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Machine Learning as
Estimating the Underlying
Data Distribution

(or aspects of it)

Learning as the estimation of a probability function
Generalization: guessing where probability mass concentrates

Challenge: the curse of dimensionality (exponentially many
configurations of the variables to consider)



Basic Challenge with Probabilistic
Models: marginalization

e Joint and marginal likelihoods involve intractable sums over
configurations of random variables (inputs x, latent h, outputs y)

e.g.

P(x) = 2, P(x,h)

P(X,h) = @-energy(x,h) /Z

7 = zx ) @-energy(x,h)

e MCMC methods can be used for these sums, by sampling from a
chain of x’s (or of (x,h) pairs) approximately from P(x,h)



Two Fundamewntal Problems
with Probabilistic Models
with Many Random Variables

1. MCMC mixing between modes
(manifold hypothesis)

2. Many non-negligeable modes
(both in posterior & joint distributions)



For AI Tasks: Manifold skructure

e examples concentrate near a lower dimensional

“manifold” (region of high density with only few operations
allowed which allow small changes while staying on the
manifold)

Evidence: most input configurations are unlikely
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Mixing Between Well-Separated Modes
is Fundamentally Hard

e MCMC steps are typically local (otherwise, curse of
dimensionality means most proposals would be rejected)

e |f the data has a manifold structure, the chances of going from
manifold A to manifold B = prob. accepting a long string of
unprobable moves = exponentially small
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Mixing Belween Modes: Vicious Circle
Between Learning and MCMC Sampling

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?

Training updates

Gicious circl§

Mixing



Fixing the Mixing Problem?

e If there were few important modes, we could just run many
chains from different random starts and collect the results

e We have tried that and it did not work
e Another option is tempering and related variants
e Appealing but very expensive, has not fixed the problem yet

e Deep representations seem to be a promising avenue



Poor Mixing: Depth to the Rescue

(Bengio et al ICML 2013)

e Sampling from DBNs and stacked Contractive Auto-Encoders:
1. MCMC sampling from top layer model
2. Propagate top-level representations to input-level repr.

e Deeper nets visit more modes (classes) faster! WHY?
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Space-Filling n Representation-Space
High-probability samples fill space between them when viewed in the learned

representatlon space, making the distribution more uniform manifolds
Pixel space

9/

ifold

3’s manifold

Linear i

9’s mahifold B

9|

erpolatlon at layer 2

A

Representation space

jfold

Linear mterpolatlon in pixel space



Poor Mixing: Depth to the Rescue

e Deeper representations =2 abstractions = disentangling

e E.g.reverse video bit, class bits in learned representations: easy
to Gibbs sample between modes at abstract level

e Hypotheses tested and not rejected:

* more abstract/disentangled representations unfold manifolds
and fill more the space

A Ppixel space A Representation space

9’s ifold 3’s manifold * 9sy B fold

> >
e can be exploited for better mixing between modes
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The Main Problem
that Remains:
MANY IMPORTANT
MODES



Many Important Modes
e |ssue arises typically in two places with probabilistic models:

* Inference: need to consider the major modes of P(h|x) or
P(y,h|x)

* Learning (estimating the log-likelihood gradient): need to
consider the major modes of P(h,x) when computing the
gradient of the normalization constant

e |mportant for:
* Unsupervised (and semi-supervised) learning
e Structured output learning
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Potentially Huge Number of
Modes in &ke Posterior P(h]x)

e Human hears foreign speech, y=answer to question:
* 10 word segments

100 plausible candidates per word

10° possible segmentations
* Most configurations (999999/1000000) implausible
=» 10%° high-probability modes

e Humans probably don’t consider all these in their mind

e All known approximate inference scheme break down if the
posterior has a huge number of modes (fails MAP & MCMC)

and not respecting a variational approximation (fails variational)
14



PROPOSED
SOLUTION




Hint

e Deep neural nets learn good P(y|x) classifiers even if there are
potentially many true latent variables involved

e Exploits structure in P(y|x) that persist even after summing h

e But how do we generalize this idea to full joint-distribution
learning and answering any question about these variables, not
just one?
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Instead of Learning P(x) directly,
learn Markov chain operator P(x; | xpq)

e P(x) may have many modes, making the normalization constant
intractable, and MCMC approximations poor

* P(x, | x;4) could be much simpler because most of the time a

local move, might even be well approximated by unimodal
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How ko Erain the Erawnsikion opera&m‘?

e One solution was recently discovered, based on the denoising
auto-encoder research

* The transition operator is decomposed in two steps:
* Corruption process C(X|X)
» Reconstruction (denoising) distribution Fs,, (X|X)

* The parameters can be trained by maximum likelihood over the
pairs X,X

corrupt

C(X|X)

2

t+2

X t X t+1 X t+2
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Denoising Auto-Encoder B

(Vincent et al 2008)

e Corrupt the input during training only
e Train to reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)
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Corrupted input Raw input reconstruction

e Encoder & decoder: any parametrization
e As good or better than RBMs for unsupervised pre-training



ularized Auto-Encoders Learn a

9
Vector Field or a Markov Chain

Transition Diskribution

e (Bengio, Vincent & Courville, TPAMI 2013) review paper
(Alain & Bengio ICLR 2013; Bengio et al, NIPS 2013)
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Learning wikth a si.mpl.er normalization
constant, a nearly unimodal
conditional diskra)u&ioh instead of a
compiica&ed multimodal one
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Leariing with a simpl.er normalization
constant, a nearly unimodal
conditional distribution instead of a
complicated multimodal one

Thanks:
Jason Yosinski
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Leariing with a simpl.er normalization
constant, a nearly unimodal
conditional distribution instead of a
complicated multimodal one

Thanks:
Jason Yosinski
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Grenerative Stochastic Nebworlkes

* Generalizes the denoising auto-encoder training scheme
* Introduce latent variables in the Markov chain (over X,H)

 |nstead of a fixed corruption process, have a deterministic
function with parameters 6, and a noise source Z as input

Ht—l—l — f91 (Xt7 Zt7 Ht)

H, > H, > H,
AW
X, X, X,
Hiy1y ~ Py, (H|Hy, Xy)
Xey1 ~ Po,(X|Heyq)
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Cownsistent Estimatbtor Theorem

Theorem:

If the parametrization is rich enough to have P(X|H) a consistent
estimator and the Markov chain is ergodic, then maximizing the
expected log of Py, (X | fo, (X, Z;_1, H¢_1)) makes the
stationary distribution of the Markov chain a consistent estimator
of the true data generating distribution.
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GSN Experiments: validating the
theorem in a discrete non- pamme.!:ﬁ.c
setting

035

e Discrete data, X . true P(x)
. |l empirical P(x)
IN {0119} 030 B estimated P(x)

e Corruption: add .|
+/- small int. |

e Reconstruction _o20
distribution =
maximum
likelihood
estimator
(counting) 005l

P(x=k)
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&SN Eixpercmev\!:s' validating the
theorem in a conkinuous non-

pamme&m: setting
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Continuous data,
X in R0 Gaussian
corruption

Reconstruction
distribution =
Parzen (mixture of
Gaussians)
estimator

5000 training
examples, 5000
samples

Visualize a pair of
dimensions
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GSN Experiments: validating the theorem in
a continuous non-parametric setting
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The Wallkbaclk Training Procedure

* Analogous to Contrastive Divergence, but NOT an approximation

* Forany given operator T, create operator T’ = TX

e Maximize the probability of reconstructing data example x after
applying T' = TX

e Provably same solution

e Seeks out spurious modes

and destroys them!
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GSN Emulating a Deep Boltzmann
Machine

e Noise injected in input and hidden layers

 Trained to max. reconstruction prob. of example at each step
e Depth d —> k=2d walkback steps

e Example structure inspired from the DBM Gibbs chain:

h noise

h3 W%ﬁﬁ\\

N owr T TTWR Wy W, Wy
1

Xo

nhoise\w
W Wi ST Wi,
sample x, w sample x,
2d steps
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Experimav\!:s: Shallow vs ‘Dee.p
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Quantitative Evaluation of Samples

e Previous procedure for evaluating samples (Breuleux et al 2011,
Rifai et al 2012, Bengio et al 2013):

* Generate 10000 samples from model

* Use them as training examples for Parzen density estimator
* Evaluate its log-likelihood on MNIST test data

Training
examples

GSN-2 DAE RBM DBM-3 DBN-2 MNIST

LOG-LIKELIHOOD 214 -152 -244 32 138 24
STANDARD ERROR 1.1 2.2 54 1.9 2.0 1.6
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Question Answering, Missing Inputs
and Sktructured Oub pu,&

e Once trained, a GSN can sample from any conditional over
subsets of its inputs, so long as we use the conditional
associated with the reconstruction distribution and clamp the

right-hand side variables.

Proposition 1. If a subset (%) of the elements of X is kept
fixed (not resampled) while the remainder X~ is updated
stochastically during the Markov chain of corollary 2, but us-

ing P(Xyi1|f(Xe, Zy), Xt(i)l = (), then the asymptotic dis-
tribution T, produces samples o(f X(=9%) from the conditional
distribution 7, (X (—9)| X () = z()),
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Etxpe.rime.u&s: Structured Cownditionals

e Stochastically fill-in missing inputs, sampling from the chain that
generates the conditional distribution of the missing inputs
given the observed ones (notice the fast burn-in!)
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Nobt Just MNIST: e.xpe.ri‘.mev\!:s on TFD

e 3 hidden layer model, consecutive samples:
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A Proper Generative Model for
Dependency Networlks

e Dependency networks (Heckerman et al 2000) estimate
separate Py (X; | X;) not guaranteed to be conditionals of a
unique joint

e Heckerman et al’s sampling procedure iterates over i, but that is
a GSN that is not guaranteed to be ergodic (it is periodic), with
latent variable = (i, X)

e Randomly choosing which i to resample makes a proper GSN
where the noise source chooses i independently

e Defines a unique joint distribution = stationary distr. of chain
(which averages out over resampling orders)
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Fubture Worle: Mulki-modal
Reconstruction Distributions

e All experiments: unimodal (factorial) reconstruction distribution
e Theorems require potentially multimodal one

* |n the limit of small noise, unimodal is enough (Alain & Bengio 2013)
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Cownclusions

e Radically different approach to probabilistic unsupervised

learning of generative models through learning a transition
operator

e Address mode mixing with depth (latent variable)

* Avoid marginalization during training
* Consistent estimator
e Can be used to handle missing inputs or structured outputs
e Easy to train and sample from, hard to compute P(x)
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