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Deep Architectures Work Well

� Beating shallow neural networks on vision and NLP tasks

� Beating SVMs on visions tasks from pixels (and handling dataset � Beating SVMs on visions tasks from pixels (and handling dataset 
sizes that SVMs cannot handle in NLP)

� Reaching state-of-the-art performance in NLP

� Beating deep neural nets without unsupervised component

� Learn visual features similar to V1 and V2 neurons



Deep Motivations

� Brains have a deep architecture

� Humans organize their ideas hierarchically, through composition 
of simpler ideas

� Insufficiently deep architectures can be exponentially inefficient

� Distributed (possibly sparse) representations are necessary to 
achieve non-local generalization, exponentially more efficient 
than 1-of-N enumeration latent variable values

� Multiple levels of latent variables allow combinatorial sharing of 
statistical strength



Locally Capture the Variations



Easy with Few Variations



The Curse of
Dimensionality

To generalise locally, 
need representative 
exemples for all 
possible variations!



Limits of Local Generalization:
Theoretical Results

Theorem: Gaussian kernel machines need at least k examples 

(Bengio & Delalleau 2007)

� Theorem: Gaussian kernel machines need at least k examples 
to learn a function that has 2k zero-crossings along some line

� Theorem: For a Gaussian kernel machine to learn some 
maximally varying functions  over d inputs require O(2d) 
examples



Curse of Dimensionality When 
Generalizing Locally on a Manifold



How to Beat the Curse of Many 
Factors of Variation?

Compositionality: exponential gain in representational power

• Distributed representations

• Deep architecture



Distributed Representations

� Many neurons active simultaneously

� Input represented by the activation of a set of features that 
are not mutually exclusive

� Can be exponentially more efficient than local representations



Local vs Distributed



Neuro-cognitive inspiration

� Brains use a distributed representation

� Brains use a deep architecture� Brains use a deep architecture

� Brains heavily use unsupervised learning

� Brains learn simpler tasks first

� Human brains developed with    society 
/ culture / education



Deep Architecture in the Brain

Area V2

Area V4

Primitive shape detectors

Higher level visual 

abstractions

Retina

Area V1

pixels

Edge detectors



Deep Architecture in our Mind

� Humans organize their ideas and 
concepts hierarchically

� Humans first learn simpler concepts and � Humans first learn simpler concepts and 
then compose them to represent more 
abstract ones

� Engineers break-up solutions into 
multiple levels of abstraction and 
processing

� Want to learn / discover these concepts



Deep Architectures and Sharing 
Statistical Strength, Multi-Task Learning

� Generalizing better to new 
tasks is crucial to approach 
AI

task 1 
output y1

task 3 
output y3

task 2
output y2

� Deep architectures learn 
good intermediate 
representations that can be 
shared across tasks

� A good representation is one 
that makes sense for many 
tasks

raw input x

shared 
intermediate 
representation h



Feature and
Sub-Feature Sharing

� Different tasks can share the same 
high-level feature

���� …

���� …

��

��

task 1 
output y1

task N 
output yN

High-level features

high-level feature

� Different high-level features can be 
built from the same set of lower-level 
features

� More levels = up to exponential gain 
in representational efficiency ������ …

������ ��…

������ ��…

��

Low-level features



Architecture Depth

Depth = 3Depth = 4



Deep Architectures are More Expressive

= universal approximator2 layers of

Logic gates
Formal neurons
RBF units

…

1 2 3 2
n

1 2 3

…

n

Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al 2007)

Functions compactly 
represented with k layers may 
require exponential size with k-1 
layers



Sharing Components in a Deep Architecture

Polynomial expressed 
with shared components: 

advantage of depth 
may grow exponentially



How to train Deep Architecture?

� Great expressive power of deep architectures� Great expressive power of deep architectures

� How to train them?



The Deep Breakthrough

� Before 2006, training deep architectures was unsuccessful, 
except for convolutional neural nets

� Hinton, Osindero & Teh « A Fast Learning Algorithm for Deep 
Belief Nets », Neural Computation, 2006Belief Nets », Neural Computation, 2006

� Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise 
Training of Deep Networks », NIPS’2006

� Ranzato, Poultney, Chopra, LeCun « Efficient Learning of 
Sparse Representations with an Energy-Based Model », 
NIPS’2006



Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)
� Supervised deep neural network



Good Old 
Multi-Layer Neural Net

� Each layer outputs vector                                                                            
from           

���� ��…

���� ��…

from           
of previous layer with params       
(vector) and         (matrix).

� Output layer predicts parametrized 
distribution of target variable Y given 
input

������ ��…

������ ��…

������ ��…

���� ��…



Training Multi-Layer Neural Nets

� Outputs: e.g. multinomial for multiclass 
classification with softmax output units 

���� ��…

���� ��…

� Parameters are trained by gradient-based 
optimization of training criterion involving 
conditional log-likelihood, e.g.

������ ��…

������ ��…

������ ��…

���� ��…



Effect of Unsupervised Pre-training
AISTATS’2009 



Effect of Depth
w/o pre-training with pre-training



Boltzman Machines and MRFs

� Boltzmann machines:

(Hinton 84)

� Markov Random Fields:� Markov Random Fields:

� More interesting with latent variables!



Restricted Boltzman Machine

� The most popular 
building block for 
deep architecturesdeep architectures

� Bipartite undirected 
graphical model

observed

hidden



RBM with (image, label) visible units

� Can predict a subset y
of the visible units 
given the others x

hidden

given the others x

� Exactly if y takes only 
few values

� Gibbs                 
sampling o/w label

image



RBMs are Universal Approximators

� Adding one hidden unit (with proper choice of parameters) 
guarantees increasing likelihood 

(LeRoux & Bengio 2008, Neural Comp.)

� With enough hidden units, can perfectly model any discrete 
distribution

� RBMs with variable nb of hidden units = non-parametric

� Optimal training criterion for RBMs which will be stacked into a 
DBN is not the RBM likelihood



RBM Conditionals Factorize



RBM Energy Gives Binomial Neurons



RBM Hidden Units Carve Input Space

������
h1 h2 h3

����
x1 x2



Gibbs Sampling in RBMs

h1 ~ P(h|x1) h2 ~ P(h|x2) h3 ~ P(h|x3) 

P(h|x) and P(x|h) factorize

x2 ~ P(x|h1) x3 ~ P(x|h2) x1

� Easy inference

� Convenient Gibbs sampling 
x�h�x�h…



Problems with Gibbs Sampling

In practice, Gibbs sampling does not always mix well…

RBM trained by CD on MNIST

Chains from random state

Chains from real digits

RBM trained by CD on MNIST



� Free Energy = equivalent energy when marginalizing

RBM Free Energy

� Can be computed exactly and efficiently in RBMs

� Marginal likelihood P(x) tractable up to partition function Z



Factorization of the Free Energy

Let the energy have the following general form:

Then



Energy-Based Models Gradient



Boltzmann Machine Gradient

� Gradient has two components:

“negative phase”“positive phase”

� In RBMs, easy to sample or sum over h|x
� Difficult part: sampling from P(x), typically with a Markov chain

“negative phase”“positive phase”



Training RBMs
Contrastive Divergence: 

(CD-k)
start negative Gibbs chain at 
observed x, run k Gibbs steps

Persistent CD:
(PCD) 

run negative Gibbs chain in 
background while weights slowly 
changechange

Fast PCD: two sets of weights, one with a large
learning rate only used for negative 
phase, quickly exploring modes

Herding: Deterministic near-chaos dynamical 
system defines both learning and sampling

Tempered MCMC: use higher temperature to escape 
modes



Contrastive Divergence

Contrastive Divergence (CD-k): start negative phase block 
Gibbs chain at observed x, run k Gibbs steps (Hinton 2002)

h ~ P(h|x) h’ ~ P(h|x’)

Sampled x’
negative phase

Observed x
positive phase

k = 2 steps

x x’

Free 
Energy

push down

push up



Persistent CD (PCD)

Run negative Gibbs chain in background while weights slowly 
change (Younes 2000, Tieleman 2008):

• Guarantees (Younes 89, 2000; Yuille 2004)

• If learning rate decreases in 1/t, 

chain mixes before parameters change too much, 

Observed x
(positive phase)

new x’

h ~ P(h|x)

previous x’

chain mixes before parameters change too much, 

chain stays converged when parameters change



Negative phase samples quickly push up the energy of 
wherever they are and quickly move to another mode

FreeEnergy
push 
down

Persistent CD with large learning rate

x

x’

push 
up



Persistent CD with large step size

Negative phase samples quickly push up the energy of 
wherever they are and quickly move to another mode

push 

x

x’

FreeEnergy
push 
down



Negative phase samples quickly push up the energy of 
wherever they are and quickly move to another mode

FreeEnergy
push 
down

Persistent CD with large learning rate

x

x’

push 
up



Fast Persistent CD and Herding

� Exploit impressively faster mixing achieved when parameters 
change quickly (large learning rate) while sampling

� Fast PCD: two sets of weights, one with a large learning rate 
only used for negative phase, quickly exploring modes

� Herding (see Max Welling’s ICML, UAI and workshop talks):       
0-temperature MRFs and RBMs, only use fast weights



Herding MRFs

� Consider 0-temperature MRF 
with state s and weights w

� Fully observed case, observe � Fully observed case, observe 
values s+, dynamical system 
where s- and W evolve

� Then statistics of samples s-

match the data’s statistics,  
even if approximate max, as 
long as w remains bounded



Herding RBMs

� Hidden part h of the state s = (x,h)

� Binomial state variables si � {-1,1}

� Statistics f si, si sj� Statistics f si, si sj

� Optimize h given x in     the 
positive phase

� In practice, greedy maximization works, exploiting RBM structure 



Fast Mixing with Herding

FPCD Herding



The Sampler as a Generative Model

� Instead of the traditional clean separation between model and 
sampling procedure

� Consider the overall effect of combining some adaptive 
procedure with a sampling procedure as the generative modelprocedure with a sampling procedure as the generative model

� Can be evaluated as such                                                   
(without reference to some underlying probability model)

Training data (x,y) Sampled data y

Query inputs x



� Annealing from high-temperature worked well for estimating 
log-likelihood (AIS)

� Consider multiple chains at different temperatures and 
reversible swaps between adjacent chains

Higher temperature chains can escape modes

Tempered MCMC

� Higher temperature chains can escape modes

� Model samples are from T=1

Sample Generation Procedure

Training Procedure TMCMC Gibbs (ramdom start) Gibbs (test start)

TMCMC 215.45 ± 2.24 88.43 ± 2.75 60.04 ± 2.88

PCD 44.70 ± 2.51 -28.66 ± 3.28 -175.08 ± 2.99

CD -2165 ± 0.53 -2154 ± 0.63 -842.76 ± 6.17



Deep Belief Networks

h2

h3

Top-level RBM

� DBN = sigmoidal belief net with RBM 
joint for top two layers

sampled x

h1
� Sampling:

• Sample from top RMB

• Sample from level k given k+1

� Level k given level k+1 = same 
parametrization as RBM conditional: 
stacking RBMs � DBN



From RBM to DBN

� RBM specifies P(v,h) from 
P(v|h) and P(h|v) h2

P(h1,h2) = RBM2

� Implicitly defines P(v)
and P(h)

� Keep P(v|h) from 1st RBM 
and replace P(h) by the 
distribution generated by 
2nd level RBM

sampled x

h1

P(x|h1) from RBM1

P(h1,h2) = RBM2



Deep Belief Networks

� Easy approximate inference

• P(hk+1|hk) approximated from 
the associated RBM

• Approximation because P(hk+1) 
differs between RBM and DBN h1

h2

h3

Top-level RBM

differs between RBM and DBN

� Training:

• Variational bound justifies greedy 
layerwise training of RBMs

• How to train all levels together?

sampled x

h1



Deep Boltzman Machines
(Salakhutdinov et al, AISTATS 2009, Lee et al, ICML 2009)

� Positive phase: variational 
approximation (mean-field) h3

� Negative phase: persistent chain

� Can (must) initialize from stacked RBMs

� Improved performance on MNIST    
from 1.2% to .95% error

� Can apply AIS with 2 hidden layers observed x

h1

h2



Estimating Log-Likelihood

� RBMs: requires estimating partition function

• Reconstruction error provides a cheap proxy

• Log Z tractable analytically for < 25 binary inputs or hidden• Log Z tractable analytically for < 25 binary inputs or hidden

• Lower-bounded (how well?) with Annealed Importance 
Sampling (AIS)

� Deep Belief Networks:

Extensions of AIS (Salakhutdinov & Murray, ICML 2008, NIPS 2008)

� Open question: efficient ways to monitor progress



Deep Convolutional Architectures

Mostly from Le Cun’s group (NYU), also Ng (Stanford): 
state-of-the-art on MNIST digits, Caltech-101 objects, faces



Convolutional DBNs
(Lee et al, ICML’2009)



Back to Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)
� Supervised deep neural network



Why are Classifiers Obtained from 
DBNs Working so Well?

� General principles?

� Would these principles work for other single-level algorithms?

� Why does it work?



Stacking Auto-Encoders

Greedy layer-wise unsupervised pre-training also works with 
auto-encoders



Auto-encoders and CD

RBM log-likelihood gradient can be written as converging 
expansion: CD-k = 2 k terms, reconstruction error ~ 1 term.

(Bengio & Delalleau 2009)



Greedy Layerwise Supervised Training

Generally worse than unsupervised pre-training but better than 
ordinary training of a deep neural network (Bengio et al. 2007).



Supervised Fine-Tuning is Important

� Greedy layer-wise 
unsupervised pre-training 
phase with RBMs or auto-
encoders on MNISTencoders on MNIST

� Supervised phase with or 
without unsupervised 
updates, with or without 
fine-tuning of hidden 
layers

� Can train all RBMs at the 
same time, same results



Sparse Auto-Encoders

� Sparsity penalty on the intermediate codes

� Like sparse coding but with efficient run-time encoder

(Ranzato et al, 2007; Ranzato et al 2008)

� Sparsity penalty pushes up the free energy of all configurations 
(proxy for minimizing the partition function)

� Impressive results in object classification (convolutional nets):

• MNIST .5% error      = record-breaking

• Caltech-101 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)

� Similar results obtained with a convolutional DBN (Lee et al, ICML’2009)



Denoising Auto-Encoder

KL(reconstruction|raw input)
Hidden code
(representation)

(Vincent et al, 2008)

� Corrupt the input (e.g. set 25% of inputs to 0)

� Reconstruct the uncorrupted input

� Use uncorrupted encoding as input to next level

Corrupted input Raw input reconstruction



Denoising Auto-Encoder

� Learns a vector field towards 
higher probability regions

� Minimizes variational lower bound 
on a generative model

Corrupted input

on a generative model

� Similar to pseudo-likelihood

Corrupted input



Stacked Denoising Auto-Encoders

� No partition function, can 
measure training criterion

� Encoder & decoder:       
any parametrizationany parametrization

� Performs as well or better 
than stacking RBMs for 
usupervised pre-training

� Generative model is     
semi-parametric

Infinite MNIST



Denoising Auto-Encoders: Benchmarks



Denoising Auto-Encoders: Results



Why is Unsupervised Pre-Training 
Working So Well?

� Regularization hypothesis: 

• Unsupervised component forces model close to P(x)• Unsupervised component forces model close to P(x)

• Representations good for P(x) are good for P(y|x) 

� Optimization hypothesis:

• Unsupervised initialization near better local minimum of P(y|x)

• Can reach lower local minimum otherwise not achievable by 
random initialization



Learning Trajectories in Function Space

� Each point a model 
in function space

� Color = epoch

� Top: trajectories      � Top: trajectories      
w/o pre-training

� Each trajectory 
converges in 
different local min.

� No overlap of 
regions with and     
w/o pre-training



Unsupervised learning as regularizer

� Adding extra regularization 
(reducing # hidden units) 
hurts more the pre-trained 
models

� Pre-trained models have � Pre-trained models have 
less variance wrt training 
sample

� Regularizer = infinite 
penalty outside of region 
compatible with 
unsupervised pre-training



Better optimization of online error

� Both training and online error 
are smaller with unsupervised 
pre-training

� As # samples �� As # samples �
training err. = online err. = 
generalization err.

� Without unsup. pre-training: 
can’t exploit capacity to 
capture complexity in target 
function from training data



Pre-training lower layers more critical

Verifies that what 
matters is not just the 
marginal distribution marginal distribution 
over initial weight 
values 

(Histogram init.) 



The Credit Assignment Problem

� Even with the correct gradient, lower layers (far from the 
prediction, close to input) are the most difficult to train

� Lower layers benefit most from unsupervised pre-training� Lower layers benefit most from unsupervised pre-training

• Local unsupervised signal = extract / disentangle factors

• Temporal constancy

• Mutual information between multiple modalities

� Credit assignment / error information not flowing easily?

� Related to difficulty of credit assignment through time?



Level-Local Learning is Important

� Initializing each layer of an unsupervised deep Boltzmann 
machine helps a lot 

� Initializing each layer of a supervised neural network as an 
RBM helps a lotRBM helps a lot

� Helps most the layers further away from the target

� Not just an effect of unsupervised prior

� Jointly training all the levels of a deep architecture is difficult

� Initializing using a level-local learning algorithm                
(RBM, auto-encoders, etc.) is a useful trick  



Semi-Supervised Embedding

� Use pairs (or triplets) of examples which are known to 
represent nearby concepts (or not)

Bring closer the intermediate representations of supposedly � Bring closer the intermediate representations of supposedly 
similar pairs, push away the representations of randomly 
chosen pairs

� (Weston, Ratle & Collobert, ICML’2008):                           
improved semi-supervised learning by combining 
unsupervised embedding criterion with supervised gradient



Slow Features

� Successive images in a video = similar

� Randomly chosen pair of images = dissimilar

� Slowly varying features are likely to represent interesting � Slowly varying features are likely to represent interesting 
abstractions

Slow features 
1st layer



Learning Dynamics of Deep Nets

Before fine-tuning After fine-tuning



Learning Dynamics of Deep Nets

� As weights become larger, get 
trapped in basin of attraction 
(“quadrant” does not change)

� Initial updates have a crucial 
influence (“critical period”), 
explain more of the variance

� Unsupervised pre-training initializes 
in basin of attraction with good 
generalization properties

0



Order & Selection of Examples Matters

� Curriculum learning 
(Bengio et al, ICML’2009; Krueger & Dayan 2009) 

� Start with easier examples

� Faster convergence to a better local 
minimum in deep architectures

� Also acts like a regularizer with 
optimization effect?

� Influencing learning dynamics can 
make a big difference



Continuation Methods

Track local minima

Final solution

Easy to find 
minimum



Curriculum Learning as Continuation

� Sequence of 
training distributions

3 • Most difficult examples

• Higher level abstractions

2

� Initially peaking on 
easier / simpler ones

� Gradually give more 
weight to more 
difficult ones until 
reach target 
distribution

1
• Easiest
• Lower level
abstractions



Take-Home Messages

� Break-through in learning complicated functions:                  
deep architectures with distributed representations

� Multiple levels of latent variables:                                      
potentially exponential gain in statistical sharing

Main challenge: training deep architectures� Main challenge: training deep architectures

� RBMs allow fast inference, stacked RBMs / auto-encoders   
have fast approximate inference

� Unsupervised pre-training of classifiers acts like a strange 
regularizer with improved optimization of online error

� At least as important as the model:                                             
the inference approximations and the learning dynamics



Some Open Problems

� Why is it difficult to train deep architectures?

� What is important in the learning dynamics?

How to improve joint training of all layers?� How to improve joint training of all layers?

� How to sample better from RBMs and deep generative models?

� Monitoring unsupervised learning quality in deep nets?

� Other ways to guide training of intermediate representations?

� Capturing scene structure and sequential structure?



Thank you for your attention!

� Questions?

� Comments?


