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Deep Motivations

� Brains have a deep architecture

� Humans organize their ideas hierarchically, through 
composition of simpler ideas

� Unsufficiently deep architectures can be exponentially � Unsufficiently deep architectures can be exponentially 
inefficient

� Distributed (possibly sparse) representations are necessary to 
achieve non-local generalization, exponentially more efficient 
than 1-of-N enumeration latent variable values

� Multiple levels of latent variables allow combinatorial sharing of 
statistical strength



Deep Architecture in the Brain
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Deep Architecture in our Mind

� Humans organize their ideas and concepts hierarchically

� Humans first learn simpler concepts and then compose them to 
represent more abstract onesrepresent more abstract ones

� Engineers break-up solutions into multiple levels of abstraction 
and processing

It would be nice to learn / discover these concepts 

(knowledge engineering failed because of poor introspection?)



Architecture Depth

Depth = 3
Depth = 4



Good News, Bad News

Theoretical arguments: deep architectures can be

2 layers of 

logic gates

formal neurons

RBF units
= universal approximator

RBF units
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Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al 2007)

Functions representable 

compactly with k layers may 

require exponential size with 

k-1 layers



The Deep Breakthrough

� Before 2006, training deep architectures was unsuccessful, 
except for convolutional neural nets

� Hinton, Osindero & Teh « A Fast Learning Algorithm for Deep 
Belief Nets », Neural Computation, 2006Belief Nets », Neural Computation, 2006

� Bengio, Lamblin, Popovici, Larochelle « Greedy Layer-Wise 
Training of Deep Networks », NIPS’2006

� Ranzato, Poultney, Chopra, LeCun « Efficient Learning of 
Sparse Representations with an Energy-Based Model », 
NIPS’2006



Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)



Deep Architectures and Sharing 
Statistical Strength, Multi-Task Learning

� Generalizing better to 
new tasks is crucial to 
approach AI

� Deep architectures 

task 1 output y1 task 3 output y3
task 2
output y2

� Deep architectures 
learn good 
intermediate 
representations that 
can be shared across 
tasks

� A good representation 
is one that makes sense 
for many tasks

raw input x

shared 
intermediate 
representation h



Restricted Boltzmann Machines
� The most popular building block for deep architectures

� Bipartite undirected graphical model.

x=observed, h=hidden

� P(h|x) and P(x|h) factorize:� P(h|x) and P(x|h) factorize:

� Easy inference

� Convenient Gibbs sampling x�h�x�h…

� In practice, Gibbs sampling does not always mix well…

Chains from random state

Chains from real digit

RBM trained by CD on MNIST



Boltzmann Machine Gradient

� Gradient has two components:
‘positive phase’ and ‘negative phase’

� In RBMs, easy to sample or sum over h|x:

� Difficult part: sampling from P(x), typically with a Markov chain



Training RBMs
� Contrastive Divergence (CD-k): start negative Gibbs chain at 
observed x, run k Gibbs steps.

� Persistent CD (PCD): run negative Gibbs chain in background 
while weights slowly change

� Fast PCD: two sets of weights, one with a large learning rate 
only used for negative phase, quickly exploring modes

� Herding (see Max Welling’s ICML, UAI and workshop talks)

� Tempered MCMC: use higher temperature to escape modes



Contrastive Divergence

� Contrastive Divergence (CD-k): start negative phase block 
Gibbs chain at observed x, run k Gibbs steps (Hinton 2002)

h ~ 
P(h|x)

h’ ~ P(h|x’)

Sampled 
negative 
phase x’

Observed x
(positive 
phase)

k = 2 steps

x x’

FreeEnergy
push down

push up



Persistent CD
� Persistent CD (PCD): run negative Gibbs chain in background 
while weights slowly change (Younes 2000, Tieleman 2008)

� Guarantees (Younes 89,2000; Yuille 2004)

� If learning rate decreases in 1/t, chain mixes before parameters 
change too much, chain stays converged when parameters 
change.change.

Observed x
(positive phase)

new x’

h ~ P(h|x)

previous x’



� Negative phase samples quickly push up the energy of 
whereever they are and quickly move to another mode

FreeEnergy
push 
down

Persistent CD with large learning rate

x

x’

push 
up



Persistent CD with large step size

� Negative phase samples quickly push up the energy of 
whereever they are and quickly move to another mode

push 

x

x’

FreeEnergy
push 
down



� Negative phase samples quickly push up the energy of 
whereever they are and quickly move to another mode

FreeEnergy
push 
down

Persistent CD with large learning rate

x

x’

push 
up



Fast Persistent CD and Herding

� Exploit impressively faster mixing achieved when parameters 
change quickly (large learning rate) while sampling

� Fast PCD: two sets of weights, one with a large learning rate 
only used for negative phase, quickly exploring modes

� Herding (see Max Welling’s ICML, UAI and workshop talks): 0-
temperature MRFs and RBMs, only use fast weightstemperature MRFs and RBMs, only use fast weights

FPCD
Herding



� Annealing from high-temperature worked well for estimating 
log-likelihood (AIS)

� Consider multiple chains at different temperatures and 
reversible swaps between adjacent chains

� Higher temperature chains can escape modes

Tempered MCMC

� Higher temperature chains can escape modes

� Model samples are from T=1



Deep Belief Networks

� Sampling:

� Sample from top RBM

� Sample from level k given k+1

� Easy approximate inference
h2

h3

Top-level RBM

� Training:

� Variational bound justifies greedy 
layerwise training of RBMs

� How to train all levels together? sampled x

h1



Deep Boltzmann Machines
(Salakhutdinov et al, AISTATS 2009, Lee et al, ICML 2009)

� Positive phase: variational 
approximation (mean-field) 

� Negative phase: persistent chain h2

h3

� Negative phase: persistent chain

� Can (must) initialize from stacked RBMs

� Improved performance on MNIST from 
1.2% to .95% error

� Can apply AIS with 2 hidden layers
observed x

h1

h2



Estimating Log-Likelihood

� RBMs: requires estimating partition function

� Reconstruction error provides a cheap proxy

� log Z tractable analytically for < 25 binary inputs or hidden� log Z tractable analytically for < 25 binary inputs or hidden

� Lower-bounded (how well?) with Annealed Importance Sampling 
(AIS)

� Deep Belief Networks:

� Extensions of AIS (Salakhutdinov & Murray, ICML 2008, NIPS 2008)

� Open question: efficient ways to monitor progress



Back to Greedy Layer-Wise Pre-Training

Stacking Restricted Boltzmann Machines (RBM) � Deep Belief Network (DBN)



Why are classifiers obtained from DBNs 
working so well?

� General principles?

� Would these principles work for other single-level � Would these principles work for other single-level 
algorithms?

� Why does it work?



Stacking Auto-Encoders



Auto-encoders and CD

RBM log-likelihood gradient can be written as converging 
expansion: CD-k = 2 k terms, reconstruction error ~ 1 term.

(Bengio & Delalleau 2009)



Greedy Layerwise Supervised Training

Generally worse than unsupervised pre-training but better than 
ordinary training of a deep neural network (Bengio et al. 2007).



Supervised Fine-Tuning is Important

� Greedy layer-wise 
unsupervised pre-training 
phase with RBMs or auto-
encoders on MNISTencoders on MNIST

� Supervised phase with or 
without unsupervised 
updates, with or without 
fine-tuning of hidden 
layers

� Can train all RBMs at the 
same time, same results



Sparse Auto-Encoders

� (Ranzato et al, 2007; Ranzato et al 2008)

� Sparsity penalty on the intermediate codes

� Like sparse coding but with efficient run-time encoder

� Sparsity penalty pushes up the free energy of all configurations 
(proxy for minimizing the partition function)

� Impressive results in object classification (convolutional nets):

• MNIST: .5% error = record-breaking

• Caltech-101: 65% correct = state-of-the-art (Jarrett et al, ICCV 2009)

similar results obtained with a convolutional DBN: (Lee et al, ICML’2009)



Denoising Auto-Encoder

� (Vincent et al, 2008)

� Corrupt the input

� Reconstruct the uncorrupted input� Reconstruct the uncorrupted input
KL(reconstruction | raw input)

Hidden code (representation)

Corrupted input Raw input reconstruction



Denoising Auto-Encoder

� Learns a vector field towards higher 
probability regions

� Minimizes variational lower bound on a 
generative model

Corrupted input

generative model

� Similar to pseudo-likelihood

Corrupted input



Stacked Denoising Auto-Encoders

� No partition function, 
can measure training 
criterion

Encoder & decoder: � Encoder & decoder: 
any parametrization

� Performs as well or 
better than stacking 
RBMs for usupervised 
pre-training

Infinite MNIST



Why is Unsupervised Pre-Training 
Working So Well?

� Regularization hypothesis: 

• Unsupervised component forces model close to P(x)

• Representations good for P(x) are good for P(y|x)• Representations good for P(x) are good for P(y|x)

� Optimization hypothesis:

• Unsupervised initialization near better local minimum of P(y|x)

• Can reach lower local minimum otherwise not achievable by 
random initialization



Learning Trajectories in Function Space

� Each point a model 
in function space

� Color = epoch

� Top: trajectories w/o � Top: trajectories w/o 
pre-training

� Each trajectory 
converges in 
different local min.

� No overlap of 
regions with and w/o 
pre-training



Unsupervised learning as regularizer
� Adding extra 
regularization 
(reducing # hidden 
units) hurts more the 
pre-trained models

� Pre-trained models � Pre-trained models 
have less variance wrt 
training sample

� Regularizer = infinite 
penalty outside of 
region compatible 
with unsupervised pre-
training



Better optimization of online error

� Both training and online 
error are smaller with 
unsupervised pre-training

� As # samples �� As # samples �
training err. = online err. = 
generalization err.

� Without unsup. pre-
training: can’t exploit 
capacity to capture 
complexity in target 
function from training data



Learning Dynamics of Deep Nets

Before fine-tuning After fine-tuning



Learning Dynamics of Deep Nets

� As weights become larger, get 
trapped in basin of attraction 
(“quadrant” does not change)

� Initial updates have a crucial 
influence (“critical period”), 
explain more of the variance

� Unsupervised pre-training initializes 
in basin of attraction with good 
generalization properties

0



The order and selection of 
examples makes a difference

� Curriculum learning (Bengio et al, ICML’2009; Krueger & Dayan 2009) 

� Start with easier examples

� Faster convergence to a better local minimum in deep � Faster convergence to a better local minimum in deep 
architectures

� Also acts like a regularizer with optimization effect?

� Influencing learning dynamics can make a big difference



Level-local learning is important

� Initializing each layer of an unsupervised deep Boltzmann 
machine helps a lot 

� Initializing each layer of a supervised neural network as an RBM 
helps a lot

� Helps most the layers further away from the target

� Not just an effect of unsupervised prior

� Jointly training all the levels of a deep architecture is difficult

� Initializing using a level-local learning algorithm (RBM, auto-
encoders, etc.) is a useful trick  



Take-Home Messages

� Multiple levels of latent variables: potentially exponential gain in 
statistical sharing

� RBMs allow fast inference, stacked RBMs / auto-encoders have 
fast approximate inference

� Gibbs sampling in RBMs does not mix well, but sampling and 
learning can interact in surprisingly useful ways

� Unsupervised pre-training of classifiers acts like a strange 
regularizer with improved optimization of online error

� At least as important as the model: the inference approximations 
and the learning dynamics



Some Open Problems

� Why is it difficult to train deep architectures?

� What is important in the learning dynamics?

How to improve joint training of all layers?� How to improve joint training of all layers?

� How to sample better from RBMs and deep generative models?

� Monitoring unsupervised learning quality in deep nets?

� Other ways to guide training of intermediate representations?



THANK YOU FOR YOUR ATTENTION!

� Questions?

� Comments?


