
Learning Deep Architectures

Yoshua Bengio, U. Montreal

CIFAR NCAP Summer School 2009

August 6th, 2009, Montreal

Main reference: “Learning Deep Architectures for AI”, Y. Bengio,
to appear in Foundations and Trends in Machine Learning, available on my web page.

Thanks to: Aaron Courville, Pascal Vincent, Dumitru Erhan, Olivier Delalleau, Olivier Breuleux, Yann LeCun,
Guillaume Desjardins, Pascal Lamblin, James Bergstra, Nicolas Le Roux, Max Welling, Myriam Côté,
Jérôme Louradour, Pierre-Antoine Manzagol, Ronan Collobert, Jason Weston

Deep Architectures Work Well

� Beating shallow neural networks on vision and NLP tasks

� Beating SVMs on visions tasks from pixels (and handling dataset � Beating SVMs on visions tasks from pixels (and handling dataset
sizes that SVMs cannot handle in NLP)

� Reaching state-of-the-art performance in NLP

� Beating deep neural nets without unsupervised component

� Learn visual features similar to V1 and V2 neurons

Deep Motivations

� Brains have a deep architecture

� Humans organize their ideas hierarchically, through composition
of simpler ideas

� Insufficiently deep architectures can be exponentially inefficient

� Distributed (possibly sparse) representations are necessary to
achieve non-local generalization, exponentially more efficient
than 1-of-N enumeration latent variable values

� Multiple levels of latent variables allow combinatorial sharing of
statistical strength

Locally Capture the Variations

Easy with Few Variations

The Curse of
Dimensionality

To generalise locally,
need representative
exemples for all
possible variations!

Limits of Local Generalization:
Theoretical Results

Theorem: Gaussian kernel machines need at least k examples

(Bengio & Delalleau 2007)

� Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

� Theorem: For a Gaussian kernel machine to learn some
maximally varying functions over d inputs require O(2d)
examples

Curse of Dimensionality When
Generalizing Locally on a Manifold

How to Beat the Curse of Many
Factors of Variation?

Compositionality: exponential gain in representational power

• Distributed representations

• Deep architecture

Distributed Representations

� Many neurons active simultaneously

� Input represented by the activation of a set of features that
are not mutually exclusive

� Can be exponentially more efficient than local representations

Local vs Distributed

Neuro-cognitive inspiration

� Brains use a distributed representation

� Brains use a deep architecture� Brains use a deep architecture

� Brains heavily use unsupervised learning

� Brains learn simpler tasks first

� Human brains developed with society
/ culture / education

Deep Architecture in the Brain

Area V2

Area V4

Primitive shape detectors

Higher level visual

abstractions

Retina

Area V1

pixels

Edge detectors

Deep Architecture in our Mind

� Humans organize their ideas and
concepts hierarchically

� Humans first learn simpler concepts and � Humans first learn simpler concepts and
then compose them to represent more
abstract ones

� Engineers break-up solutions into
multiple levels of abstraction and
processing

� Want to learn / discover these concepts

Deep Architectures and Sharing
Statistical Strength, Multi-Task Learning

� Generalizing better to new
tasks is crucial to approach
AI

task 1
output y1

task 3
output y3

task 2
output y2

� Deep architectures learn
good intermediate
representations that can be
shared across tasks

� A good representation is one
that makes sense for many
tasks

raw input x

shared
intermediate
representation h

Feature and
Sub-Feature Sharing

� Different tasks can share the same
high-level feature

���� …

���� …

��

��

task 1
output y1

task N
output yN

High-level features

high-level feature

� Different high-level features can be
built from the same set of lower-level
features

� More levels = up to exponential gain
in representational efficiency ������ …

������ ��…

������ ��…

��

Low-level features

Architecture Depth

Depth = 3Depth = 4

Deep Architectures are More Expressive

= universal approximator2 layers of

Logic gates
Formal neurons
RBF units

…

1 2 3 2
n

1 2 3

…

n

Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al 2007)

Functions compactly
represented with k layers may
require exponential size with k-1
layers

Sharing Components in a Deep Architecture

Polynomial expressed
with shared components:

advantage of depth
may grow exponentially

How to train Deep Architecture?

� Great expressive power of deep architectures� Great expressive power of deep architectures

� How to train them?

The Deep Breakthrough

� Before 2006, training deep architectures was unsuccessful,
except for convolutional neural nets

� Hinton, Osindero & Teh « A Fast Learning Algorithm for Deep
Belief Nets », Neural Computation, 2006Belief Nets », Neural Computation, 2006

� Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise
Training of Deep Networks », NIPS’2006

� Ranzato, Poultney, Chopra, LeCun « Efficient Learning of
Sparse Representations with an Energy-Based Model »,
NIPS’2006

Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)
� Supervised deep neural network

Good Old
Multi-Layer Neural Net

� Each layer outputs vector
from

���� ��…

���� ��…

from
of previous layer with params
(vector) and (matrix).

� Output layer predicts parametrized
distribution of target variable Y given
input

������ ��…

������ ��…

������ ��…

���� ��…

Training Multi-Layer Neural Nets

� Outputs: e.g. multinomial for multiclass
classification with softmax output units

���� ��…

���� ��…

� Parameters are trained by gradient-based
optimization of training criterion involving
conditional log-likelihood, e.g.

������ ��…

������ ��…

������ ��…

���� ��…

Effect of Unsupervised Pre-training
AISTATS’2009

Effect of Depth
w/o pre-training with pre-training

Boltzman Machines and MRFs

� Boltzmann machines:

(Hinton 84)

� Markov Random Fields:� Markov Random Fields:

� More interesting with latent variables!

Restricted Boltzman Machine

� The most popular
building block for
deep architecturesdeep architectures

� Bipartite undirected
graphical model

observed

hidden

RBM with (image, label) visible units

� Can predict a subset y
of the visible units
given the others x

hidden

given the others x

� Exactly if y takes only
few values

� Gibbs
sampling o/w label

image

RBMs are Universal Approximators

� Adding one hidden unit (with proper choice of parameters)
guarantees increasing likelihood

(LeRoux & Bengio 2008, Neural Comp.)

� With enough hidden units, can perfectly model any discrete
distribution

� RBMs with variable nb of hidden units = non-parametric

� Optimal training criterion for RBMs which will be stacked into a
DBN is not the RBM likelihood

RBM Conditionals Factorize

RBM Energy Gives Binomial Neurons

RBM Hidden Units Carve Input Space

������
h1 h2 h3

����
x1 x2

Gibbs Sampling in RBMs

h1 ~ P(h|x1) h2 ~ P(h|x2) h3 ~ P(h|x3)

P(h|x) and P(x|h) factorize

x2 ~ P(x|h1) x3 ~ P(x|h2) x1

� Easy inference

� Convenient Gibbs sampling
x�h�x�h…

Problems with Gibbs Sampling

In practice, Gibbs sampling does not always mix well…

RBM trained by CD on MNIST

Chains from random state

Chains from real digits

RBM trained by CD on MNIST

� Free Energy = equivalent energy when marginalizing

RBM Free Energy

� Can be computed exactly and efficiently in RBMs

� Marginal likelihood P(x) tractable up to partition function Z

Factorization of the Free Energy

Let the energy have the following general form:

Then

Energy-Based Models Gradient

Boltzmann Machine Gradient

� Gradient has two components:

“negative phase”“positive phase”

� In RBMs, easy to sample or sum over h|x
� Difficult part: sampling from P(x), typically with a Markov chain

“negative phase”“positive phase”

Training RBMs
Contrastive Divergence:

(CD-k)
start negative Gibbs chain at
observed x, run k Gibbs steps

Persistent CD:
(PCD)

run negative Gibbs chain in
background while weights slowly
changechange

Fast PCD: two sets of weights, one with a large
learning rate only used for negative
phase, quickly exploring modes

Herding: Deterministic near-chaos dynamical
system defines both learning and sampling

Tempered MCMC: use higher temperature to escape
modes

Contrastive Divergence

Contrastive Divergence (CD-k): start negative phase block
Gibbs chain at observed x, run k Gibbs steps (Hinton 2002)

h ~ P(h|x) h’ ~ P(h|x’)

Sampled x’
negative phase

Observed x
positive phase

k = 2 steps

x x’

Free
Energy

push down

push up

Persistent CD (PCD)

Run negative Gibbs chain in background while weights slowly
change (Younes 2000, Tieleman 2008):

• Guarantees (Younes 89, 2000; Yuille 2004)

• If learning rate decreases in 1/t,

chain mixes before parameters change too much,

Observed x
(positive phase)

new x’

h ~ P(h|x)

previous x’

chain mixes before parameters change too much,

chain stays converged when parameters change

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

FreeEnergy
push
down

Persistent CD with large learning rate

x

x’

push
up

Persistent CD with large step size

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

push

x

x’

FreeEnergy
push
down

Negative phase samples quickly push up the energy of
wherever they are and quickly move to another mode

FreeEnergy
push
down

Persistent CD with large learning rate

x

x’

push
up

Fast Persistent CD and Herding

� Exploit impressively faster mixing achieved when parameters
change quickly (large learning rate) while sampling

� Fast PCD: two sets of weights, one with a large learning rate
only used for negative phase, quickly exploring modes

� Herding (see Max Welling’s ICML, UAI and workshop talks):
0-temperature MRFs and RBMs, only use fast weights

Herding MRFs

� Consider 0-temperature MRF
with state s and weights w

� Fully observed case, observe � Fully observed case, observe
values s+, dynamical system
where s- and W evolve

� Then statistics of samples s-

match the data’s statistics,
even if approximate max, as
long as w remains bounded

Herding RBMs

� Hidden part h of the state s = (x,h)

� Binomial state variables si � {-1,1}

� Statistics f si, si sj� Statistics f si, si sj

� Optimize h given x in the
positive phase

� In practice, greedy maximization works, exploiting RBM structure

Fast Mixing with Herding

FPCD Herding

The Sampler as a Generative Model

� Instead of the traditional clean separation between model and
sampling procedure

� Consider the overall effect of combining some adaptive
procedure with a sampling procedure as the generative modelprocedure with a sampling procedure as the generative model

� Can be evaluated as such
(without reference to some underlying probability model)

Training data (x,y) Sampled data y

Query inputs x

� Annealing from high-temperature worked well for estimating
log-likelihood (AIS)

� Consider multiple chains at different temperatures and
reversible swaps between adjacent chains

Higher temperature chains can escape modes

Tempered MCMC

� Higher temperature chains can escape modes

� Model samples are from T=1

Sample Generation Procedure

Training Procedure TMCMC Gibbs (ramdom start) Gibbs (test start)

TMCMC 215.45 ± 2.24 88.43 ± 2.75 60.04 ± 2.88

PCD 44.70 ± 2.51 -28.66 ± 3.28 -175.08 ± 2.99

CD -2165 ± 0.53 -2154 ± 0.63 -842.76 ± 6.17

Deep Belief Networks

h2

h3

Top-level RBM

� DBN = sigmoidal belief net with RBM
joint for top two layers

sampled x

h1
� Sampling:

• Sample from top RMB

• Sample from level k given k+1

� Level k given level k+1 = same
parametrization as RBM conditional:
stacking RBMs � DBN

From RBM to DBN

� RBM specifies P(v,h) from
P(v|h) and P(h|v) h2

P(h1,h2) = RBM2

� Implicitly defines P(v)
and P(h)

� Keep P(v|h) from 1st RBM
and replace P(h) by the
distribution generated by
2nd level RBM

sampled x

h1

P(x|h1) from RBM1

P(h1,h2) = RBM2

Deep Belief Networks

� Easy approximate inference

• P(hk+1|hk) approximated from
the associated RBM

• Approximation because P(hk+1)
differs between RBM and DBN h1

h2

h3

Top-level RBM

differs between RBM and DBN

� Training:

• Variational bound justifies greedy
layerwise training of RBMs

• How to train all levels together?

sampled x

h1

Deep Boltzman Machines
(Salakhutdinov et al, AISTATS 2009, Lee et al, ICML 2009)

� Positive phase: variational
approximation (mean-field) h3

� Negative phase: persistent chain

� Can (must) initialize from stacked RBMs

� Improved performance on MNIST
from 1.2% to .95% error

� Can apply AIS with 2 hidden layers observed x

h1

h2

Estimating Log-Likelihood

� RBMs: requires estimating partition function

• Reconstruction error provides a cheap proxy

• Log Z tractable analytically for < 25 binary inputs or hidden• Log Z tractable analytically for < 25 binary inputs or hidden

• Lower-bounded (how well?) with Annealed Importance
Sampling (AIS)

� Deep Belief Networks:

Extensions of AIS (Salakhutdinov & Murray, ICML 2008, NIPS 2008)

� Open question: efficient ways to monitor progress

Deep Convolutional Architectures

Mostly from Le Cun’s group (NYU), also Ng (Stanford):
state-of-the-art on MNIST digits, Caltech-101 objects, faces

Convolutional DBNs
(Lee et al, ICML’2009)

Back to Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)
� Supervised deep neural network

Why are Classifiers Obtained from
DBNs Working so Well?

� General principles?

� Would these principles work for other single-level algorithms?

� Why does it work?

Stacking Auto-Encoders

Greedy layer-wise unsupervised pre-training also works with
auto-encoders

Auto-encoders and CD

RBM log-likelihood gradient can be written as converging
expansion: CD-k = 2 k terms, reconstruction error ~ 1 term.

(Bengio & Delalleau 2009)

Greedy Layerwise Supervised Training

Generally worse than unsupervised pre-training but better than
ordinary training of a deep neural network (Bengio et al. 2007).

Supervised Fine-Tuning is Important

� Greedy layer-wise
unsupervised pre-training
phase with RBMs or auto-
encoders on MNISTencoders on MNIST

� Supervised phase with or
without unsupervised
updates, with or without
fine-tuning of hidden
layers

� Can train all RBMs at the
same time, same results

Sparse Auto-Encoders

� Sparsity penalty on the intermediate codes

� Like sparse coding but with efficient run-time encoder

(Ranzato et al, 2007; Ranzato et al 2008)

� Sparsity penalty pushes up the free energy of all configurations
(proxy for minimizing the partition function)

� Impressive results in object classification (convolutional nets):

• MNIST .5% error = record-breaking

• Caltech-101 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)

� Similar results obtained with a convolutional DBN (Lee et al, ICML’2009)

Denoising Auto-Encoder

KL(reconstruction|raw input)
Hidden code
(representation)

(Vincent et al, 2008)

� Corrupt the input (e.g. set 25% of inputs to 0)

� Reconstruct the uncorrupted input

� Use uncorrupted encoding as input to next level

Corrupted input Raw input reconstruction

Denoising Auto-Encoder

� Learns a vector field towards
higher probability regions

� Minimizes variational lower bound
on a generative model

Corrupted input

on a generative model

� Similar to pseudo-likelihood

Corrupted input

Stacked Denoising Auto-Encoders

� No partition function, can
measure training criterion

� Encoder & decoder:
any parametrizationany parametrization

� Performs as well or better
than stacking RBMs for
usupervised pre-training

� Generative model is
semi-parametric

Infinite MNIST

Denoising Auto-Encoders: Benchmarks

Denoising Auto-Encoders: Results

Why is Unsupervised Pre-Training
Working So Well?

� Regularization hypothesis:

• Unsupervised component forces model close to P(x)• Unsupervised component forces model close to P(x)

• Representations good for P(x) are good for P(y|x)

� Optimization hypothesis:

• Unsupervised initialization near better local minimum of P(y|x)

• Can reach lower local minimum otherwise not achievable by
random initialization

Learning Trajectories in Function Space

� Each point a model
in function space

� Color = epoch

� Top: trajectories � Top: trajectories
w/o pre-training

� Each trajectory
converges in
different local min.

� No overlap of
regions with and
w/o pre-training

Unsupervised learning as regularizer

� Adding extra regularization
(reducing # hidden units)
hurts more the pre-trained
models

� Pre-trained models have � Pre-trained models have
less variance wrt training
sample

� Regularizer = infinite
penalty outside of region
compatible with
unsupervised pre-training

Better optimization of online error

� Both training and online error
are smaller with unsupervised
pre-training

� As # samples �� As # samples �
training err. = online err. =
generalization err.

� Without unsup. pre-training:
can’t exploit capacity to
capture complexity in target
function from training data

Pre-training lower layers more critical

Verifies that what
matters is not just the
marginal distribution marginal distribution
over initial weight
values

(Histogram init.)

The Credit Assignment Problem

� Even with the correct gradient, lower layers (far from the
prediction, close to input) are the most difficult to train

� Lower layers benefit most from unsupervised pre-training� Lower layers benefit most from unsupervised pre-training

• Local unsupervised signal = extract / disentangle factors

• Temporal constancy

• Mutual information between multiple modalities

� Credit assignment / error information not flowing easily?

� Related to difficulty of credit assignment through time?

Level-Local Learning is Important

� Initializing each layer of an unsupervised deep Boltzmann
machine helps a lot

� Initializing each layer of a supervised neural network as an
RBM helps a lotRBM helps a lot

� Helps most the layers further away from the target

� Not just an effect of unsupervised prior

� Jointly training all the levels of a deep architecture is difficult

� Initializing using a level-local learning algorithm
(RBM, auto-encoders, etc.) is a useful trick

Semi-Supervised Embedding

� Use pairs (or triplets) of examples which are known to
represent nearby concepts (or not)

Bring closer the intermediate representations of supposedly � Bring closer the intermediate representations of supposedly
similar pairs, push away the representations of randomly
chosen pairs

� (Weston, Ratle & Collobert, ICML’2008):
improved semi-supervised learning by combining
unsupervised embedding criterion with supervised gradient

Slow Features

� Successive images in a video = similar

� Randomly chosen pair of images = dissimilar

� Slowly varying features are likely to represent interesting � Slowly varying features are likely to represent interesting
abstractions

Slow features
1st layer

Learning Dynamics of Deep Nets

Before fine-tuning After fine-tuning

Learning Dynamics of Deep Nets

� As weights become larger, get
trapped in basin of attraction
(“quadrant” does not change)

� Initial updates have a crucial
influence (“critical period”),
explain more of the variance

� Unsupervised pre-training initializes
in basin of attraction with good
generalization properties

0

Order & Selection of Examples Matters

� Curriculum learning
(Bengio et al, ICML’2009; Krueger & Dayan 2009)

� Start with easier examples

� Faster convergence to a better local
minimum in deep architectures

� Also acts like a regularizer with
optimization effect?

� Influencing learning dynamics can
make a big difference

Continuation Methods

Track local minima

Final solution

Easy to find
minimum

Curriculum Learning as Continuation

� Sequence of
training distributions

3 • Most difficult examples

• Higher level abstractions

2

� Initially peaking on
easier / simpler ones

� Gradually give more
weight to more
difficult ones until
reach target
distribution

1
• Easiest
• Lower level
abstractions

Take-Home Messages

� Break-through in learning complicated functions:
deep architectures with distributed representations

� Multiple levels of latent variables:
potentially exponential gain in statistical sharing

Main challenge: training deep architectures� Main challenge: training deep architectures

� RBMs allow fast inference, stacked RBMs / auto-encoders
have fast approximate inference

� Unsupervised pre-training of classifiers acts like a strange
regularizer with improved optimization of online error

� At least as important as the model:
the inference approximations and the learning dynamics

Some Open Problems

� Why is it difficult to train deep architectures?

� What is important in the learning dynamics?

How to improve joint training of all layers?� How to improve joint training of all layers?

� How to sample better from RBMs and deep generative models?

� Monitoring unsupervised learning quality in deep nets?

� Other ways to guide training of intermediate representations?

� Capturing scene structure and sequential structure?

Thank you for your attention!

� Questions?

� Comments?

