Non-local manifold learning by
regularized auto-encoders

Yoshua Bengio
U. Montreal

Thanks to: Pascal Vincent, Salah Rifai, Yann Dauphin,
Grégoire Mesnil, Li Yao, Guillaume Alain + many more

October 22™ 2013

Masterclass lecture, UCL Center for Computational
Statistics and Machine Learning

Universiteé l'"‘\

de Montréal LISA “77




Greomelbrical view on machine Learning

e Learning as the estimation of a probability function
e Generalization: guessing where probability mass concentrates

e Challenge: the curse of dimensionality (exponentially many
configurations of the variables to consider)
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Easy Learning

learned function: prediction = f(x)




Not bime:nsionati&v so much as
Number of Variations ‘

e Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

M
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e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(2¢)
examples




However, Real Data Are near Highly
urved Sub-MamfoLds

e Additional prior: examples concentrate near a lower

dimensional “manifold” (region of high density with only few
operations allowed which allow small changes while staying on
the manifold)

- variable dimension locally?
- Soft # of dimensions?

transformatlon
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raw input vector space




Putting Probability Mass where
Structure is Plausible

e Empirical distribution: mass at
training examples

e Smoothness: spread mass around

e |nsufficient

e Guess some ‘structure’ and
generalize accordingly



Is there any ho pe to
generalize v\ov\%ocattv?

Yes! Need gqood pri.ors!



Bypassing the curse

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently
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The need for distributed representations

e (lustering, Nearest-
Neighbors, RBF SVMs, local
non-parametric density
estimation & prediction,
decision trees, etc.

Clustering

e Parameters for each
distinguishable region

LOCAL PARTITION

e # of distinguishable regions
is linear in # of parameters

- No non-trivial generalization to regions without examples



The need for distributed representations
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Multi-

i Sub—partition 3
Cluste rng P Sub—partition 2

Factor models, RBMs, Neural G hen
Nets, Sparse Coding, Deep et
Learning, etc. Sub—partition 1 -

Each parameter influences

many regions, not just local S e C
neighbors =
# of distinguishable regions | e sammoy
grows almost exponentially Non-muitually

C1 C2 3 exclusive features/

with # of parameters _
attributes create a

GENERALIZE NON-LOCALLY combinatorially large
TO NEVER-SEEN REGIONS set of distinguishable
configurations
input



Directed Factor Models:
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‘P(x,k).-‘?(k)‘?(xlh)

factors prior  likelihood
P(h) factorizes into P(h,) P(h.,)...
Different priors: 1 2 2’) 2N D s
* PCA: P(h,) is Gaussian
* ICA: P(h,) is non-parametric
* Sparse coding: P(h,) is concentrated near O
Likelihood is typically Gaussian x [ h

with mean given by W' h
procedures (predicting h, given x) differ

Sparse h: x is explained by the weighted addition of selected filters h,
X hl h3 W3 h5 W5

ZA<=.9x / +.8x +.7x \




Sparse autoencoder illustration for
images

Natural Images

Learned bases: }

Test example

lh,, ..., hel] = 1[0,0,..,0,0.8,0,..,0,0.3,0,..0,0.5,0]
., (feature representation)




Stacking Single-Layer Learners

e PCAis great but can’t be stacked into deeper more abstract

representations (linear x linear = linear)
e One of the big ideas from Hinton et al. 2006: layer-wise

unsupervised feature learning
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Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)
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Auto-Encoders & Variawks:
Learning a computational graph



Compu&a&iov\ai. Grapks

e Operations for particular task

 Neural nets’ structure = computational graph for P(y|x)
e Graphical model’s structure # computational graph for inference

e Recurrent nets & graphical models

= family of computational graphs sharing parameters

e Could we have a parametrized family of computational graphs
defining “the model”?
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code= latent features h

Si‘.mpl.e. Aubto-Encoders 0000

encoder
e MLP whose target output = input inputX/
g P P 'Y 1ok

* Reconstruction=decoder(encoder(input)) - @ @0 - O

reconstruction

epo.
h = tanh(b+ W) .
) T Linear
reconstruction = tanh(c+ W~ h) encoder =
Loss L(x,reconstruction) = ||reconstruction — x||? Linear
manifold= PCA
e With bottleneck, code = new reconstruction(x)

coordinate system

e Encoder and decoder can have 1 or
more layers

e Training deep auto-encoders
notoriously difficult

16



Lamﬁraﬁhve Aubto-Encoders

‘ 6 (Rifai, Vincent, Muller, Glorot, Bengio ICML 2011; Rifai, Mesnil,
- Vincent, Bengio, Dauphin, Glorot ECML 2011; Rifai, Dauphin,
Vincent, Bengio, Muller NIPS 2011)

reconstruction(x) = g(h(x)) = decoder(encoder(z))

Training criterion:

2
Jcar(0) Z )\Z 8:1: ) + L(z, reconstruction(x))

xeD, 1] |

wants contraction in all cannot afford contraction in
directions manifold directions

If h;=sigmoid(b;+W; x)

(dh,(x)/dx)? = h2(1-h)2W,2



Auto-Encoders Learn Salienk
Variakions, Like a non-Linear PCA

..0 .(

* Minimizing reconstruction error forces to

keep variations along manifold. ®
* Regularizer wants to throw away all

variations. 9
e With both: keep ONLY sensitivity to

variations ON the manifold.
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Cqm%ra&ive Aubto-Encoders

| 4 ‘ @ (Rifai, Vincent, Muller, Glorot, Bengio ICML 2011; Rifai, Mesnil,
S X IR/ Vincent, Bengio, Dauphin, Glorot ECML 2011; Rifai, Dauphin,

Vincent, Bengio, Muller NIPS 2011)

Most hidden units (near
0 or 1, derivative near 0):

few responsive units represent
the active subspace (local chart)

Each region/chart = subset of active hidden units
Neighboring region: one of the units becomes active/inactive

Unlike PCA:
SHARED SET OF FILTERS ACROSS REGIONS, EACH USING A SUBSET,

Multi-clustering instead of clustering



Coordinate System & Eigenspectrum

e |deal spectrum of dh/dx for manifolds

A

d
= manifold dimension
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Jacobian singular values

CIFAR-10

o AE
o CAE

- -
-

Jacobian’s spectrum is peaked =
RN local low-dimensional
: _>.representation / relevant factors

[E—
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# singular values
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Input Point Tangents

MNIST
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Input Point Tangents

MNIST Tangents
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Diskributed vs Local
(CIFAR-10 unsupe.rvised)

Input Point Tangents

Contractive Auto-Encoder
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Learhed Tangent Pro !:
the Manifold Tangent Classifier

(Rifai et al NIPS 2011)

3 hypotheses:

1. Semi-supervised hypothesis (P(x) related to P(y|x))

2. Unsupervised manifold hypothesis (data
concentrates near low-dim. manifolds)

3. Manifold hypothesis for classification (low density
between class manifolds)



Learhed Tangent Pro &P:
the Manifold Tangent Classifier

Algorithm:

1. Estimate local principal directions of variation U(x)
by CAE (principal singular vectors of dh(x)/dx)

2. Penalize f(x)=P(y|x) predictor by || df/dx U(x) ||

Makes f(x) insensitive to variations on manifold at x,
tangent plane characterized by U(x).



Manifold Tangent Classifier Resulbs

e Leading singular vectors on MNIST, CIFAR-10, RCV1:

Trading +gilt -slow +matur -percent | +bin -anti +interest -sen
& +yen -term +auction -sent +coupon  -predict | +calcul -californ
Markets +usda -debt +treasur -pressure | +discount -belgian | +overnight -introduc

e Knowledge-free MNIST: 0.81% error

K-NN NN SVM  DBN CAE DBM CNN MTC
3.09% 1.60% 1.40% 1.17% 1.04% 095% 0.95% 0.81%

° -
Semi-su P. NN SVM CNN TSVM DBN-INCA EmbedNN CAE MTC
100 | 25.81 2344 2298 16.81 - 16.86 1347 12.03
600 | 1144 885 7.68 6.16 8.7 5.97 6.3 5.13
1000 | 10.7  7.77  6.45 5.38 - 5.73 477  3.64
3000 | 6.04 421  3.35 3.45 3.3 3.59 3.22  2.57

SVM  Distributed SVM MTC

* Forest (500k examples)
4.11% 3.46% 3.13%




Denoising Auto-Encoder B

(Vincent et al 2008)

e Corrupt the input during training only
e Train to reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)
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Corrupted input Raw input reconstruction

e Encoder & decoder: any parametrization
e As good or better than RBMs for unsupervised pre-training



Denoising Auto-Encoder
e Learns a vector field pointing towards

prior: examples

higher probability direction (Alain & Bengio 2013) concentrate near a

r(x)-x o< dlogp(x)/dx lower dimensional
“manifold”

e Some DAEs correspond to a kind of
Gaussian RBM with regularized Score
Matching (Vincent 2011, Swersky et al 2011)
[equivalent when noise—>0]

* Compared to RBM: Corrupted input

No partition function issue, -~ —e_

+ can measure training

e \ ] <
criterion .« _ 7




Denoising auto-encoders
are also contractive!

e Taylor-expand Gaussian corruption noise in reconstruction

error.

El(z,r(z+¢€))]

Q

E

(zz: — (r(m) +

E|

or(x)
oz

N’ (- (mmggu))]

or(x)

e Yields a contractive penalty in the reconstruction function
(instead of encoder) proportional to amount of corruption noise
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What is the probabitis&i.c
interpretation of denoising
aubto-encoders?

Can we sample from the
Llearned distribution?



First Theoretical Resulks on
Probabilistic Interpretation of Auto-
Encoders (Vincent 2011, Alain & Bengio 2013)

* Continuous X

* @Gaussian corruption

e Noiseoc—=>0

 Squared reconstruction error | |r(X+noise)-X| |2

(r(X)-X)/o? estimates the score d log p(X) / dX

e Langevin + Metropolis-Hastings can be used to approximately
sample from such a model, but mixing was poor

32



S
ﬁ »4 // - « 4 7 7
. 44/4// - 4 4 4 v ¥
s - - 4./4/4/4// s o v -
E - Allll//// // v bosos o & »
- m‘flll/////«/ / \\\\\\‘ D sosr s & >
& VWAAIAZ/////I \\\\“v‘\l\\lxt,\\
M.m v‘wkn\;\»\\;\\\‘//r ‘,A44 L
H‘MM\\\\\\\ AN/ T T T . . e
< TN NN I
L NN
- SN NN I
Y S e 740NN
.L A AAT A VW“ .:4////« > -
p YR BE v A B BV © oG » XXX X % - o -
VR NXNN N -
A 44 LU UL U S Y RN
rd - v oA A LU U O Y N
o - < ~ A LI S A A A A
gy [ S
y - < _ X
~ U c x2 c 38
7, O | — O N -
w 85 X pfE-=
o ) (e oo -} O
0o 5 6 2E5 B2
.“ s O = — c © O
sad o cC - S5 ¢ 5
a S5 © © ¥ o Qo =-F
< 7z @ 2® Qo EZ
$ S n ¢ c 8 C c
S 5 w @© o &£ o m — QO
U EZ258sg8ES
O (7] U Y—
Y P OV wvwek v NoL2 o
L [ ) o o [ ) [ )

33



New Result: Denoising Auto-Encoder
Markov Chain (NIP§'2013)

* P(X): true data-generating distribution
« C(X|X): corruption process

e Py, (X|X)i denoising auto-encoder trained with n examples X, X
from C(X|X)P(X) , probabilistically “inverts” corruption

e Iy, : Markov chain over X alternating X ~ ¢(X|X), X ~Ps, (X|X)

corrupt

C(X|X)

<2

t+2

Xt X t+1 X t+2
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sing Auto-
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Theorem

* Denoising AE are consistent estimators of the data-generating
distribution through their Markov chain, so long as they
consistently estimate the conditional denoising distribution and

the Markov chain converges.

~

Making Py (X|X) match P(X|X) makes 7, (X) match P(X)

/1

truth stationary distr. truth

denoising distr.
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Learning wikth a si.mpl.er normalization
constant, a nearly unimodal
conditional diskra)u&ioh instead of a
compiica&ed multimodal one
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Leariing with a simpl.er normalization
constant, a nearly unimodal
conditional distribution instead of a
complicated multimodal one

Thanks:
Jason Yosinski

38



Leariing with a simpl.er normalization
constant, a nearly unimodal
conditional distribution instead of a
complicated multimodal one

Thanks:
Jason Yosinski
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Cownclusions

e Unsupervised learning = guessing where to put probability mass
e Al tasks 2 manifold structure
e Regularized auto-encoders capture manifold structure

e Regularized auto-encoders can now be viewed as generative
models

e The mystery of their probabilistic interpretation has now been
mostly solved (at least for the denoising case).
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