Learning Representations for Unsupervised and Transfer Learning

Yoshua Bengio

CIFAR CANADIAN INSTITUTE FOR ADVANCED RESEARCH

December 12, 2015

Deep Learning, MIT Press book in **Deep Learning**, MIT Press book in preparation, draft chapters online for feedback Transfer and Multi-Task Learning

NIPS'2015 Workshop

Université 🕋 de Montréal

- Recent progress mostly in supervised DL
- Real technical challenges for unsupervised DL
- If Y is a cause of X, then learning P(X) can help P(Y|X)

(Janzing et al ICML 2012)

- Potential benefits:
 - Exploit tons of unlabeled data
 - Answer new questions about the variables observed
 - Regularizer transfer learning domain adaptation
 - Easier optimization (local training signal)
 - Structured outputs

How do humans generalize from very few examples?

- They **transfer** knowledge from previous learning:
 - Representations
 - Explanatory factors

• Previous learning from: unlabeled data

+ labels for other tasks

 Prior: shared underlying explanatory factors, in particular between P(x) and P(Y|x), causal link Y→X

Multi-Task Learning

- Generalizing better to new tasks (tens of thousands!) is crucial to approach AI
- Example: speech recognition, sharing across multiple languages
- Deep architectures learn good intermediate representations that can be shared across tasks
 (Collobert & Weston ICML 2008, Bengio et al AISTATS 2011)
- Good representations that disentangle underlying factors of variation make sense for many tasks because each task concerns a subset of the factors

E.g. dictionary, with intermediate concepts re-used across many definitions

Prior: shared underlying explanatory factors between tasks

Maps Between $h_x = f_x(x)$ $h_y = f_y(y)$ *x* and *y* represent different modalities, e.g., image, text, sound... *h_x = f_x(x) h_y = f_y(y) f_x f_y = f_y(y) <i>f_y = f_y(y) f_y = f_y(y) f_y = f_y(y) f_y = f_y(y) <i>f_y = f_y(y) f_y = f_y(y) f_y = f_y(y) <i>f_y = f_y(y) f_y = f_y(y) f_y = f_y(y) <i>f_y = f_y(y) f_y = f_y(y) f_y = f_y(y) <i>f_y = f_y(y) f_y = f_y(y) f_y = f_y(y) <i>f_y = f_y(y) f_y = f_y(y) f_y = f_y(y) <i>f_y = f_y(y) f_y = f_y(y) f_y = f_y(y)*

Can provide 0-shot generalization to new categories (values of y)

(Larochelle et al AAAI 2008)

- – ($oldsymbol{x},oldsymbol{y}$) pairs in the training set
- $\longrightarrow x$ -representation (encoder) function f_x
- rightarrow y -representation (encoder) function f_y
- ✓ relationship between embedded points within one of the domains
- \longleftrightarrow maps between representation spaces

Google Image Search Joint Embedding: different object types represented in same space

Google: S. Bengio, J. Weston & N. Usunier (IJCAI 2011, NIPS'2010

(IJCAI 2011, NIPS'2010, JMLR 2010, ML J 2010)

WSABIE objective function:

Learn $\Phi_{I}(\cdot)$ and $\Phi_{w}(\cdot)$ to optimize precision@k.

Combining Multiple Sources of Evidence with Shared Representations

- Traditional ML: data = matrix
- Relational learning: multiple sources, different tuples of variables
- Share representations of same types across data sources
- Shared learned representations help propagate information among data sources: e.g., WordNet, XWN, Wikipedia, FreeBase, ImageNet... (Bordes et al AISTATS 2012, ML J. 2013)
- FACTS = DATA
- Deduction = Generalization

Deep Generative Learning: Hot Frontier

- Many very different approaches being explored
- Exciting area of research

Auto-Encoders

Probabilistic criterion:

Reconstruction log-likelihood =

 $-\log P(x \mid h)$

Denoising auto-encoder:

During training, input is corrupted stochastically, and auto-encoder must learn to guess the distribution of the missing information.

Variational Auto-Encoders (VAEs)

 $P(h_3)$

 $P(h_2|h_3)$

 $P(h_1|h_2)$

 $P(x|h_1)$

Decoder = generator

 h_3

 h_2

 h_1

 \mathcal{X}

Q(x)

(Kingma & Welling 2013, ICLR 2014) (Gregor et al ICML 2014; Rezende et al ICML 2014) (Mnih & Gregor ICML 2014; Kingma et al, NIPS 2014)

- Parametric approximate inference
- Successor of Helmholtz machine (Hinton et al '95)
- Encoder = inference Maximize variational lower bound on log-likelihood: $\min KL(Q(x,h)||P(x,h))$ where Q(x) = data distr.

or equivalently

$$\max \sum_{x} Q(h|x) \log \frac{P(x,h)}{Q(h|x)} = \max \sum_{x} Q(h|x) \log P(x|h) + KL(Q(h|x)||P(h))$$

 $Q(h_3|h_2)$

 $Q(h_2|h_1)$

 $Q(h_1|x)$

DRAW: Sequential Variational Auto-Encoder with Attention

(Gregor et al of Google DeepMind, arXiv 1502.04623, 2015)

 Even for a static input, the encoder and decoder are now recurrent nets, which gradually add elements to the answer, and use an attention mechanism to choose where to do so.

DRAW Samples of SVHN Images: generated samples vs training nearest neighbor

Nearest training example for last column of samples

Variational Generative RNNs

• (Chung et al, NIPS'2015)

- Regular RNNs have noise injected only in input space
- VRNNs also allow noise (latent variable) injected in top hidden layer; more « high-level » variability

Other Descendants of the Helmholtz Machine

• Reweighted Wake-Sleep (Bornschein & Bengio ICLR 2015) $p(\mathbf{x}) = \sum_{\mathbf{h}} q(\mathbf{h} | \mathbf{x}) \frac{p(\mathbf{x}, \mathbf{h})}{q(\mathbf{h} | \mathbf{x})} = \underset{\mathbf{h} \sim q(\mathbf{h} | \mathbf{x})}{\mathbb{E}} \left[\frac{p(\mathbf{x}, \mathbf{h})}{q(\mathbf{h} | \mathbf{x})} \right]$

 $\simeq rac{1}{K} \sum_{k=1}^{K} rac{p(\mathbf{x}, \mathbf{h}^{(k)})}{q(\mathbf{h}^{(k)} | \mathbf{x})}$

Uses importance sampling approximations

$\mathbf{h}^{(k)} \sim q(\mathbf{h} \mid \mathbf{x})$	Results on binarized MNIST		
		NLL	NLL
• = Wake-Sleep with $K=1$,	Method	bound	est.
	RWS (SBN/SBN 10-100-200-300-400)		85.48
systematically works better	RWS (NADE/NADE 250)		85.23
	RWS (AR-SBN/SBN 500)†		84.18
with larger K, comparable to VAE	NADE (500 units, [1])		88.35
	EoNADE (2hl, 128 orderings, [2])		85.10
performance	DARN (500 units, [3])		84.13
•	RBM (500 units, CD3, [4])	105.5	
	RBM (500 units, CD25, [4])	86.34	
15	DBN (500-2000, [5])	86.22	84.55

Other Descendants of the Helmholtz Machine

- Training Bidirectional Helmholtz Machines, (Bornschein et al. arXiv:1506.03877)
- Both encoder and decoder paths participate in the energy fn

$$p^*(\mathbf{x}, \mathbf{h}_1, \mathbf{h}_2) = \frac{1}{Z} \sqrt{p(\mathbf{x}, \mathbf{h}_1, \mathbf{h}_2) q(\mathbf{x}, \mathbf{h}_1, \mathbf{h}_2)}$$

A lower bound can be maximized

$$q(\mathbf{x}) = p^*(\mathbf{x}) = \sum_{\mathbf{h}_1, \mathbf{h}_2} p^*(\mathbf{x}, \mathbf{h}_1, \mathbf{h}_2)$$

$$=\frac{\sqrt{q(\mathbf{x})}}{Z}\sum_{\mathbf{h}_1,\mathbf{h}_2}\sqrt{p(\mathbf{x},\mathbf{h}_1,\mathbf{h}_2)} q(\mathbf{h}_1|\mathbf{x})q(\mathbf{h}_2|\mathbf{h}_1)$$

 $=\left(\frac{1}{Z}\sum_{\mathbf{h}_1,\mathbf{h}_2}\sqrt{p(x,\mathbf{h}_1,\mathbf{h}_2) q(\mathbf{h}_1|\mathbf{x})q(\mathbf{h}_2|\mathbf{h}_1)}\right)$

16

Encouraging News: Semisupervised Learning with Ladder Network

(Rasmus et al, NIPS'2015)

 Jointly trained stack of denoising auto-encoders with gated lateral connections and semi-supervised objective

Semi-supervised objective:

$$-\log P(\tilde{\mathbf{y}} = t(n) \mid \mathbf{x}) + \sum_{l=1}^{L} \lambda_l \left\| \mathbf{z}^{(l)} - \hat{\mathbf{z}}_{BN}^{(l)} \right\|^2$$

They also use Batch Normalization

New records: 1% error with 100 labeled examples .6% with 60000

Bypassing Normalization Constants with Generative Black Boxes

- Instead of parametrizing p(x), parametrize a machine which generates samples
- (Goodfellow et al, NIPS 2014, GAN = Generative Adversarial Nets) for the case of ancestral sampling in a deep generative net. Variational autoencoders are closely related.
- (Bengio et al, ICML 2014, Generative Stochastic Networks; Sohl-Dickstein et
 al ICML 2015), learning the transition operator of a Markov chain that generates the data.

NICE Nonlinear Independent Component Estimation

(Dinh, Krueger & Bengio 2014, arxiv 1410.8516)

P(h)

Q(h)

g=f⁻¹

- Perfect auto-encoder $g=f^{-1}$
- No need for reconstruction error
- Deterministic encoder, no need for entropy term
- But need to correct for density scaling
- Exact tractable likelihood

$$\log p_X(x) = \log p_H(f(x)) + \log \left| \det p_X(x) - \log p_H(f(x)) \right|$$

Factorized prior

$$P_H(h) = \prod_i P_{H_i}(h_i)$$

Denoising Auto-Encoder Markov Chain

 NIPS'2013: Denoising AE are consistent estimators of the datagenerating distribution through their Markov chain, so long as they consistently estimate the conditional denoising distribution and the Markov chain converges.

Denoising Auto-Encoder vs Diffusion Inverter (Sohl-Dickstein et al ICML 2015)

- DAE: after 1 step of diffusion (adding noise, Q), try to reconstruct the clean original (with P).
- Diffusion inverter: after each step of diffusion, try to stochastically undo the effect of diffusion.

GAN: Generative Adversarial Networks

Goodfellow et al NIPS 2014

LAPGAN: Laplacian Pyramid of Generative Adversarial Networks

LAPGAN: Visual Turing Test

(Denton + Chintala, et al 2015)

• 40% of samples mistaken *by humans* for real photos

- Sharper images than max. lik. proxys (which min. KL(data|model)):
- GAN objective = compromise between KL(data|model) and KL(model|data)

Convolutional GANs

(Radford et al, arXiv 1511.06343)

Strided convolutions, batch normalization, only convolutional layers, ReLU and leaky ReLU

Conclusions

- Although unsupervised learning is not yet in industrial applications, it is a key for future large scale ones, to build machines that incorporate knowledge from large quantities of unlabeled data.
- The field is vibrant with many different approaches, based on many alternative learning principles.
- It may even help us connect deep learning with brain learning...

MILA: Montreal Institute for Learning Algorithms

