
Learning Deep Architectures
Yoshua Bengio, U. Montreal

UAI 2009

June 19th, 2009, Montreal

Thanks to: Aaron Courville, Pascal Vincent, Dumitru Erhan, Olivier Delalleau,
Olivier Breuleux, Yann LeCun, Guillaume Desjardins, Pascal Lamblin, James
Bergstra, Nicolas Le Roux, Max Welling, Myriam Côté, Jérôme Louradour,
Ronan Collobert, Jason Weston

Deep Motivations

� Brains have a deep architecture

� Humans organize their ideas hierarchically, through
composition of simpler ideas

� Unsufficiently deep architectures can be exponentially � Unsufficiently deep architectures can be exponentially
inefficient

� Distributed (possibly sparse) representations are necessary to
achieve non-local generalization, exponentially more efficient
than 1-of-N enumeration latent variable values

� Multiple levels of latent variables allow combinatorial sharing of
statistical strength

Deep Architecture in the Brain

Area V2

Area V4

Primitive shape detectors

Higher level visual

abstractions

Retina

Area V1

pixels

Edge detectors

Deep Architecture in our Mind

� Humans organize their ideas and concepts hierarchically

� Humans first learn simpler concepts and then compose them to
represent more abstract onesrepresent more abstract ones

� Engineers break-up solutions into multiple levels of abstraction
and processing

It would be nice to learn / discover these concepts

(knowledge engineering failed because of poor introspection?)

Architecture Depth

Depth = 3
Depth = 4

Good News, Bad News

Theoretical arguments: deep architectures can be

2 layers of

logic gates

formal neurons

RBF units
= universal approximator

RBF units

…

1 2 3 2n

1 2 3

…

n

Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al 2007)

Functions representable

compactly with k layers may

require exponential size with

k-1 layers

The Deep Breakthrough

� Before 2006, training deep architectures was unsuccessful,
except for convolutional neural nets

� Hinton, Osindero & Teh « A Fast Learning Algorithm for Deep
Belief Nets », Neural Computation, 2006Belief Nets », Neural Computation, 2006

� Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise
Training of Deep Networks », NIPS’2006

� Ranzato, Poultney, Chopra, LeCun « Efficient Learning of
Sparse Representations with an Energy-Based Model »,
NIPS’2006

Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)

Deep Architectures and Sharing
Statistical Strength, Multi-Task Learning

� Generalizing better to
new tasks is crucial to
approach AI

� Deep architectures

task 1 output y1 task 3 output y3
task 2
output y2

� Deep architectures
learn good
intermediate
representations that
can be shared across
tasks

� A good representation
is one that makes sense
for many tasks

raw input x

shared
intermediate
representation h

Restricted Boltzmann Machines
� The most popular building block for deep architectures

� Bipartite undirected graphical model.

x=observed, h=hidden

� P(h|x) and P(x|h) factorize:� P(h|x) and P(x|h) factorize:

� Easy inference

� Convenient Gibbs sampling x�h�x�h…

� In practice, Gibbs sampling does not always mix well…

Chains from random state

Chains from real digit

RBM trained by CD on MNIST

Boltzmann Machine Gradient

� Gradient has two components:
‘positive phase’ and ‘negative phase’

� In RBMs, easy to sample or sum over h|x:

� Difficult part: sampling from P(x), typically with a Markov chain

Training RBMs
� Contrastive Divergence (CD-k): start negative Gibbs chain at
observed x, run k Gibbs steps.

� Persistent CD (PCD): run negative Gibbs chain in background
while weights slowly change

� Fast PCD: two sets of weights, one with a large learning rate
only used for negative phase, quickly exploring modes

� Herding (see Max Welling’s ICML, UAI and workshop talks)

� Tempered MCMC: use higher temperature to escape modes

Contrastive Divergence

� Contrastive Divergence (CD-k): start negative phase block
Gibbs chain at observed x, run k Gibbs steps (Hinton 2002)

h ~
P(h|x)

h’ ~ P(h|x’)

Sampled
negative
phase x’

Observed x
(positive
phase)

k = 2 steps

x x’

FreeEnergy
push down

push up

Persistent CD
� Persistent CD (PCD): run negative Gibbs chain in background
while weights slowly change (Younes 2000, Tieleman 2008)

� Guarantees (Younes 89,2000; Yuille 2004)

� If learning rate decreases in 1/t, chain mixes before parameters
change too much, chain stays converged when parameters
change.change.

Observed x
(positive phase)

new x’

h ~ P(h|x)

previous x’

� Negative phase samples quickly push up the energy of
whereever they are and quickly move to another mode

FreeEnergy
push
down

Persistent CD with large learning rate

x

x’

push
up

Persistent CD with large step size

� Negative phase samples quickly push up the energy of
whereever they are and quickly move to another mode

push

x

x’

FreeEnergy
push
down

� Negative phase samples quickly push up the energy of
whereever they are and quickly move to another mode

FreeEnergy
push
down

Persistent CD with large learning rate

x

x’

push
up

Fast Persistent CD and Herding

� Exploit impressively faster mixing achieved when parameters
change quickly (large learning rate) while sampling

� Fast PCD: two sets of weights, one with a large learning rate
only used for negative phase, quickly exploring modes

� Herding (see Max Welling’s ICML, UAI and workshop talks): 0-
temperature MRFs and RBMs, only use fast weightstemperature MRFs and RBMs, only use fast weights

FPCD
Herding

� Annealing from high-temperature worked well for estimating
log-likelihood (AIS)

� Consider multiple chains at different temperatures and
reversible swaps between adjacent chains

� Higher temperature chains can escape modes

Tempered MCMC

� Higher temperature chains can escape modes

� Model samples are from T=1

Deep Belief Networks

� Sampling:

� Sample from top RBM

� Sample from level k given k+1

� Easy approximate inference
h2

h3

Top-level RBM

� Training:

� Variational bound justifies greedy
layerwise training of RBMs

� How to train all levels together? sampled x

h1

Deep Boltzmann Machines
(Salakhutdinov et al, AISTATS 2009, Lee et al, ICML 2009)

� Positive phase: variational
approximation (mean-field)

� Negative phase: persistent chain h2

h3

� Negative phase: persistent chain

� Can (must) initialize from stacked RBMs

� Improved performance on MNIST from
1.2% to .95% error

� Can apply AIS with 2 hidden layers
observed x

h1

h2

Estimating Log-Likelihood

� RBMs: requires estimating partition function

� Reconstruction error provides a cheap proxy

� log Z tractable analytically for < 25 binary inputs or hidden� log Z tractable analytically for < 25 binary inputs or hidden

� Lower-bounded (how well?) with Annealed Importance Sampling
(AIS)

� Deep Belief Networks:

� Extensions of AIS (Salakhutdinov & Murray, ICML 2008, NIPS 2008)

� Open question: efficient ways to monitor progress

Back to Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)

Why are classifiers obtained from DBNs
working so well?

� General principles?

� Would these principles work for other single-level � Would these principles work for other single-level
algorithms?

� Why does it work?

Stacking Auto-Encoders

Auto-encoders and CD

RBM log-likelihood gradient can be written as converging
expansion: CD-k = 2 k terms, reconstruction error ~ 1 term.

(Bengio & Delalleau 2009)

Greedy Layerwise Supervised Training

Generally worse than unsupervised pre-training but better than
ordinary training of a deep neural network (Bengio et al. 2007).

Supervised Fine-Tuning is Important

� Greedy layer-wise
unsupervised pre-training
phase with RBMs or auto-
encoders on MNISTencoders on MNIST

� Supervised phase with or
without unsupervised
updates, with or without
fine-tuning of hidden
layers

� Can train all RBMs at the
same time, same results

Sparse Auto-Encoders

� (Ranzato et al, 2007; Ranzato et al 2008)

� Sparsity penalty on the intermediate codes

� Like sparse coding but with efficient run-time encoder

� Sparsity penalty pushes up the free energy of all configurations
(proxy for minimizing the partition function)

� Impressive results in object classification (convolutional nets):

• MNIST: .5% error = record-breaking

• Caltech-101: 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)

similar results obtained with a convolutional DBN: (Lee et al, ICML’2009)

Denoising Auto-Encoder

� (Vincent et al, 2008)

� Corrupt the input

� Reconstruct the uncorrupted input� Reconstruct the uncorrupted input
KL(reconstruction | raw input)

Hidden code (representation)

Corrupted input Raw input reconstruction

Denoising Auto-Encoder

� Learns a vector field towards higher
probability regions

� Minimizes variational lower bound on a
generative model

Corrupted input

generative model

� Similar to pseudo-likelihood

Corrupted input

Stacked Denoising Auto-Encoders

� No partition function,
can measure training
criterion

Encoder & decoder: � Encoder & decoder:
any parametrization

� Performs as well or
better than stacking
RBMs for usupervised
pre-training

Infinite MNIST

Why is Unsupervised Pre-Training
Working So Well?

� Regularization hypothesis:

• Unsupervised component forces model close to P(x)

• Representations good for P(x) are good for P(y|x)• Representations good for P(x) are good for P(y|x)

� Optimization hypothesis:

• Unsupervised initialization near better local minimum of P(y|x)

• Can reach lower local minimum otherwise not achievable by
random initialization

Learning Trajectories in Function Space

� Each point a model
in function space

� Color = epoch

� Top: trajectories w/o � Top: trajectories w/o
pre-training

� Each trajectory
converges in
different local min.

� No overlap of
regions with and w/o
pre-training

Unsupervised learning as regularizer
� Adding extra
regularization
(reducing # hidden
units) hurts more the
pre-trained models

� Pre-trained models � Pre-trained models
have less variance wrt
training sample

� Regularizer = infinite
penalty outside of
region compatible
with unsupervised pre-
training

Better optimization of online error

� Both training and online
error are smaller with
unsupervised pre-training

� As # samples �� As # samples �
training err. = online err. =
generalization err.

� Without unsup. pre-
training: can’t exploit
capacity to capture
complexity in target
function from training data

Learning Dynamics of Deep Nets

Before fine-tuning After fine-tuning

Learning Dynamics of Deep Nets

� As weights become larger, get
trapped in basin of attraction
(“quadrant” does not change)

� Initial updates have a crucial
influence (“critical period”),
explain more of the variance

� Unsupervised pre-training initializes
in basin of attraction with good
generalization properties

0

The order and selection of
examples makes a difference

� Curriculum learning (Bengio et al, ICML’2009; Krueger & Dayan 2009)

� Start with easier examples

� Faster convergence to a better local minimum in deep � Faster convergence to a better local minimum in deep
architectures

� Also acts like a regularizer with optimization effect?

� Influencing learning dynamics can make a big difference

Level-local learning is important

� Initializing each layer of an unsupervised deep Boltzmann
machine helps a lot

� Initializing each layer of a supervised neural network as an RBM
helps a lot

� Helps most the layers further away from the target

� Not just an effect of unsupervised prior

� Jointly training all the levels of a deep architecture is difficult

� Initializing using a level-local learning algorithm (RBM, auto-
encoders, etc.) is a useful trick

Take-Home Messages

� Multiple levels of latent variables: potentially exponential gain in
statistical sharing

� RBMs allow fast inference, stacked RBMs / auto-encoders have
fast approximate inference

� Gibbs sampling in RBMs does not mix well, but sampling and
learning can interact in surprisingly useful ways

� Unsupervised pre-training of classifiers acts like a strange
regularizer with improved optimization of online error

� At least as important as the model: the inference approximations
and the learning dynamics

Some Open Problems

� Why is it difficult to train deep architectures?

� What is important in the learning dynamics?

How to improve joint training of all layers?� How to improve joint training of all layers?

� How to sample better from RBMs and deep generative models?

� Monitoring unsupervised learning quality in deep nets?

� Other ways to guide training of intermediate representations?

THANK YOU FOR YOUR ATTENTION!

� Questions?

� Comments?

