graves	 2013,	 handwri@ng	 genera@on)	
•  (Denil	 et	 al	 2014,	 visual	 tracking)	
•  (Tang	 et	 al	 2014,	 genera@ve	 models	 of	 images)	
	

Soft-Attention vs
Stochastic Hard-Attention

•  With	 soi-‐aken@on:	 input	 fed	 to	 higher	 level	 at	 loca@on	 i	 is	 a	
soimax-‐weighted	 sum	 of	 states	 at	 loca@ons	 j	 at	 lower	 level	
•  Train	 by	 back-‐prop	
•  Fast	 training	

•  With	 stochas@c	 hard-‐aken@on:	 sample	 an	 input	 loca@on	
according	 to	 the	 soimax	 output	
•  Get	 a	 gradient	 on	 the	 decisions	 via	 REINFORCE	 -‐	 baseline	
•  Noisy	 gradient,	 slower	 training	 but	 works	
•  Symmetry	 breaking	

10	

Attention-Based Neural Machine
Translation

•  (Bahdanau,	 Cho	 &	 Bengio,	 arXiv	 sept.	 2014)	
•  (Jean,	 Cho,	 Memisevic	 &	 Bengio,	 arXiv	 dec.	 2014)	

11	

A
nn

ot
at

io
n

Ve
ct

or
s

e = (Economic, growth, has, slowed, down, in, recent, years, .)

W
or

d
Ss

am
pl

e

ui

R
ec

ur
re

nt
St

at
e z i

f = (La, croissance, économique, s'est, ralentie, ces, dernières, années, .)

+

hj

A
tte

nt
io

n
M

ec
ha

ni
sm

a
Attention
 weightj aj� =1

Related	 to	 earlier	 Graves	 2013	 for	 genera@ng	 handwri@ng	

Predicted
Alignments

12	

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵

ij

of the annotation of the j-th source word and the i-th
target word (see Eq. (5)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

The encoder and decoder of the RNNenc have 1000 hidden units each.7 The encoder of the
RNNsearch consists of forward and backward recurrent neural networks (RNN) each having 1000
hidden units. Its decoder has 1000 hidden units. In both cases, we use a multilayer network with a
single maxout (Goodfellow et al., 2013) hidden layer to compute the conditional probability of each
target word (Pascanu et al., 2014).

We use a stochastic gradient descent (SGD) algorithm together with Adadelta (Zeiler, 2012) to train
each model. Each SGD updated direction is computed using a minibatch of 80 sentences. We trained
each model approximately 5 days.

7In this paper, by a ’hidden unit’, we always mean the gated hidden unit (see Sec. 3.3.1).

6

En-Fr & En-De Alignments

13	

Improvements over Pure AE Model

•  RNNenc:	 encode	 whole	 sentence	
•  RNNsearch:	 predict	 alignment	
•  BLEU	 score	 on	 full	 test	 set	 (including	 UNK)	

14	

0 10 20 30 40 50 60

Sentence length

0

5

10

15

20

25

30

B
L
E

U
sc

or
e

RNNsearch-50

RNNsearch-30

RNNenc-50

RNNenc-30

Figure 2: The BLEU scores
of the generated translations
on the test set with respect
to the lengths of the sen-
tences. The results are on
the full test set which in-
cludes sentences having un-
known words to the models.

3.3.2 Alignment Model

The alignment model should be designed considering that the model needs to be evaluated T

x

⇥
T

y

times for each sentence pair of lengths T

x

and T

y

. In order to avoid the potential issue with
computation, we use a single-layer multilayer perceptron such that

a(s

i�1, hj

) = V

a

tanh (W

a

s

i�1 + U

a

h

j

) ,

where W

a

2 Rn,n

, U

a

2 Rn,2n and V

a

2 Rn are the weight matrices. Since U

a

h

j

does not depend
on i, we can pre-compute it in advance to minimize the computational cost. A similar trick was
recently used by Devlin et al. (2014).

4 Experiment Settings

We evaluate the proposed approach on the task of English-to-French translation. We use the bilin-
gual, parallel corpora provided by ACL WMT ’14.4 As a comparison, we also report the perfor-
mance of an RNN Encoder–Decoder which was proposed recently by Cho et al. (2014a). We use
the same training procedures for the both models on the same dataset.

4.1 Dataset

WMT ’14 provide the following English-French parallel corpora: Europarl (61M words), news
commentary (5.5M), UN (421M) and two crawled corpora of 90M and 780M words respectively,
totaling 850M words. Following the procedure described in (Cho et al., 2014a), we reduce the size of
the combined corpus to have 348M words using the data selection method by Axelrod et al. (2011).5
We do not use any monolingual data other than the mentioned parallel corpora. We concatenate
news-test-2012 and news-test-2013 to make a development set, and evaluate the models on the test
set (news-test-2014) from WMT ’14 which consists of 3003 sentences not present in the training
data.

After a usual tokenization6 , we use a shortlist of 30,000 most frequent words in each language to
train our models. Any word not included in the shortlist is mapped to a special token ([UNK]). We
do not apply any other special preprocessing, such as lowercasing or stemming, to the data.

4.2 Models

We train two types of models. The first one is an RNN Encoder–Decoder (RNNenc, Cho et al.,
2014a), and the other is the proposed model, to which we refer as RNNsearch. We train each
model twice with the sentences of length up to 30 words (RNNenc-30, RNNsearch-30) and with the
sentences of length up to 50 word (RNNenc-50, RNNsearch-50).

4
http://www.statmt.org/wmt14/translation-task.html

5Available online at http://www-lium.univ-lemans.fr/
˜

schwenk/cslm_joint_paper/.
6We used the tokenization script from the open-source machine translation package, Moses.

5

Importance Sampling for Fast
Training of Neural Language Models

•  IS:	

•  During	 training	 of	 neural	 language	 model,	 the	 LL	 gradient	 is	

•  where	
•  and	 the	 second	 term	 is	 an	 expecta@on	 that	 can	 be	 approximated	

by	 normalized	 importance	 sampling	 	

•  with	 proposal	 distribu@on	 Q	 to	 sample	 nega/ve	 examples	 V’	

15	

(Bengio	 &	 Senecal	 2008)	

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description
In this paper, we propose a model-specific approach
that allows us to train a neural machine translation
model with a very large target vocabulary. With the
proposed approach, the computational complexity
of training becomes constant with respect to the size
of the target vocabulary. Furthermore, the proposed
approach allows us to efficiently use a fast comput-
ing device with limited memory, such as a GPU,
to train a neural machine translation model with a
much larger target vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complexity of
computing the normalization constant, we propose
here to use only a small subset V 0 of the target vo-
cabulary at each update. The proposed approach is
based on the earlier work of (Bengio and Sénécal,
2008).

Let us consider the gradient of the log-probability
of the output in Eq. (6). The gradient is composed
of a positive and negative part:

r log p(yt | y<t, x) (8)

=rE(yt)�
X

k:yk2V
p(yk | y<t, x)rE(yk),

where we define the energy E as

E(yj) = w>
j � (yj�1, zj , cj) + bj .

The second, or negative, term of the gradient is in
essence the expected gradient of the energy:

EP [rE(y)] , (9)

where P denotes p(y | y<t, x).
The main idea of the proposed approach is to ap-

proximate this expectation, or the negative term of
the gradient, by importance sampling with a small
number of samples. Given a predefined proposal
distribution Q and a set V 0 of samples from Q, we
approximate the expectation in Eq. (9) with

EP [rE(y)] ⇡
X

k:yk2V 0

!k
P

k0:yk02V 0 !k0
rE(yk),

(10)

where

!k = exp {E(yk)� logQ(yk)} . (11)

This approach allows us to compute the normal-
ization constant during training using only a small
subset of the target vocabulary, resulting in much
lower computational complexity for each parame-
ter update. Intuitively, at each parameter update, we
update only the vectors associated with the correct
word wt and with the sampled words in V

0. Once
training is over, we can use the full target vocabu-
lary to compute the output probability of each target
word.

Although the proposed approach naturally ad-
dresses the computational complexity, using this ap-
proach naively does not guarantee that the number
of parameters being updated for each sentence pair,
which includes multiple target words, is bounded
nor can be controlled. This becomes problematic
when training is done, for instance, on a GPU with
limited memory.

In practice, hence, we partition the training corpus
and define a subset V 0 of the target vocabulary for
each partition prior to training. Before training be-
gins, we sequentially examine each target sentence
in the training corpus and accumulate unique tar-
get words until the number of unique target words
reaches the predefined threshold ⌧ . The accumu-
lated vocabulary will be used for this partition of the
corpus during training. We repeat this until the end
of the training set is reached. Let us refer to the sub-
set of target words used for the i-th partition by V

0
i .

This may be understood as having a separate pro-
posal distribution Qi for each partition of the train-
ing corpus. The distribution Qi assigns equal prob-
ability mass to all the target words included in the
subset V 0

i , and zero probability mass to all the other
words, i.e.,

Qi(yk) =

8

<

:

1
|V 0

i |
if yt 2 V

0
i

0 otherwise.

This choice of proposal distribution cancels out the
correction term � logQ(yk) from the importance
weight in Eqs. (10)–(11), which makes the proposed
approach equivalent to approximating the exact out-

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description
In this paper, we propose a model-specific approach
that allows us to train a neural machine translation
model with a very large target vocabulary. With the
proposed approach, the computational complexity
of training becomes constant with respect to the size
of the target vocabulary. Furthermore, the proposed
approach allows us to efficiently use a fast comput-
ing device with limited memory, such as a GPU,
to train a neural machine translation model with a
much larger target vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complexity of
computing the normalization constant, we propose
here to use only a small subset V 0 of the target vo-
cabulary at each update. The proposed approach is
based on the earlier work of (Bengio and Sénécal,
2008).

Let us consider the gradient of the log-probability
of the output in Eq. (6). The gradient is composed
of a positive and negative part:

r log p(yt | y<t, x) (8)

=rE(yt)�
X

k:yk2V
p(yk | y<t, x)rE(yk),

where we define the energy E as

E(yj) = w>
j � (yj�1, zj , cj) + bj .

The second, or negative, term of the gradient is in
essence the expected gradient of the energy:

EP [rE(y)] , (9)

where P denotes p(y | y<t, x).
The main idea of the proposed approach is to ap-

proximate this expectation, or the negative term of
the gradient, by importance sampling with a small
number of samples. Given a predefined proposal
distribution Q and a set V 0 of samples from Q, we
approximate the expectation in Eq. (9) with

EP [rE(y)] ⇡
X

k:yk2V 0

!k
P

k0:yk02V 0 !k0
rE(yk),

(10)

where

!k = exp {E(yk)� logQ(yk)} . (11)

This approach allows us to compute the normal-
ization constant during training using only a small
subset of the target vocabulary, resulting in much
lower computational complexity for each parame-
ter update. Intuitively, at each parameter update, we
update only the vectors associated with the correct
word wt and with the sampled words in V

0. Once
training is over, we can use the full target vocabu-
lary to compute the output probability of each target
word.

Although the proposed approach naturally ad-
dresses the computational complexity, using this ap-
proach naively does not guarantee that the number
of parameters being updated for each sentence pair,
which includes multiple target words, is bounded
nor can be controlled. This becomes problematic
when training is done, for instance, on a GPU with
limited memory.

In practice, hence, we partition the training corpus
and define a subset V 0 of the target vocabulary for
each partition prior to training. Before training be-
gins, we sequentially examine each target sentence
in the training corpus and accumulate unique tar-
get words until the number of unique target words
reaches the predefined threshold ⌧ . The accumu-
lated vocabulary will be used for this partition of the
corpus during training. We repeat this until the end
of the training set is reached. Let us refer to the sub-
set of target words used for the i-th partition by V

0
i .

This may be understood as having a separate pro-
posal distribution Qi for each partition of the train-
ing corpus. The distribution Qi assigns equal prob-
ability mass to all the target words included in the
subset V 0

i , and zero probability mass to all the other
words, i.e.,

Qi(yk) =

8

<

:

1
|V 0

i |
if yt 2 V

0
i

0 otherwise.

This choice of proposal distribution cancels out the
correction term � logQ(yk) from the importance
weight in Eqs. (10)–(11), which makes the proposed
approach equivalent to approximating the exact out-

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description
In this paper, we propose a model-specific approach
that allows us to train a neural machine translation
model with a very large target vocabulary. With the
proposed approach, the computational complexity
of training becomes constant with respect to the size
of the target vocabulary. Furthermore, the proposed
approach allows us to efficiently use a fast comput-
ing device with limited memory, such as a GPU,
to train a neural machine translation model with a
much larger target vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complexity of
computing the normalization constant, we propose
here to use only a small subset V 0 of the target vo-
cabulary at each update. The proposed approach is
based on the earlier work of (Bengio and Sénécal,
2008).

Let us consider the gradient of the log-probability
of the output in Eq. (6). The gradient is composed
of a positive and negative part:

r log p(yt | y<t, x) (8)

=rE(yt)�
X

k:yk2V
p(yk | y<t, x)rE(yk),

where we define the energy E as

E(yj) = w>
j � (yj�1, zj , cj) + bj .

The second, or negative, term of the gradient is in
essence the expected gradient of the energy:

EP [rE(y)] , (9)

where P denotes p(y | y<t, x).
The main idea of the proposed approach is to ap-

proximate this expectation, or the negative term of
the gradient, by importance sampling with a small
number of samples. Given a predefined proposal
distribution Q and a set V 0 of samples from Q, we
approximate the expectation in Eq. (9) with

EP [rE(y)] ⇡
X

k:yk2V 0

!k
P

k0:yk02V 0 !k0
rE(yk),

(10)

where

!k = exp {E(yk)� logQ(yk)} . (11)

This approach allows us to compute the normal-
ization constant during training using only a small
subset of the target vocabulary, resulting in much
lower computational complexity for each parame-
ter update. Intuitively, at each parameter update, we
update only the vectors associated with the correct
word wt and with the sampled words in V

0. Once
training is over, we can use the full target vocabu-
lary to compute the output probability of each target
word.

Although the proposed approach naturally ad-
dresses the computational complexity, using this ap-
proach naively does not guarantee that the number
of parameters being updated for each sentence pair,
which includes multiple target words, is bounded
nor can be controlled. This becomes problematic
when training is done, for instance, on a GPU with
limited memory.

In practice, hence, we partition the training corpus
and define a subset V 0 of the target vocabulary for
each partition prior to training. Before training be-
gins, we sequentially examine each target sentence
in the training corpus and accumulate unique tar-
get words until the number of unique target words
reaches the predefined threshold ⌧ . The accumu-
lated vocabulary will be used for this partition of the
corpus during training. We repeat this until the end
of the training set is reached. Let us refer to the sub-
set of target words used for the i-th partition by V

0
i .

This may be understood as having a separate pro-
posal distribution Qi for each partition of the train-
ing corpus. The distribution Qi assigns equal prob-
ability mass to all the target words included in the
subset V 0

i , and zero probability mass to all the other
words, i.e.,

Qi(yk) =

8

<

:

1
|V 0

i |
if yt 2 V

0
i

0 otherwise.

This choice of proposal distribution cancels out the
correction term � logQ(yk) from the importance
weight in Eqs. (10)–(11), which makes the proposed
approach equivalent to approximating the exact out-

3 Approximate Learning Approach to
Very Large Target Vocabulary

3.1 Description
In this paper, we propose a model-specific approach
that allows us to train a neural machine translation
model with a very large target vocabulary. With the
proposed approach, the computational complexity
of training becomes constant with respect to the size
of the target vocabulary. Furthermore, the proposed
approach allows us to efficiently use a fast comput-
ing device with limited memory, such as a GPU,
to train a neural machine translation model with a
much larger target vocabulary.

As mentioned earlier, the computational inef-
ficiency of training a neural machine translation
model arises from the normalization constant in
Eq. (6). In order to avoid the growing complexity of
computing the normalization constant, we propose
here to use only a small subset V 0 of the target vo-
cabulary at each update. The proposed approach is
based on the earlier work of (Bengio and Sénécal,
2008).

Let us consider the gradient of the log-probability
of the output in Eq. (6). The gradient is composed
of a positive and negative part:

r log p(yt | y<t, x) (8)

=rE(yt)�
X

k:yk2V
p(yk | y<t, x)rE(yk),

where we define the energy E as

E(yj) = w>
j � (yj�1, zj , cj) + bj .

The second, or negative, term of the gradient is in
essence the expected gradient of the energy:

EP [rE(y)] , (9)

where P denotes p(y | y<t, x).
The main idea of the proposed approach is to ap-

proximate this expectation, or the negative term of
the gradient, by importance sampling with a small
number of samples. Given a predefined proposal
distribution Q and a set V 0 of samples from Q, we
approximate the expectation in Eq. (9) with

EP [rE(y)] ⇡
X

k:yk2V 0

!k
P

k0:yk02V 0 !k0
rE(yk),

(10)

where

!k = exp {E(yk)� logQ(yk)} . (11)

This approach allows us to compute the normal-
ization constant during training using only a small
subset of the target vocabulary, resulting in much
lower computational complexity for each parame-
ter update. Intuitively, at each parameter update, we
update only the vectors associated with the correct
word wt and with the sampled words in V

0. Once
training is over, we can use the full target vocabu-
lary to compute the output probability of each target
word.

Although the proposed approach naturally ad-
dresses the computational complexity, using this ap-
proach naively does not guarantee that the number
of parameters being updated for each sentence pair,
which includes multiple target words, is bounded
nor can be controlled. This becomes problematic
when training is done, for instance, on a GPU with
limited memory.

In practice, hence, we partition the training corpus
and define a subset V 0 of the target vocabulary for
each partition prior to training. Before training be-
gins, we sequentially examine each target sentence
in the training corpus and accumulate unique tar-
get words until the number of unique target words
reaches the predefined threshold ⌧ . The accumu-
lated vocabulary will be used for this partition of the
corpus during training. We repeat this until the end
of the training set is reached. Let us refer to the sub-
set of target words used for the i-th partition by V

0
i .

This may be understood as having a separate pro-
posal distribution Qi for each partition of the train-
ing corpus. The distribution Qi assigns equal prob-
ability mass to all the target words included in the
subset V 0

i , and zero probability mass to all the other
words, i.e.,

Qi(yk) =

8

<

:

1
|V 0

i |
if yt 2 V

0
i

0 otherwise.

This choice of proposal distribution cancels out the
correction term � logQ(yk) from the importance
weight in Eqs. (10)–(11), which makes the proposed
approach equivalent to approximating the exact out-

Ep[f(x)] =

Z
p(x)f(x)dx =

Z
q(x)

p(x)

q(x)
f(x)dx = Eq[

p(x)

q(x)
f(x)]

Fast GPU Training with Large
Vocabulary using Minibatch Importance
Sampling
•  (Bengio	 &	 Senecal	 2008)	 not	 adapted	 to	 the	 current	 GPU	 reality	

•  (Jean	 et	 al,	 arXiv	 2015)	 uses	 the	 following	 scheme:	
•  Proposal	 Q	 for	 a	 par@cular	 word	 yt	 in	 a	 par@cular	 minibatch	 is	
uniform	 among	 the	 words	 present	 in	 the	 minibatch	 	

•  Just	 op@mize	 wrt	 following	 rela@ve	 probability	 inside	 the	
minibatch,	 normalizing	 only	 over	 the	 words	 V’	 in	 minibatch:	

16	

(Jean	 et	 al,	 arXiv	 2015)	

put probability in Eq. (6) with

p(yt | y<t, x)

=

exp

�

w>
t � (yt�1, zt, ct) + bt

P

k:yk2V 0 exp
�

w>
k � (yt�1, zt, ct) + bk

.

It should be noted that this choice of Q makes the
estimator biased.

3.1.1 Informal Discussion on Consequence
The parametrization of the output probability in

Eq. (6) can be understood as arranging the vectors
associated with the target words such that the dot
product between the most likely, or correct, target
word’s vector and the current hidden state is maxi-
mized. The exponentiation followed by normaliza-
tion is simply a process in which the dot products
are converted into proper probabilities.

As learning continues, therefore, the vectors of
all the likely target words tend to align with each
other but not with the others. This is achieved ex-
actly by moving the vector of the correct word in
the direction of � (yt�1, zt, ct), while pushing all the
other vectors away, which happens when the gradi-
ent of the logarithm of the exact output probability
in Eq. (6) is maximized. Our approximate approach,
instead, moves the word vectors of the correct words
and of only a subset of sampled target words (those
included in V

0).

3.2 Decoding
Once the model is trained using the proposed ap-
proximation, we can use the full target vocabulary
when decoding a translation given a new source sen-
tence. Although this is advantageous as it allows the
trained model to utilize the whole vocabulary when
generating a translation, doing so may be too com-
putationally expensive, e.g., for real-time applica-
tions.

Since training puts the target word vectors in the
space so that they align well with the hidden state of
the decoder only when they are likely to be a correct
word, we can use only a subset of candidate target
words during decoding. This is similar to what we
do during training, except that at test time, we do not
have access to a set of correct target words.

The most naı̈ve way to select a subset of candi-
date target words is to take only the top-K most fre-
quent target words, where K can be adjusted to meet

the computational requirement. This, however, ef-
fectively cancels out the whole purpose of training a
model with a very large target vocabulary. Instead,
we can use an existing word alignment model to
align the source and target words in the training cor-
pus and build a dictionary. With the dictionary, for
each source sentence, we construct a target word set
consisting of the K-most frequent words (according
to the estimated unigram probability) and, using the
dictionary, at most K 0 likely target words for each
source word. K and K

0 may be chosen either to
meet the computational requirement or to maximize
the translation performance on the development set.
We call a subset constructed in either of these ways
a candidate list.

3.3 Source Words for Unknown Words
In the experiments, we evaluate the proposed ap-
proach with the neural machine translation model
called RNNsearch (Bahdanau et al., 2014) (see
Sec. 2.1.1). In this model, as a part of decoding pro-
cess, we obtain the alignments between the target
words and source locations via the alignment model
in Eq. (5).

We can use this feature to infer the source word to
which each target word was most aligned (indicated
by the largest ↵t in Eq. (5)). This is especially useful
when the model generated an [UNK] token. Once
a translation is generated given a source sentence,
each [UNK] may be replaced using a translation-
specific technique based on the aligned source word.
For instance, in the experiment, we try replacing
each [UNK] token with the aligned source word or
its most likely translation determined by another
word alignment model. Other techniques such as
transliteration may also be used to further improve
the performance (Koehn, 2010).

4 Experiments

We evaluate the proposed approach in
English!French and English!German trans-
lation tasks. We trained the neural machine
translation models using only the bilingual, parallel
corpora made available as a part of WMT ’14. For
each pair, the datasets we used are:

• English!French2:
2The preprocessed data can be found and downloaded from

Out-of-Vocabulary Words

•  During	 training	 the	 model	 is	 asked	 to	 generate	 UNK	 for	 OOV	
words	

•  At	 test	 @me,	 when	 UNK	 is	 generated,	 we	 use	 a	 forced	 alignment	
to	 find	 the	 corresponding	 source	 word(s)	 and	 output	 them	

•  This	 is	 par@cularly	 important	 for	 proper	 nouns,	 numerical	
quan@@es,	 etc.	 and	 boosted	 our	 performance	 significantly	 (1.5	
BLEU	 points)	

17	

18	

Translating from Other Sources?

- Speech

- Images

- Video

19	

A challenge
• Raw speech is sampled at 8kHz – 16kHz
⇒ at minimum 8000 numbers every second
 (44000 samples of 2 values for stereo music)

• On TIMIT:
– 2.5 words per second
– 12.5 phones per second

• The output is much shorter!

• How to align?
• How to handle different duration of output tokens?

Speech

Words Typically we go through multiple
sequence sohrtening steps

 Speech signal

Frames (100 per second,
c.a. 8 per phone)

Sub-phonemic
units (3 per phone)

Phones (5
per word)

Words

Multiple Time Scales in Speech

The	 higher-‐level	
sequence	 in	 the	
aken@on	 architecture	
can	 be	 shorter	 than	
the	 lower-‐level	 one	

20	

Acoustic-to-Phones Attention Alignment

21	

Input selections made by the RNN

How to choose the context?
At each step of the generating network (that is
for each output element) compute a context
(weighted sum over frames):

𝑐 =𝛼௧𝑓௧

்

௧ୀଵ

𝛼௧ ∝ 𝑑 𝑡 − 𝔼ఈషభ 𝑡 exp 𝑚 𝑠ିଵ, ℎ௧

Both prior and matching function 𝑚 are learned

Prior:
relative to last

selection

Match between
previous state
and each input

The prior is learned

Left-to-Right Soft Constraint

•  Whereas	 with	 transla@on	 the	 word	 order	 can	 change	 a	 lot,	 the	
acous@càphone@c	 mapping	 is	 mostly	 lei-‐to-‐right.	

•  The	 strength	 of	 that	 prior	 can	 be	 learned	 by	 structuring	 the	
aken@on	 loca@on	 probability	 distribu@on:	

22	

End-to-end Continuous Speech
Recognition using Attention-based
Recurrent NN: First Results

(Chorowski,	 Bahdanau,	 Cho	 &	 Bengio,	 arXiv	 Dec.	 2014)	 	

23	

Numbers (at last)

•  Higher	 levels	 may	 represent	 slower	 @me	 scale,	 asynchronously	
and	 adap@vely	 reading	 from	 lower	 levels	 (automa@c	 soi	
segmenta@on)	

•  Challenge:	 during	 training,	 the	
	 	 	 	 	 length	 of	 inner	 sequences	 is	 not	 known	

•  predict	 stopping	 prob.	 at	
	 	 	 	 each	 @me	 step	
•  weigh	 upper	 akn	 weights	 in	 	
	 	 	 	 propor@on	 to	 these	 prob.	

Ongoing Work: Multi-level Attention

24	

Image-to-Text: Caption Generation

25	

Annotation
Vectors

W
or

d
Ss

am
pl

e

ui
R

ec
ur

re
nt

St
at

e z i

f = (a, man, is, jumping, into, a, lake, .)

+

hj

A
tte

nt
io

n
M

ec
ha

ni
sm

a
Attention
 weight

j
aj� =1

C
on

vo
lu

tio
na

l N
eu

ra
l N

et
w

or
k

Paying
Attention to
Selected Parts
of the Image
While Uttering
Words

26	

Speaking about what one sees

27	

28	

The bus by the road with a clear blue sky

1. Group the Nouns
2. Order the Nouns
3. Filter Incorrect Attributes
4. Group Plurals
5. Gather Local Sub-(parse) trees
6. Create Full Trees
7. Get Final Tree, Clear Mark-Up
8. Prenominal Modifier Ordering

{ {

A woman in a bikini holding a surfboard.

And in
2015…
End-to-
End
Neural
Net

29	

!
!
!
!
!

Show, Attend and Tell: Neural
Image Caption Generation with
Visual Attention

Results	 from	 (Xu	 et	 al,	 arXiv	 Jan.	 2015)	

30	

Neural Image Caption Generation with Visual Attention

Table 1. BLEU-1,2,3,4/METEOR metrics compared to other methods, † indicates a different split, (—) indicates an unknown metric, �
indicates the authors kindly provided missing metrics by personal communication, ⌃ indicates an ensemble, a indicates using AlexNet

BLEU
Dataset Model B-1 B-2 B-3 B-4 METEOR

Flickr8k

Google NIC(Vinyals et al., 2014)†⌃
Log Bilinear (Kiros et al., 2014a)�

Soft-Attention
Hard-Attention

63
65.6
67
67

41
42.4
44.8
45.7

27
27.7
29.9
31.4

—
17.7
19.5
21.3

—
17.31
18.93
20.30

Flickr30k

Google NIC†�⌃

Log Bilinear
Soft-Attention
Hard-Attention

66.3
60.0
66.7
66.9

42.3
38

43.4
43.9

27.7
25.4
28.8
29.6

18.3
17.1
19.1
19.9

—
16.88
18.49
18.46

COCO

CMU/MS Research (Chen & Zitnick, 2014)a
MS Research (Fang et al., 2014)†a

BRNN (Karpathy & Li, 2014)�
Google NIC†�⌃

Log Bilinear�
Soft-Attention
Hard-Attention

—
—

64.2
66.6
70.8
70.7
71.8

—
—

45.1
46.1
48.9
49.2
50.4

—
—

30.4
32.9
34.4
34.4
35.7

—
—

20.3
24.6
24.3
24.3
25.0

20.41
20.71

—
—

20.03
23.90
23.04

randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we also used Whet-
lab1 (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models based in Theano
(Bergstra et al., 2010) publicly available upon publication
to encourage future research in this area.

5. Experiments
We describe our experimental methodology and quantita-
tive results which validate the effectiveness of our model
for caption generation.

1https://www.whetlab.com/

5.1. Data

We report results on the popular Flickr8k and Flickr30k
dataset which has 8,000 and 30,000 images respectively
as well as the more challenging Microsoft COCO dataset
which has 82,783 images. The Flickr8k/Flickr30k dataset
both come with 5 reference sentences per image, but for the
MS COCO dataset, some of the images have references in
excess of 5 for consistency across our datasets. We applied
only basic tokenization to MS COCO so that it is consistent
with the tokenization present in Flickr8k and Flickr30k.

Results for our attention-based architecture are reported in
Table 4.2.1. We report results with the frequently used
BLEU metric2 which is the standard in the caption gen-
eration literature. We report BLEU from 1 to 4 with-
out a brevity penalty. There has been, however, criticism
of BLEU, so in addition we report another common met-
ric METEOR (Denkowski & Lavie, 2014), and compare
whenever possible.

5.2. Evaluation Procedures

A few challenges exist for comparison, which we explain
here. The first is a difference in choice of convolutional
feature extractor. For identical decoder architectures, us-
ing more recent architectures such as GoogLeNet or Ox-

2We verified that our BLEU evaluation code matches the au-
thors of Vinyals et al. (2014), Karpathy & Li (2014) and Kiros
et al. (2014b). For fairness, we only compare against results for
which we have verified that our BLEU evaluation code is the
same. With the upcoming release of the COCO evaluation server,
we will include comparison results with all other recent image
captioning models.

The Good

31	

And the Bad

32	

Attention through time for video
caption generation

•  (Yao	 et	 al	 arXiv	 1502.08029,	 2015)	 Video	 Descrip/on	 Genera/on	
Incorpora/ng	 Spa/o-‐Temporal	 Features	 and	 a	 SoL-‐ANen/on	
Mechanism	

•  Aken@on	 can	 be	 focused	
	 	 	 	 	 temporally,	 i.e.,	 selec@ng	
	 	 	 	 	 input	 frames	

33	

a

man

…

…

…

…

Soft-Attention

…

Features-Extraction
Caption

Generation

…

…

Attention through time for video
caption generation (Yao et al 2015)

•  Aken@on	 is	 focused	 at	
appropriate	 frames	
depending	 on	 which	
word	 is	 generated.	

34	

Attention through time for video
caption generation (Yao et al 2015)
•  Soi-‐aken@on	 worked	 best	 in	 this	 sepng	

35	

Video Description Generation Incorporating Spatio-Temporal Features and a Soft-Attention Mechanism

Model Feature Bleu Meteor Perplexity
1 2 3 4 mb

non-attention GNet 77.3 60.7 49.3 39.1 38.6 28.68 33.09
GNet+3DConvnon-att 76.1 60.2 49.2 39.0 38.7 27.65 33.42

soft-attention GNet 79.1 63.2 51.2 40.6 40.3 29.00 27.89
GNet+3DConvatt 80.0 64.7 52.6 42.2 41.9 29.60 27.55

(Thomason et al., 2014) 13.68 23.9

(Venugopalan et al., 2014)
No Pretraining 31.19 26.87
Pretraining 33.29 29.07

Table 1. Attention and 3D-Conv performances evaluation on YouTube2Text. Blue 1-4, multiBlue (mb), Meteor and perplexity metrics
are reported.

Figure 3. A visualization of where the soft-attentional model “looks at” in a video, while generating the captions (captions included on
the left). Each word is mapped into a vector of ↵ in Equ. (6). Only bars in the same row are comparable, and their height reflects the
magnitude of ↵. The model is able to focus its attention on different frames of the video when generating different words in the caption.
Best viewed with zooming-in on pdf.

Model Feature Bleu Meteor Perplexity
1 2 3 4 mb

non-attention GNet 32.0 9.2 3.4 1.2 0.3 4.43 88.28
GNet+3DConvnon-att 33.6 10.4 4.3 1.8 0.7 5.73 84.41

soft-attention GNet 31.0 7.7 3.0 1.2 0.3 4.05 66.63
GNet+3DConvatt 28.2 8.2 3.1 1.3 0.7 5.6 65.44

Table 2. Attention and 3D-Conv performances evaluation on DVS. Blue 1-4, multiBlue (mb), Meteor and perplexity metrics are reported.

have encountered in this dataset is that its captions cover a
much wider domain, rending this task challenging for both
non-attention and attention models. According to Table 2,
by comparing on perplexity, the attention models improve
consistently upon non-attention models. Given the same
type of model, using GNet+3DConv. features also steadily

improves upon using GNet features alone. In fact, using
attention models offers about 20 improvement on perplex-
ity upon non-attention models. With the same model type,
using the combined features also results better Bleu and
Meteor, while the effect on Bleu and Meteor score across
model types is less obvious.

Generated	
cap@ons	

Attention Mechanisms for Memory
Access

•  Neural	 Turing	 Machines	 (Graves	 et	 al	 2014)	
•  and	 Memory	 Networks	 (Weston	 et	 al	 2014)	
•  Use	 a	 form	 of	 aken@on	 mechanism	 to	

control	 the	 read	 and	 write	 access	 into	 a	
memory	

•  The	 aken@on	 mechanism	 outputs	 a	 soimax	
over	 memory	 loca@ons	

•  For	 efficiency,	 the	 soimax	 should	 be	 sparse	
(mostly	 0’s),	 e.g.	 maybe	 using	 a	 hash-‐table	
formula@on.	

36	

write	

read	

Sparse Access Memory for Long-Term
Dependencies
•  Whereas	 LSTM	 memories	 always	 decay	 exponen@ally	 (even	 if	

slowly),	 a	 mental	 state	 stored	 in	 an	 external	 memory	 can	 stay	
for	 arbitrarily	 long	 dura@ons,	 un@l	 evoked	 for	 read	 or	 write.	

•  Need	 to	 replace	 the	 soi	 gater	 or	 soimax	 aken@on	 by	 hard	 one	
that	 is	 0	 most	 of	 the	 @me,	 and	 yet	 for	 which	 training	 works	
(again,	 may	 use	 noisy	 decisions	 and/or	 REINFORCE).	

•  Different	 «	 threads	 »	 can	 run	 in	 parallel	 if	 we	 view	 the	 memory	
as	 an	 associa@ve	 one.	

37	

passive	 copy	

access	

Conclusions

•  Aken@on	 mechanisms	 allow	 the	 learner	 to	 make	 a	 selec@on,	
soi	 or	 hard	

•  They	 have	 been	 extremely	 successful	 for	 machine	 transla@on	
and	 cap@on	 genera@on	

•  They	 could	 be	 interes@ng	 for	 speech	 recogni@on,	 especially	 if	 we	
used	 them	 to	 capture	 mul@ple	 @me	 scales	

•  They	 could	 be	 used	 to	 help	 deal	 with	 long-‐term	 dependencies,	
allowing	 some	 states	 to	 last	 for	 arbitrarily	 long	

38	

MILA: Montreal Institute for Learning Algorithms

