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Needs knowledge
Needs Iearning

Needs generalization

Needs ways to fight the curse of dimensionality

Needs disentangling the underlying explanatory factors




Representation Learning

e Good features essential for successful ML: 90% of effort

raw represented MACHINE
input > by téreserd ml | | EARNING
data features

 Handcrafting features vs learning them

e Good representation?

* guesses
the features / factors / causes
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Following up ol (Bengio et al NIPS2000)
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Analogical Representations for Free
(Mc.kotov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome



DEQF Represehka&i.oh Learning

Learn multiple levels of representation

of increasing complexity/abstraction i
* theory: exponential gain hym—
X

* brains are deep
e cognition is compositional
e Better mixing (Bengio et al, ICML 2013)

e They work! SOTA on industrial-scale Al tasks
(object recognition, speech recognition,
language modeling, music modeling)



Learning mut&ipte levels BN
0{ TQPTQSQV\EQ&I:OV\ (Lee, Largman, Pham & Ng, NS 209)

) (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
g Layer 3 linguistic representations

Parts combine
to form objects
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Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...
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main

“Shallow” computer program
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'Dee.p Architectures are Mo»re
Expre.sswe.

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal opproximo‘ror
RBF units

RBMs & ou’ro encoders = universal approximat;
Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007, Bengio &

Delalleau 2011, Braverman 2011)

Some functions compactly
represented with k layers may
require exponential size with 2
layers




Breakthrough in 2006

e Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

* Unsupervised feature learners:
* RBMs

e  Auto-encoder variants
Sparse coding variants
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Stacking Single-Layer Learners

e One of the big ideas from 2006: layer-wise unsupervised feature

learning : OOOOO00) by,

! RBM '
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RBM for x RBM for hy RBM for y and hy

Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)

Stacking regularized auto-encoders - deep neural nets
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‘Dee.p Supervi.se.d Neural Nets

e Now can train them even without
unsupervised pre-training:
better initialization and non-
linearities (rectifiers, maxout),
generalize well with large labeled
sets and regularizers (dropout)

 Unsupervised pre-training:
rare classes, transfer, smaller

labeled sets, or as extra
regularizer.
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Deep Learning in the News
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S 10 BREAKTHROUGH
= TECHNOLOGIES 2013
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The dramatic impact of Dee

Learhing o Speech Recognition

Word error rate on Switchboard
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Some Applications of DL

Language Modeling (Speech Recognition, Machine Translation)
Acoustic Modeling (speech recognition, music modeling)

NLP syntactic/semantic tagging (Part-Of-Speech, chunking,
Named Entity Recognition, Semantic Role Labeling, Parsing)

NLP applications: sentiment analysis, paraphrasing, question-
answering, Word-Sense Disambiguation

Object recognition in images: photo search and image search:
handwriting recognition, document analysis, handwriting
synthesis, superhuman traffic sign classification, street view
house numbers, emotion detection from faaal images roads
from satellites. ] '




How do humans generalize
from very few examples?

They transfer knowledge from previous learning:
* Abstract (i.e. deep) representations

Explanatory factors
Previous learning from: unlabeled data

+ labels for other tasks
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Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data
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Undirected Models:

the Restricted Il Boltzmann Machine
[Hinton et al 2006] 42

e Latent (hidden) variables h model high-order
_ h, h, h,
dependencies
 No easy way to compute exact normalization &

gradient, but MCMC approximations are used

e See Bengio (2009) detailed monograph/review: ﬂ

“Learning Deep Architectures for Al”.
e See Hinton (2010)
“A practical guide to training Restricted Boltzmann Machines”



Restricted Boltzmann Machine

(RBM)
P(l’, h) — %ebTh-i-cTa:-l—hTWx _ %62"' bihi‘*‘zj cjxj+zi,j h'i,Wli,jxj

Needs to sample

examples generated ) n hidden
by the model during AR AR

training to estimate
gradient through Z,

using MCMC

x Observed



Denoising Auto-Encoder

(Vincent et al 2008)

e Alternative building-block
e Corrupt the input
e Try to reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)

[C0O0 L.
EOROO)-— (00000 (00000
Corrupted input Raw input reconstruction

* Novel probabilistic interpretations: score matching (Vincent 2011,

Alain & Bengio ICLR 2013) or as the transition kernel of a Markov chain | '}
(Bengio et al, NIPS 2013) é‘ l



Stochastic Neurons as Regqularizer:
Improving neural networks by preventing co-adaptation of

feature detectors (Hinkown ek al 2012, arXiv)

e Dropouts trick: during training multiply neuron output by
random bit (p=0.5), during test by 0.5

e Generalize denoising auto-encoders, by corrupting every layer

e \Works better with rectifiers, even better with maxout
(Goodfellow et al. ICML 2013)

e Equivalent to averaging over exponentially many architectures
* Used by Krizhevsky et al to break through ImageNet SOTA
* Also improves SOTA on CIFAR-10 (18—2>16% err)
* Knowledge-free MNIST with DBMs (.95->.79% err)
e TIMIT phoneme classification (22.7219.7% err)
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A Prior for Temporal & Spatial Inputs:
Convolutional &r Recurrent Nets

e Local connectivity across time/space
e Sharing weights across time/space (translation equivariance)

e Pooling (translation invariance, cross-channel pooling for learned invariances)
Input layer (S1) 4 feature maps

(Cl) 4 feature maps (S2) 6 feature maps

(C2) 6 feature maps

l sub-sampling layer l convolution layer l sub-sampling layer lfully connected MLPI

204><2048 dense
Xt1 X

Xti1

e dense|

Il Recurrent nets (RNNs) can summarize
information from the past

Bidirectional RNNs also summarize
)5 information from the future



Deep / Recurrent Nets for Modeling
Sequences in Music & Language

* (Boulanger, Bengio & Vincent, ICML 2012)

* Recurrent nets + RBMs Y
SOTA ¢ Acoustics = musical score h
* (Bengio, Boulanger & Pascanu, ICASSP 2013) P
e Optimization techniques for recurrent nets N

* Symbolic sequences (music, language)
e (Pascanu, Mikolov & Bengio, ICML 2013)
* Handling longer-term dependencies

* Symbolic sequences (music, language)
26



What differences with
Neural Nets of the 90's?

e QOther kinds of hierarchies are possible (e.g. A. Yuille, D. McAllester )
e Bigger models

* Better training

e Initialization: information flow (Jacobians e-values closer to 1)
* Symmetry breaking: initialization, sparsity regularization and non-
linearities (rectifier, maxout, etc.)
e Unsupervised and multi-task learning = better transfer learning
e Larger labeled sets: the advantage increases!

e Better regularizers (dropout, injected noise, temporal coherence)
27



Deep Learning Tricks of the Trade

e Y.Bengio (2013), “Practical Recommendations for Gradient-Based
Training of Deep Architectures”

(arXiv paper or chapter of Tricks of the Trade 2013 book)
* Unsupervised pre-training
* Stochastic gradient descent and setting learning rates

* Hyper-parameters
Learning rate schedule
Early stopping
Minibatches

Parameter initialization
Number of hidden units
L1 and L2 weight decay
e Sparsity regularization

* Debugging

. How to efficiently search for hyper-parameter configurations



Deer; Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts

29



Invariance and Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality

30



Emergence of 'Dusenkangtmg

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot et al. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)

31



Broad Priors as Hinks to Disentangle
the Factors of Variakion

e Multiple factors: distributed representations

e Multiple levels of abstraction: depth

e Semi-supervised learning: Y is one of the factors explaining X
e Multi-task learning: different tasks share some factors

e Manifold hypothesis: probability mass concentration

e Natural clustering: class = manifold, well-separated manifolds
e Temporal and spatial coherence

e Sparsity: most factors irrelevant for particular X

e Simplicity of factor dependencies (in the right representation)

32



Sharing Factors

e Across tasks (multi-task learning), between inputs
and target variables (semi-supervised learning).

semi-
supervised

purely
supervised

33



Sparse Represavxka&i.ans

e Just add a sparsifying penalty on learned representation
(prefer Os in the representation)

e Information disentangling (compare to dense compression)
e More likely to be linearly separable (high-dimensional space)

e Locally low-dimensional representation = local chart
e Hi-dim. sparse = efficient variable size representation
= data structure

Few bits of information Many bits of information

H B I .

Prior: only few concepts and attributes relevant per example

34




Linear Reta&iov\ski.ps i errese.n&a!:iov\
Spaw.:e.

e (Mikolov et al, ICLR 2013) Semantic relations appear as linear
relationships in the space of learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France
Italy
([
Another earlier use of such a prior, for
computer vision: Hinton’s capsules

° (ICANN’2011)
Paris

Rome
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Cownclusions

e Deep Learning has matured
e Int. Conf. on Learning Representation 2013 a huge success!

e Industrial applications (Google, Microsoft, Baidu, Facebook, ...)

e Room for future breakthroughs:
e Scaling computation
* Optimization

Intractable marginalizations
* more disentangled abstractions
* Reason from incrementally added facts
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