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Recurrent Neural Nebworles

e Selectively summarize an input sequence in a fixed-size state
vector via a recursive update

St = FH(St—lamt)

Iy
S St—1 St+1
unfold (T} i" ﬁ?‘
f/ shared ov rtlme
X Lt—1 Lt41

St — Gt(xta Lt—1yLt—2y 4L, 331)

=» Generalizes naturally to new lengths not seen during training
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Crenerative RNNs

e An RNN can represent a fully-connected directed generative
model: every variable predicted from all previous ones.

T
P(x) = P(z1,...27) = HP(SCt|CUt—1, Tt—9,...21)
t=1

Li_1 Ly Litq

Lt = — lOg P($t|xt—17$t—2a c. 5(31)




Increasing the E:xpress‘we Power of
KNNs m.l:k more Depth

e |CLR 2014, How to construct deep recurrent neural networks

+ deep hid-to-out
+ deep hid-to-hid
+deep in-to-hid

Ordinary RNNs Vi Vi
Zi i %
+ stacking N % he
h, y
- t

+ skip connections for
creating shorter paths



Bidirectional RNNs, Recursive Nets,
Multidimensional RNNs, etc,

e The unfolded architecture needs not be a straight chain

Bidirectional RNNs (Schuster and Paliwal, 1997)

Recursive (tree-structured)
Neural Nets:

. FORWARD
Frasconi et al 97 STATES

Socher et al 2011 )

\ (i-1,j) (i.)) (i,i-1)

See Alex Graves’s work, e.g., 2012

input layer (i) sional RNNs, Graves et al 2007)




(Wu et al, 2016, arXiv:

Mu&irticalzive IV\&Q‘I’QC&&OKS 1606.06630, NIPS2016)
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3.0 . .
e Multiplicative Integration RNNs: 59l :m‘pllulua&i'?n':me -
@) =-©— MI|-RNN-general
% 2.4f
* Replace (Wx + Uz +b)  £.,
* By gb(Waz G Uz + b) S 14

* Or more general: 1.5

10 15 20 25

¢((X ® Wx O Uz -+ /31 ® Uz -+ 132 ® WCBO—|— b)S number of epochs

WSJ Corpus CER WER
Experiments on speech DRNN+CTCbeamsearch [17]  10.0 14.1
recognition, but also on
language modeling and Encoder-Decoder [18] 6.4 93
learning word embeddings. LSTM+CTCbeamsearch [19] 9.2 8.7
Eesen [20] 7.3

LSTM+CTC+WEST (ours) 6.5 8.7
MI-LSTM+CTC+WEST (ours) 6.0 8.2




Learning Long-Term
Tﬁepemdeme&es wikh
Grradient Descent is

Difficult

Y. Bengio, P. Simard & P. Frasconi, IEEE Trans. Neural Nets, 1994



Robustly storing 1 bit in the presence
of bounded noise

e With spectral radius > 1, noise can kick state out of attractor

UNSTABLE

Domain of a;

e Not so with radius<1

CONTRACTIVE
-> STABLE



Storing Reliably

Reliably storing bits of information requires spectral radius<1

The product of T matrices whose spectral radius is < 1 is a matrix
whose spectral radius converges to O at exponential ratein T

L= L(sr(sT-1(--- St+1(8¢t5---))))

a_L 0L Ost 0S¢11
Os;  Osp Osp_1  Osy

e |f spectral radius of Jacobian is < 1 =» propagated gradients vanish



Why it hurts gradient-based Learning

e Long-term dependencies get a weight that is exponentially
smaller (in T) compared to short-term dependencies

801} 86} 8@7 0015 8at 80,7

Z * da, OW Z * da;\daz OW

t

Becomes exponentially smaller
for longer time differences,
when spectral radius < 1
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To store information robustly the
dynamics must be conktractive

11

The RNN gradient is a product of Jacobian matrices, each
associated with a step in the forward computation. To store
information robustly in a finite-dimensional state, the dynamics
must be contractive [Bengio et al 1994].

L =L(sr(sr—1(--.Stx+1(5¢,---))))
0L 0L 8ST 88t—|-1

. Storing bits
T *c robustly requires
ast aST aST_l (93,5 e-values<1
Problems:
Gradient
* e-values of Jacobians > 1 = gradients explode === . clipping
* or e-values < 1 = gradients shrink & vanish g‘ézc:;g' Mikolov

* or random =2 variance grows exponentially ICML2013)



Delays & Hierarchies ko Reach Farther

e Delays and multiple time scales, Elhihi & Bengio NIPS 1995,
Koutnik et al ICML 2014 é

e How to do this right?

e How to automatically S@
and adaptively do it? 3

Hierarchical RNNs (words / sentences):
Sordoni et al CIKM 2015, Serban et af =~~~
AAAl 2016

12 wow , i keep on bumping into you . i hope your mango



Fighting the vawnishing gradient:
LSTM & GRU

(Hochreiter 1991); first version of LSTM: (Hochreiter & Schmidhuber 1997)
the LSTM, called Neural Long-

Term Storage with self-loop output
new state = old state 4+ update
Create a path where Inew state
gradients can flow for Jold state
longer with a self-loop ~
selt-loop
Corresponds to an
eigenvalue of Jacobian ‘_<t t )
slightly less than 1
LSTM is now heavily used
(Hochreiter & Schmidhuber
1997) é
input input gate forget gate output gate

GRU light-weight version e 6 e

(Cho et al 2014) 4 \
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Fast Forward 20 years: Attention
Mechanisms for Memory Access

e Neural Turing Machines (Graves et al 2014)
e and Memory Networks (Weston et al 2014)

e Use a content-based attention mechanism
(Bahdanau et al 2014) to control the read
and write access into a memory

e The attention mechanism outputs a softmax
over memory locations
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Large Memory Networlkes: Sparse Access
Memory for Long-Term Dependencies

e Memory = part of the state
e Memory-based networks are special RNNs

e A mental state stored in an external memory can stay for arbitrarily
long durations, until it is overwritten (partially or not)

e Forgetting = vanishing gradient.
e Memory = higher-dimensional state, avoiding or reducing the need for
forgetting/vanishing
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What RNN architectures do you use
in your research?

Suaa

Simple RNN
Stacked RNN

POPOY

“Deep” RNN

: , Pascanu et al. 2013,
Skip connections P2
Graves et al. 2013 v



Depth in RNNs

What is Depth in
RNNs?

Feedforward
% Depth
Recurrent
Depth
(Architectural Complexity Measures of Recurrent Neural Networks '9.

o
S
Zhang et al 2016, arXiv:1602.08210) o'c"



Depth in RNNs

- Recurrent depth:
the length of the *longest* path over time,
divide by time 0.(m) 9)

d, = lim = max ;
n—+oc N VeC(G.) Og ('29)

- Feedforward depth:
consider the input-output nonlinearities while

eliminating the effect of recurrent depth

df = sup D;(n) —n-d,
1, NEL




Desighing the RNN Architecture

(Architectural Complexity Measures of Recurrent Neural Networks
Zhang et al 2016, arXiv:1602.08210)

e Recurrent depth: max path length divided by sequence length
. : max length from input to nearest output
e Skip coefficient: shortest path length divided sequence length

@ @,8 ,4 @,8 ,4

() :
o W ‘@#@

n] o pels frp1 fps [
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It malkees o difference

Impact of change in recurrent depth

DATASET MODELS\ARCHS sh st bu td
PennTreebank tanh RNN 1.54 1.59 1.54 1.49
tanh RNN-sMALL | 1.80 1.82 1.80 1.77

text8 tanh RNN-LARGE | 1.69 1.67 1.64 1.59
LSTM-SMALL 1.65 1.66 1.65 1.63

LSTM-LARGE 1.52 1.53 1.52 1.49

Impact of change in skip coefficient

84

PR

SGPHD

RNN(tanh)| s=1 s=5 s=9 s=13 s=21 LSTM |s=1 s=3 s=5 s=7 s=9
MNIST 349 469 749 854 8§7.8 MNIST | 56.2 87.2 864 864 &84.8
s=1 s=3 s=5 s=7 s=9 s=1 s=3 s=4 s=5 s=6
pMNIST | 49.8 79.1 843 88.9 88.0 pMNIST| 28.5 25.0 60.8 62.2 65.9
_Model MNIST _ pMNIST Architecture,s | (1,1 2),1 (3). & (&), k
1RNNJ25] 97.0 ~82.0 2
MNIST k=17 | 395 394 542 77.8
uRNNJ[24] 95.1 91.4
k=211 395 399 696 718
LSTM[24] 98.2 88.0
N N pMNIST k=5 | 555 666 747 81.2
RNN(tanh)[25] ~35.0 ~35.0 k=0 | 555 7.1 786 869
stanh(s =21, 11) 98.1 94.0 — i : i :

Table 2: Results for MNIST/pMNIST. Top-left: test accuracies with different s for tanh RNN. Top-right: test
accuracies with different s for LSTM. Bottom: compared to previous results. Bottom-right: test accuracies for
architectures (1), (2), (3) and (4) for tanh RNN.
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Near-Orthogonality to Help
Information Propagation

 Initialization to orthogonal recurrent W (Saxe et al 2013, ICLR2014)

(Arjowski, Amar &
Bengio ICML 2016)

W = D;R,F 'D,IIR, FD;

e Unitary matrices: all e-values of matrix are 1

(Krueger et al 2016,
5 submitted)
t
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Variational Generakive RNNs

‘ Injecting higher-level variations / latent variables in RNNs

22 be haomiencs - Vaore v -

(Chung et al, NIPS’2015)
Regular RNNs have noise injected only in input space

VRNNs also allow noise (latent variable) injected in top hidden

layer; more « high-level » variability
U duosile, I
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Variational Hierarchical RNNs for
Dialogue Generation (Serban et al 2016)

e Lower level = words of an utterance (turn of speech)
e Upper level = state of the dialogue
* Inject high-level choices w., ... wae _ Wi .. wap

prediction

context —

S

hidden state 8 -..

0O ©Ceo ©O

23 wi IR wi, N w2 1 e e un N



Hierarchical Multiscale Recurrenk

Neural Networlks
(Chung, Ahn & Bengio arXiv:1609,01704)

e How to learn to update higher-level states at the right
points in time, corresponding to slower time scales, but not

necessarily on a fixed (clockwork) schedule, rather an
adaptive, dynamic one?

e |f each level updates once every 10 steps of lower level
then 39 level updates once every 1000 raw steps!

* Advantage for propagating gradients for long-term
dependencies

e Computational advantage (but need HARD decisions)

24
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Hierarchical Multiscale Recurrent
Neural Networks: Gating Mechanism

e Decide to copy the current level
state vs updating it from lower-
level state

e |f updating it, restart the lower
level RNN, conditioned on upper- %19

level state he\ 1
 Need to take a binary decision in t—
order to actually get a pure copy U; K
and avoid leakage of gradients _gwiﬁ—l
@2

 Need that binary decision to be
stochastic to have a chance to 1 e—1
learn it

30



How to backprop through stochastic
binary decisions?

e REINFORCE: correlate the action with the reward, very high
variance estimator

e Straight-through estimator (Hinton 2012, Bengio, Leonard &
Courville arXiv 2013, Courbariaux et al NIPS 2015)

* Heuristic but worked very well in several settings
fprop

Anneal the slope during training

bproip

e MuProp (Gu et al ICLR 2016, arXiv 1511.05176) combines a soft
decision with a hard one, unbiased baseline of REINFORCE uses
the gradient of the loss wrt soft decision

e VIMCO (Mnih & Rezende ICLR 2016, arXiv:1602.06725)

31



Hierarchical Multiscale Recurrenk

Neural Networlks: Results
(Chung, Ahn & Bengio arXiv:1609,01704)

Text8

e Automatically Model BPC
. td-LSTM (Zhang et al., 2016) 1.63
segmenting so as HF-MRNN (Mikolov et al., 2012) 1.54
to better predict MI-RNN (Wu et al., 2016) 1.52
Skipping-RNN (Pachitariu and Sahani, 2013) 1.48
the next character MI-LSTM (Wu et al., 2016) 1.44
Batch-normalized LSTM (Cooijmans et al., 2016)  1.36
HM-LSTM 1.30

e SF-LSTM is not Hutter Prize Wikipedia
Model BPC
compara ble SF-LSTM (Rocki, 2016b)* 1.37
(changes Stacked LSTM (Graves, 2013) 167
MRNN (Sutskever et al., 2011) 1.60
parameters on the GF-LSTM (Chung et al., 2015a) 1.58
ﬂy) Grid-LSTM (Kalchbrenner et al., 2015) 1.47
MI-LSTM (Wu et al., 2016) 1.44

Recurrent Highway Networks (Zilly et al., 2016) 1.42
Recurrent Memory Array Structures (Rocki, 2016a)  1.40

Layer-normalized LSTM (Ba et al., 2016)! 1.46
32 HM-LSTM 1.37
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d grain. Ancient cultures also existed all along the [[Nile]]l], and in modern-day [[Ghana]
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Analysis
\» Penn Treebdnk Line 1 \p
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e Detected Boundaries by the HM-LSTM
) Penn Treebgnk Line 1 2
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| st layer: 270 updates, 2" layer: 54 upéates, 3 layer: 7 Spdates
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