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Why Unsupervised 
Representation Learning? 

•  Recent	progress	mostly	in	supervised	DL	
•  Real	technical	challenges	for	unsupervised	DL	
•  If	Y	is	a	cause	of	X,	then	learning	P(X)	can	help	P(Y|X)	

•  Poten6al	benefits:	
•  Exploit	tons	of	unlabeled	data	
•  Answer	new	ques6ons	about	the	variables	observed	
•  Regularizer	–	transfer	learning	–	domain	adapta6on	
•  Easier	op6miza6on	(local	training	signal)	
•  Structured	outputs	
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(Janzing	et	al	ICML	2012)		

Representa6on	&	outputs	=	explanatory	factors	of	X	



How do humans generalize 
from very few examples? 
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•  They	transfer	knowledge	from	previous	learning:	
•  Representa6ons	

•  Explanatory	factors	

•  Previous	learning	from:	unlabeled	data		

	 	 					 	+	labels	for	other	tasks	

•  Prior:	shared	underlying	explanatory	factors,	in	
par-cular	between	P(x)	and	P(Y|x),	causal	link	Y!X	
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Multi-Task Learning 
•  Generalizing	be`er	to	new	tasks	(tens	

of	thousands!)	is	crucial	to	approach	AI	
•  Example:	speech	recogni6on,	sharing	

across	mul6ple	languages	

•  Deep	architectures	learn	good	
intermediate	representa6ons	that	can	
be	shared	across	tasks	

					(Collobert	&	Weston	ICML	2008,	
					Bengio	et	al	AISTATS	2011)	

•  Good	representa6ons	that	disentangle	
underlying	factors	of	varia6on	make	
sense	for	many	tasks	because	each	
task	concerns	a	subset	of	the	
factors	
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raw input x 

task 1  
output y1 

task 3  
output y3 

task 2 
output y2 

Task	A	 Task	B	 Task	C	

Prior:	shared	underlying	explanatory	factors	between	tasks		
	

E.g.	dic6onary,	with	intermediate	
concepts	re-used	across	many	defini6ons	



x	and	y	represent	
different	modali6es,	
e.g.,	image,	text,	
sound…	
	
Can	provide	0-shot	
generaliza6on	to	new	
categories	(values	of	y)	
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Google Image Search 
Joint Embedding: different 

object types represented in same space 

Google:	
S.	Bengio,	J.	
Weston	&	N.	
Usunier	

(IJCAI	2011,	
NIPS’2010,	
JMLR	2010,	
ML	J	2010)	

WSABIE	objec6ve	func6on:	



Combining Multiple Sources of Evidence 
with Shared Representations 

•  Tradi6onal	ML:	data	=	matrix	
•  Rela6onal	learning:	mul6ple	sources,	

different	tuples	of	variables	
•  Share	representa6ons	of	same	types	

across	data	sources	
•  Shared	learned	representa6ons	help	

propagate	informa6on	among	data	
sources:	e.g.,	WordNet,	XWN,	
Wikipedia,	FreeBase,	ImageNet…
(Bordes	et	al	AISTATS	2012,	ML	J.	2013)	

•  FACTS	=	DATA	
•  Deduc-on	=	Generaliza-on	
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Deep Generative Learning: Hot Frontier 

•  Many	very	different	approaches	being	explored		
•  Exci6ng	area	of	research	

GAN		

DRAW: A Recurrent Neural Network For Image Generation

Table 3. Experimental Hyper-Parameters.
Task #glimpses LSTM #h #z Read Size Write Size
100 ⇥ 100 MNIST Classification 8 256 - 12 ⇥ 12 -
MNIST Model 64 256 100 2 ⇥ 2 5 ⇥ 5

SVHN Model 32 800 100 12 ⇥ 12 12 ⇥ 12

CIFAR Model 64 400 200 5 ⇥ 5 5 ⇥ 5

Time

Figure 10. SVHN Generation Sequences. The red rectangle in-
dicates the attention patch. Notice how the network draws the dig-
its one at a time, and how it moves and scales the writing patch to
produce numbers with different slopes and sizes.

 5060
 5080
 5100
 5120
 5140
 5160
 5180
 5200
 5220

 0  50  100  150  200  250  300  350

co
st

 p
er

 e
xa

m
pl

e

minibatch number (thousands)

training
validation

Figure 11. Training and validation cost on SVHN. The valida-
tion cost is consistently lower because the validation set patches
were extracted from the image centre (rather than from random
locations, as in the training set). The network was never able to
overfit on the training data.

Figure 12. Generated CIFAR images. The rightmost column
shows the nearest training examples to the column beside it.

5. Conclusion
This paper introduced the Deep Recurrent Attentive Writer
(DRAW) neural network architecture, and demonstrated its
ability to generate highly realistic natural images such as
photographs of house numbers, as well as improving on the
best known results for binarized MNIST generation. We
also established that the two-dimensional differentiable at-
tention mechanism embedded in DRAW is beneficial not
only to image generation, but also to cluttered image clas-
sification.
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VAE-DRAW	

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate in only one epoch.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated textures across multiple samples.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32⇥ 32 min-resized center crops. No data augmentation was applied to the images.
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Auto-Encoders 

input!x!

code!h!

reconstruc,on!r!

Decoder.g!

Encoder.f!
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Denoising	auto-encoder:	
During	training,	input	is	corrupted	
stochas6cally,	and	auto-encoder	must	
learn	to	guess	the	distribu6on	of	the	
missing	informa6on.	

Probabilis-c	criterion:	
	
Reconstruc6on	log-likelihood	=	
	
	-	log	P(x	|	h)	

P(h)	

P(x|h)	

Q(h|x)	

x	



Q(h1|x)

x

h1

h2

h3

P (x|h1)

P (h1|h2)

P (h2|h3)

P (h3)

Q(h2|h1)

Q(h3|h2)

Q(x)

Variational Auto-Encoders (VAEs) 

•  Parametric	approximate	
inference	

•  Successor	of	Helmholtz	
machine	(Hinton	et	al	‘95)	

•  Maximize	varia6onal	lower	
bound	on	log-likelihood:	

	
where														=	data	distr.		
or	equivalently	
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(Kingma	&	Welling	2013,	ICLR	2014)	
(Gregor	et	al	ICML	2014;	Rezende	et	al	ICML	2014)	
(Mnih	&	Gregor	ICML	2014;	Kingma	et	al,	NIPS	2014)	

	

minKL(Q(x, h)||P (x, h))
Q(x)

max

X

x

Q(h|x) log P (x, h)

Q(h|x) = max

X

x

Q(h|x) logP (x|h) +KL(Q(h|x)||P (h))



DRAW: Sequential Variational Auto-
Encoder with Attention 

•  Even	for	a	sta6c	input,	the	encoder	and	decoder	are	now	
recurrent	nets,	which	gradually	add	elements	to	the	answer,	
and	use	an	a`en6on	mechanism	to	choose	where	to	do	so.	
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(Gregor	et	al	of	Google	DeepMind,	arXiv	1502.04623,	2015)		
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Abstract
This paper introduces the Deep Recurrent Atten-

tive Writer (DRAW) neural network architecture
for image generation. DRAW networks combine
a novel spatial attention mechanism that mimics
the foveation of the human eye, with a sequential
variational auto-encoding framework that allows
for the iterative construction of complex images.
The system substantially improves on the state
of the art for generative models on MNIST, and,
when trained on the Street View House Numbers
dataset, it generates images that cannot be distin-
guished from real data with the naked eye.

1. Introduction
A person asked to draw, paint or otherwise recreate a visual
scene will naturally do so in a sequential, iterative fashion,
reassessing their handiwork after each modification. Rough
outlines are gradually replaced by precise forms, lines are
sharpened, darkened or erased, shapes are altered, and the
final picture emerges. Most approaches to automatic im-
age generation, however, aim to generate entire scenes at
once. In the context of generative neural networks, this typ-
ically means that all the pixels are conditioned on a single
latent distribution (Dayan et al., 1995; Hinton & Salakhut-
dinov, 2006; Larochelle & Murray, 2011). As well as pre-
cluding the possibility of iterative self-correction, the “one
shot” approach is fundamentally difficult to scale to large
images. The Deep Recurrent Attentive Writer (DRAW) ar-
chitecture represents a shift towards a more natural form of
image construction, in which parts of a scene are created
independently from others, and approximate sketches are
successively refined.

The core of the DRAW architecture is a pair of recurrent
neural networks: an encoder network that compresses the
real images presented during training, and a decoder that
reconstitutes images after receiving codes. The combined
system is trained end-to-end with stochastic gradient de-

Time

Figure 1. A trained DRAW network generating MNIST dig-
its. Each row shows successive stages in the generation of a sin-
gle digit. Note how the lines composing the digits appear to be
“drawn” by the network. The red rectangle delimits the area at-
tended to by the network at each time-step, with the focal preci-
sion indicated by the width of the rectangle border.

scent, where the loss function is a variational upper bound
on the log-likelihood of the data. It therefore belongs to the
family of variational auto-encoders, a recently emerged
hybrid of deep learning and variational inference that has
led to significant advances in generative modelling (Gre-
gor et al., 2014; Kingma & Welling, 2014; Rezende et al.,
2014; Mnih & Gregor, 2014; Salimans et al., 2014). Where
DRAW differs from its siblings is that, rather than generat-
ing images in a single pass, it iteratively constructs scenes
through an accumulation of modifications emitted by the
decoder, each of which is observed by the encoder.

An obvious correlate of generating images step by step is
the ability to selectively attend to parts of the scene while
ignoring others. A wealth of results in the past few years
suggest that visual structure can be better captured by a se-
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quence of partial glimpses, or foveations, than by a sin-
gle sweep through the entire image (Larochelle & Hinton,
2010; Denil et al., 2012; Tang et al., 2013; Ranzato, 2014;
Zheng et al., 2014; Mnih et al., 2014; Ba et al., 2014; Ser-
manet et al., 2014). The main challenge faced by sequential
attention models is learning where to look, which can be
addressed with reinforcement learning techniques such as
policy gradients (Mnih et al., 2014). The attention model in
DRAW, however, is fully differentiable, making it possible
to train with standard backpropagation. In this sense it re-
sembles the selective read and write operations developed
for the Neural Turing Machine (Graves et al., 2014).

The following section defines the DRAW architecture,
along with the loss function used for training and the pro-
cedure for image generation. Section 3 presents the selec-
tive attention model and shows how it is applied to read-
ing and modifying images. Section 4 provides experi-
mental results on the MNIST, Street View House Num-
bers and CIFAR-10 datasets, with examples of generated
images; and concluding remarks are given in Section 5.
Lastly, we would like to direct the reader to the video
accompanying this paper (https://www.youtube.
com/watch?v=Zt-7MI9eKEo) which contains exam-
ples of DRAW networks reading and generating images.

2. The DRAW Network
The basic structure of a DRAW network is similar to that of
other variational auto-encoders: an encoder network deter-
mines a distribution over latent codes that capture salient
information about the input data; a decoder network re-
ceives samples from the code distribuion and uses them to
condition its own distribution over images. However there
are three key differences. Firstly, both the encoder and de-
coder are recurrent networks in DRAW, so that a sequence

of code samples is exchanged between them; moreover the
encoder is privy to the decoder’s previous outputs, allow-
ing it to tailor the codes it sends according to the decoder’s
behaviour so far. Secondly, the decoder’s outputs are suc-
cessively added to the distribution that will ultimately gen-
erate the data, as opposed to emitting this distribution in
a single step. And thirdly, a dynamically updated atten-
tion mechanism is used to restrict both the input region
observed by the encoder, and the output region modified
by the decoder. In simple terms, the network decides at
each timestep “where to read” and “where to write” as
well as “what to write”. The architecture is sketched in
Fig. 2, alongside a conventional, feedforward variational
auto-encoder.

2.1. Network Architecture

Let RNN enc be the function enacted by the encoder net-
work at a single time-step. The output of RNN enc at time

read

x

zt zt+1

P (x|z1:T )write

encoder
RNN

sample

decoder
RNN

read

x
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RNN
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c

t�1

c

t

c

T

�

h

enc

t�1

h
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t�1

Q(zt|x, z1:t�1) Q(z

t+1
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1:t

)

. . .

decoding
(generative model)

encoding
(inference)

x

encoder
FNN

sample

decoder
FNN

z

Q(z|x)

P (x|z)

Figure 2. Left: Conventional Variational Auto-Encoder. Dur-
ing generation, a sample z is drawn from a prior P (z) and passed
through the feedforward decoder network to compute the proba-
bility of the input P (x|z) given the sample. During inference the
input x is passed to the encoder network, producing an approx-
imate posterior Q(z|x) over latent variables. During training, z
is sampled from Q(z|x) and then used to compute the total de-
scription length KL

�
Q(Z|x)||P (Z)

�
� log(P (x|z)), which is

minimised with stochastic gradient descent. Right: DRAW Net-
work. At each time-step a sample zt from the prior P (zt) is
passed to the recurrent decoder network, which then modifies part
of the canvas matrix. The final canvas matrix cT is used to com-
pute P (x|z1:T ). During inference the input is read at every time-
step and the result is passed to the encoder RNN. The RNNs at
the previous time-step specify where to read. The output of the
encoder RNN is used to compute the approximate posterior over
the latent variables at that time-step.

t is the encoder hidden vector h

enc
t

. Similarly the output of
the decoder RNN dec at t is the hidden vector h

dec
t

. In gen-
eral the encoder and decoder may be implemented by any
recurrent neural network. In our experiments we use the
Long Short-Term Memory architecture (LSTM; Hochreiter
& Schmidhuber (1997)) for both, in the extended form with
forget gates (Gers et al., 2000). We favour LSTM due to
its proven track record for handling long-range dependen-
cies in real sequential data (Graves, 2013; Sutskever et al.,
2014). Throughout the paper, we use the notation b = L(a)

to denote a linear weight matrix from the vector a to the
vector b.

At each time-step t, the encoder receives input from both
the image x and from the previous decoder hidden vector
h

dec
t�1

. The precise form of the encoder input depends on a
read operation, which will be defined in the next section.
The output h

enc
t

of the encoder is used to parameterise a
distribution Q(Z

t

|henc
t

) over the latent vector z

t

. In our
experiments the latent distribution is a diagonal Gaussian
N (Z

t

|µ
t

, �

t

):

µ

t

= L(h

enc

t

) (1)
�

t

= exp (L(h

enc

t

)) (2)

Bernoulli distributions are more common than Gaussians



DRAW Samples of SVHN Images: 
generated samples vs training nearest 
neighbor 

13	

DRAW: A Recurrent Neural Network For Image Generation

Figure 8. Generated MNIST images with two digits.

with attention it constructs the digit by tracing the lines—
much like a person with a pen.

4.3. MNIST Generation with Two Digits

The main motivation for using an attention-based genera-
tive model is that large images can be built up iteratively,
by adding to a small part of the image at a time. To test
this capability in a controlled fashion, we trained DRAW
to generate images with two 28 ⇥ 28 MNIST images cho-
sen at random and placed at random locations in a 60 ⇥ 60

black background. In cases where the two digits overlap,
the pixel intensities were added together at each point and
clipped to be no greater than one. Examples of generated
data are shown in Fig. 8. The network typically generates
one digit and then the other, suggesting an ability to recre-
ate composite scenes from simple pieces.

4.4. Street View House Number Generation

MNIST digits are very simplistic in terms of visual struc-
ture, and we were keen to see how well DRAW performed
on natural images. Our first natural image generation ex-
periment used the multi-digit Street View House Numbers
dataset (Netzer et al., 2011). We used the same preprocess-
ing as (Goodfellow et al., 2013), yielding a 64 ⇥ 64 house
number image for each training example. The network was
then trained using 54 ⇥ 54 patches extracted at random lo-
cations from the preprocessed images. The SVHN training
set contains 231,053 images, and the validation set contains

Figure 9. Generated SVHN images. The rightmost column
shows the training images closest (in L

2 distance) to the gener-
ated images beside them. Note that the two columns are visually
similar, but the numbers are generally different.

4,701 images.

A major challenge with natural image generation is how to
model the pixel colours. In this work we applied a simple
approximation where the normalised intensity of each of
the RGB channels was treated as an independent Bernoulli
probability. This approach has the advantage of being easy
to implement and train; however it does mean that the loss
function used for training does not match the true compres-
sion cost of the data.

The house number images generated by the network are
highly realistic, as shown in Figs. 9 and 10. Fig. 11 reveals
that, despite the long training time, the DRAW network un-
derfit the SVHN training data.

4.5. Generating CIFAR Images

The most challenging dataset we applied DRAW to was
the CIFAR-10 collection of natural images (Krizhevsky,
2009). CIFAR-10 is very diverse, and with only 50,000
training examples it is very difficult to generate realistic-
looking objects without overfitting (in other words, without
copying from the training set). Nonetheless the images in
Fig. 12 demonstrate that DRAW is able to capture much of
the shape, colour and composition of real photographs.

Nearest	training	
example	for	last	
column	of	samples	



Variational Generative RNNs 

•  (Chung	et	al,	NIPS’2015)	
•  Regular	RNNs	have	noise	injected	only	in	input	space	
•  VRNNs	also	allow	noise	(latent	variable)	injected	in	top	hidden	

layer;	more	«	high-level	»	variability	
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Other Descendants of the Helmholtz 
Machine 

•  Reweighted	Wake-Sleep	(Bornschein	&	Bengio	ICLR	2015)	

	

•  =	Wake-Sleep	with	K=1,		
systema6cally	works	be`er		
with	larger	K,	comparable	to	VAE	in		
performance	

15	

Uses	importance	sampling	
approxima6ons	



Other Descendants of the Helmholtz 
Machine 

•  Training	Bidirec6onal	Helmholtz	Machines,	(Bornschein	et	al.	
arXiv:1506.03877)	

•  Both	encoder	and	decoder	paths	par-cipate	in	the	energy	fn	

	

16	

A	lower	bound	
can	be	
maximized	



Encouraging News: Semisupervised 
Learning with Ladder Network 

•  Jointly	trained	stack	of	denoising	auto-encoders	with	gated	
lateral	connec6ons	and	semi-supervised	objec6ve	

	

17	

(Rasmus	et	al,	NIPS’2015)		
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Semi-supervised	objec6ve:	
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They	also	use	
Batch	Normaliza6on	

New	records:	
1%	error	with	100	labeled	examples	
.6%	with	60000	



parameters	

generated	
samples	

Bypassing Normalization Constants 
with Generative Black Boxes 
•  Instead	of	parametrizing	p(x),	

parametrize	a	machine	which	
generates	samples	

•  	(Goodfellow	et	al,	NIPS	2014,	GAN	=	
Genera6ve	Adversarial	Nets)	for	the	
case	of	ancestral	sampling	in	a	deep	
genera6ve	net.	Varia6onal	auto-
encoders	are	closely	related.	

•  (Bengio	et	al,	ICML	2014,	Genera6ve	
Stochas6c	Networks;	Sohl-Dickstein	et	
al	ICML	2015),	learning	the	transi6on	
operator	of	a	Markov	chain	that	
generates	the	data.	
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random	
numbers	

generated	
samples	

random	
numbers	

previous	state	

	next	state	

generated	
samples	

generated	
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NICE 
Nonlinear Independent Component Estimation 

•  Perfect	auto-encoder	g=f-1	
•  No	need	for	reconstruc6on	error	
•  Determinis6c	encoder,	no	need	for	entropy	term	
•  But	need	to	correct	for	density	scaling	

•  Exact	tractable	likelihood	

19	

(Dinh,	Krueger	&	Bengio	2014,	arxiv	1410.8516)	

log pX(x) = log pH(f(x)) + log

����det
@f(x)

@x

����
Factorized	prior	

PH(h) =
Y

i

PHi(hi)

f	 g=f-1	

Q(h)	

P(h)	



Denoising Auto-Encoder Markov Chain 

20	

Xt	

Xt	
~	 Xt+1	

~	

Xt+1	 Xt+2	

Xt+2	
~	

corrupt	
denoise	

•  NIPS’2013:	Denoising	AE	are	consistent	es6mators	of	the	data-
genera6ng	distribu6on	through	their	Markov	chain,	so	long	as	
they	consistently	es6mate	the	condi6onal	denoising	distribu6on	
and	the	Markov	chain	converges.	



X0 = x

Q(X1|X0)

P✓(X0|X1) P✓(Xt�1|Xt)

Q(Xt|Xt�1)

DAE with 1 step reconstruction
Diffusion inversion

Denoising Auto-Encoder vs Diffusion 
Inverter (Sohl-Dickstein et al ICML 2015) 

•  DAE:	aver	1	step	of	
diffusion	(adding	
noise,	Q),	try	to	
reconstruct	the	clean	
original	(with	P).	

•  Diffusion	inverter:	
aver	each	step	of	
diffusion,	try	to	
stochas6cally	undo	
the	effect	of	diffusion.	
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Adversarial nets framework 

2
2

GAN: Generative Adversarial Networks 

Generator	
Network	

Discriminator	
Network	

Fake	
Image	

Real	
Image	

Training	
Set	

Random	
Vector	

Random	
Index	

Goodfellow	et	al	NIPS	2014	



Laplacian Pyramid 

2
3

(Denton	+	Chintala,	et	al	2015)	

LAPGAN: Laplacian Pyramid of 
Generative Adversarial Networks 

http://soumith.ch/eyescream/	
	



LAPGAN results •  40%	of	samples	mistaken	by	humans	for	real	photos	

•  Sharper	images	than	max.	lik.	proxys	(which	min.	KL(data|model)):		
•  GAN	objec6ve	=	compromise	between	KL(data|model)	and	KL(model|data)	

24	

(Denton + Chintala, et al 2015)	

LAPGAN: Visual Turing Test 



Convolutional GANs 

Strided	convolu6ons,	batch	normaliza6on,	only	convolu6onal	
layers,	ReLU	and	leaky	ReLU	

25	

(Radford	et	al,	arXiv		1511.06343)	

Under review as a conference paper at ICLR 2016

Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate in only one epoch.

Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated textures across multiple samples.

4.3 IMAGENET-1K

We use Imagenet-1k (Deng et al., 2009) as a source of natural images for unsupervised training. We
train on 32⇥ 32 min-resized center crops. No data augmentation was applied to the images.
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Conclusions 
•  Although	unsupervised	learning	is	not	yet	in	industrial	

applica6ons,	it	is	a	key	for	future	large	scale	ones,	to	build	
machines	that	incorporate	knowledge	from	large	quan66es	of	
unlabeled	data.	

•  The	field	is	vibrant	with	many	different	approaches,	based	on	
many	alterna6ve	learning	principles.	

•  It	may	even	help	us	connect	deep	learning	with	brain	learning…	
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