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Deep Objective: 
discover causal representation

• What are	the	right	representations?	
Causal	variables	explaining the	data
• How	to	disentangle them?
• How	to	discover their causal	relationship,	
the	causal	graph?
• How	to	modularize knowledge for	easier
re-use &	adaptation,	good	transfer?



Beyond iid: Independent Mechanisms
and Small Change Hypothesis

• Independent	mechanisms:	
–changing one	mechanism does not	change	
the	others (Peters,	Janzig &	Scholkopf 2017)

• Small	change:
–Non-stationarities,	changes	in	distribution,	
involve few	mechanisms (e.g.	the	result of	a	
single-variable	intervention)



What if we had the right 
causal structure?

CLAIM:	Under	the	hypothesis of	
independent mechanisms and	small
changes	across different distributions:
–smaller sample complexity to	recover
from a	distribution	change
• E.g.	for	transfer learning,	agent	learning,	
domain adaptation,	etc.
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Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

taking N = 10 possible values.

In this experiment, we fixed the underlying causal model
to be A ! B, and trained the modules for each marginal
and conditional distributions with maximum likelihood on
a large amount of data from some training distribution, as
explained in Appendix A. See also Appendix G.1 and Ta-
ble G.1 for details on the definitions of these modules.

We then adapt all the modules on data coming from a trans-
fer distribution, corresponding on an intervention on the
random variable A (i.e., the marginal P (A) of the ground
truth model is modified, while leaving P (B | A) fixed). We
used RMSprop for the adaptation, with the same learning
rate. For assessing reproducibility and statistical robustness,
the experiment was repeated over 100 different training
distributions, and over 100 transfer distributions for each
training distributions, leading to 10 000 experiments overall.
The procedure to acquire different training/transfer distribu-
tions is details in Appendix G.1.

In Figure 1, we report the log-likelihoods of both models,
evaluated on a large test set of 10 000 from the transfer dis-
tribution. We can see that as the number of examples from
the transfer distribution (equal to the number of adaptation
steps) increases, the two models eventually reach the same
log-likelihood, reflecting our observation from Appendix A.
However the causal model A ! B adapts faster than the
other model B ! A, with the most informative part of the
trajectory (where the difference is the largest) is within the
first 10 to 20 examples.

2.2.1. PARAMETER COUNTING ARGUMENT

A simple parameter counting arguments helps us under-
stand what we are observing in Figure 1. First, consider the
expected gradient on the parameters of the different mod-
ules, during the adaptation phase to the transfer distribution,
which we designate as adaptation episode, and corresponds
to learning from a meta-example.

Proposition 1. The expected gradient over the transfer dis-
tribution of the regret (accumulated negative log-likelihood
during the adaptation episode) with respect to the mod-
ule parameters is zero for the parameters of the modules
that (a) were correctly learned in the training phase, and
(b) have the correct set of causal parents, corresponding
to the ground truth causal graph, if (c) the corresponding
ground truth conditional distributions did not change from
the training distribution to the transfer distribution.

The proof is given in Appendix B. The basic justification for
this proposition is that for the modules that were correctly
learned in the training distribution and whose ground truth
conditional distribution did not change with the transfer
distribution, the parameters already are at a maximum of the
log-likelihood over the transfer distribution, so the expected

gradient is zero.

As a consequence, the effective number of parameters that
need to be adapted, when one has the correct causal graph
structure, is reduced to those of the mechanisms that actu-
ally changed from the training to the transfer distribution.
Since sample complexity - the number of training exam-
ples necessary to learn a model - grows approximately lin-
early (Ehrenfeucht et al., 1989) with VC-dimension (Vapnik
& Chervonenkis, 1971), and since VC-dimension grows
approximately linearly in the number of parameters in linear
models and neural networks (Shalev-Shwartz & Ben-David,
2014), the learning curve on the transfer distribution will
tend to improve faster for the model with the correct causal
structure, for which fewer parameters need to be changed.
Interestingly, we do not need to have the whole causal graph
correctly specified before getting benefits from this phe-
nomenon. If we only have part of the causal graph correctly
specified and we change our causal hypothesis to include
one more correctly specified mechanism, then we will ob-
tain a gain in terms of the adaptation sample complexity
(which shows up when the change in distribution does not
touch that mechanism). This nice property also shows up in
Proposition 4 (Appendix F), showing a decoupling of the
meta-objective across the independent mechanisms.

Let us consider the special case we have been studying up
to now. We have four modules, two of which (PA!B(A)
and PB!A(B)) are marginal discrete distributions over N
values, which require each N � 1 free parameters. The
other two modules are conditional probability tables that
have N rows each with N�1 free parameters, i.e., a total of
N(N � 1) free parameters. If A ! B is the correct model
and the transfer distribution only changed the true P (A) (the
cause), and if P (B | A) had been correctly estimated on the
training distribution, then for the correct model only N � 1
parameters need to be re-estimated. On the other hand, be-
cause of Bayes’ rule, under the incorrect model (B ! A),
a change in P (A) leads to new parameters for both P (B)
and P (A | B), i.e., all N(N � 1) + (N � 1) = N2 � 1
parameters must be re-estimated. In this case we see that
sample complexity may be O(N2) for the incorrect model
while it would be O(N) for the correct model (assuming
linear relationship between sample complexity and number
of free parameters). Of course, if the change in distribution
had been over P (B | A) instead of P (A), the advantage
would not have been as great. This would motivate informa-
tion gathering actions generally resulting in a very sparse
change in the mechanisms.

2.3. Smooth parameterization of the causal structure

In the more general case with many more than two hypothe-
ses for the structure of the causal graph, there will be an
exponentially large set of possible causal structures explain-

Zero Gradient on the 
Unchanged Mechanisms
Graphical model	is parametrized via	a	set	of	
modules	for	each P(Variable	|	pa(Variable))



Simple Running Example
• Consider two r.v.	A,	B,	with A	cause	of	B.
• Correct	causal	model	decomposes
• P(A,B)	=	P(A)	P(B|A)

• Consider 2	distributions	P1 and	P2,	only P(A)	changes
• If	we first	train	on	P1 and	we have	the	right	
decomposition,	adapting on	P2 is fast because

A		 B

EP (B|A)[
@ logP✓(B|A)

@✓
] ⇡ 0 when P✓(B|A) ⇡ P (B|A)

<latexit sha1_base64="o3ODLH7NSl2ppMTpRy+2QnQoAzQ="></latexit><latexit sha1_base64="o3ODLH7NSl2ppMTpRy+2QnQoAzQ="></latexit><latexit sha1_base64="o3ODLH7NSl2ppMTpRy+2QnQoAzQ="></latexit><latexit sha1_base64="o3ODLH7NSl2ppMTpRy+2QnQoAzQ="></latexit>



Wrong Knowledge Factorization
Leads to Poor Transfer

• With the	wrong factorization P(B)	P(A|B),	a	
change	in	P(A)	influences	all	the	modules,	all	the	
parameters
– poor transfer:	all	the	parameters must	be adapted

• This	is the	normal	situation	with standard	neural	nets:	
every parameter participates to	every relationship
between all	the	variables
– this causes	catastrophic forgetting,	poor transfer,	difficulties
with continual learning or	domain adaptation,	etc



Empirical Confirmation: 
Correct Causal Structure Leads 

to Faster Adaptation
AàB	is the	
correct	causal	
structure:	faster
online	adaptation	
to	modified
distribution	=	
lower NLL	regret



The Challenge of Systematic
Generalization

• See ’Systematic Generalization:	what is
required and	can it be learned’	Bahdanau et	al	
&	Courville	ICLR	2019

• Same set	of	concepts,	but	combined in	different
ways in	the	transfer setting

• Good	generalization inside training	distribution	
does not	necessarily give good	transfer



Turning a Hindrance into a 
Useful Signal

• Changes	in	distribution	(nonstationarities in	
agent	learning,	transfer scenarios,	etc)	are	
seen as	a	bug	in	ML,	a	challenge

• Turn them into a	feature,	an	asset,	to	help	
discover causal	structure,	or	more	generally to	
help	factorize knowledge:

• Tune	knowledge factorization (e.g.	causal	
structure)	to	maximize fast transfer



Simple Training Scenario
• Train	on	first	distribution	P1,	then measure
online	generalization error as	we adapt on	
transfer distribution	P2

• Meta-optimize that online	error wrt
structural	parameters,	e.g.
– the	encoder:	observations	à causal	variables
– the	causal	graph	(which variables	are	direct	causes	of	
which variables)



Running Example
• A	and	B	are	either discrete or	continuous

• Separately parametrize modules	P(A),	P(B|A),	P(B),	P(A|B)

• First	consider only two structural	hypotheses (e.g.	AàB	is
ground truth)
• correct:				
• incorrect:
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Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

having seen a lot of data from the transfer distribution, it will
not matter much whether A causes B or vice-versa (when
there is enough training data compared to the number of
free parameters, both models converge towards an optimal
estimation of the joint). However, in order to generalize
quickly from very few examples of the transfer distribution,
it does matter to have made the correct choice of the causal
direction. Let us now justify this in more detail below and
then demonstrate this by simulations.

2.1. Learning a Causal Graph with two Discrete
Variables

Let both A and B be discrete variables each taking N possi-
ble values and consider the following two parametrizations
(the A ! B model and the B ! A model) to estimate their
joint distribution:

PA!B(A,B) = PA!B(A)PA!B(B | A)

PB!A(A,B) = PB!A(B)PB!A(A | B) (1)

Each of these two graphical models (denoted A ! B
and B ! A) decomposes the joint into two separately
parametrized modules, each corresponding to a different
causal mechanism associated with the probability of a
variable given its parents in the graph. This amounts to
four modules: PA!B(A), PA!B(B | A), PB!A(B) and
PB!A(A | B). We will train both models independently.
Since we assume in this section that the pairs (A,B) are
completely observed, we can use a simple maximum likeli-
hood estimator to independently train all four modules. In
the discrete case with tabular parametrization, the maximum
likelihood estimator can be computed analytically, and corre-
sponds to the appropriately normalized relative frequencies.
Let ✓ denote the parameters of all these models, split into
sub-vectors for each module, e.g., ✓A|B for the N2 condi-
tional probabilities for each possible value of B and each
possible value of A. In our experiments, we parametrized
these probabilities via softmax of unnormalized quantities.

2.1.1. THE ADVANTAGE OF THE CORRECT CAUSAL
MODEL

First, let us consider simply the likelihood of the training
data only (i.e., no change of distribution) for the differ-
ent causal models considered. Both models have O(N2)
parameters, and maximum likelihood estimation leads to
indistinguishable test set performance (where the test set is
sampled from the training distribution). See Appendix A for
a demonstration that both models would have the same like-
lihood, and associated experimental results. These results
are not surprising in light of the existing literature on non-
identifiability of causality from observations (Pearl, 2009;
Peters et al., 2017), but they highlight the importance of
using changes in distribution to provide a signal about the
causal structure.

Now instead let us compare the performance of our two
hypotheses (A ! B vs B ! A) in terms of how fast the
two models adapt on a transfer distribution after having
been trained on the training distribution. We will assume
simple stochastic gradient descent on the parameters for this
adaptation but other procedures could be used, of course.
Without loss of generality, let A ! B be the correct causal
model. To make the case stronger, let us consider that the
change between the two distributions amounts to a random
change in the parameters of the true P (A) for the cause A
(because this will have an impact on the effect B, which
can be picked up and reveal the causal direction). We do
not assume that the learner knows what intervention was
performed, unlike in more common approaches to causal
discovery and controlled experiments. We only assume that
some change happened and we try to exploit that to reveal
structural causal information.

Figure 1. Adaptation to the transfer distribution, as more transfer
distribution examples are seen by the learner (horizontal axis), in
terms of the log-likelihood on the transfer distribution (on a large
test set from the transfer distribution, tested after each update of
the parameters). Here the model is discrete, with N = 10. Curves
are the median over 10 000 runs, with 25-75% quantiles intervals,
for both the correct causal model (blue, top) and the incorrect one
(red, bottom). We see that the correct causal model adapts faster
(smaller regret), and that the most informative part of the trajectory
(where the two models generalize the most differently) is in the
first 10-20 examples.

2.2. Experiments on Adaptation to the transfer
distribution

We present experiments comparing the learning curve of
the correct causal model on the transfer distribution vs the
learning curve of the incorrect model. The adaptation with
only a few gradient steps on data coming from a different,
but related, transfer distribution is critical in getting a signal
that can be leveraged by our meta-learning algorithm. To
show the effect of this adaptation, and motivate our use of
only a small amount of data from the transfer distribution,
we experimented with a model on discrete random variables



Soft Parametrization
• Each transfer adaptation	episode of	length T

• Regret	for	episode-wise mixture	between 2	hypotheses:
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Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms

ing the data and we won’t be able to enumerate all of them
(and pick the best one after observing episodes of adapta-
tion). However, we can parameterize our belief about an
exponentially large set of hypotheses by keeping track of the
probability for each directed edge of the graph to be present,
i.e., specify for each variable B whether some variable A is
a direct causal parent of B (for all pairs (A,B) in the graph).
We will develop such a smooth parametrization further in
Appendix F, but it hinges on gradually changing our belief
in the individual binary decisions associated with each edge
of the causal graph, so we can jointly do gradient descent
on all these beliefs at the same time.

In this section, we study the simplest possible version of this
idea, representing that edge belief via a structural parameter
� with �(�) = sigmoid(�), our believed probability that
A ! B is the correct choice. For that single pair of vari-
ables scenario, let us consider two explanations for the data
(as in the above sections, for models A ! B and B ! A),
one with probability p(A ! B) = �(�) and the other with
probability p(B ! A) = 1 � �(�). We can write down
our transfer objective as a log-likelihood over the mixture
of these two models. Note this is different from the usual
mixture models, which assume separately for each example
that it was sampled from one component or another with
some probability. Here, we assume that all of the observed
data was sampled from one component or the other. The
transfer data regret (negative log-likelihood accumulated
along the online adaptation trajectory) under that mixture is
therefore as follows:

R = � log [�(�)LA!B + (1� �(�))LB!A] (2)

where LA!B and LB!A are the online likelihoods of both
models respectively on the transfer data. They are defined
as

LA!B =
TY

t=1

PA!B(at, bt ; ✓t)

LB!A =
TY

t=1

PB!A(at, bt ; ✓t),

where {(at, bt)}t is the set of transfer examples for a given
episode and ✓t aggregates all the modules’ parameters as
of time step t (since the parameters could be updated after
each observation of an example (at, bt) from the transfer
distribution). Pmodel(a, b; ✓) is the likelihood of example
(a, b) under some model that has parameters ✓.

The quantity of interest here is @R
@� , which is our training

signal for updating �. In the experiments below, after each
episode involving T transfer examples we update � by doing
one step of gradient descent, to reduce the transfer negative
log-likelihood or regret R. What we are proposing is a
meta-learning framework in which the inner training loop

updates the module parameters (separately) as examples
are seen (from either distribution being currently observed),
while the outer loop updates the structural parameters (here
it is only the scalar �) with respect to the transfer negative
log-likelihood.

The gradient of the transfer log-likelihood with respect to the
structural parameter � is pushing �(�) towards the posterior
probability that the correct model is A ! B and (1� �(�))
towards the posterior probability that the correct model is
B ! A:
Proposition 2. The gradient of the negative log-likelihood
of the transfer data in Equation 2 wrt. the structural param-
eter @R

@� is given by

@R
@�

= P (A ! B | D2)� �(�), (3)

where D2 is the transfer data, and P (A ! B | D2) is the
posterior probability of the hypothesis A ! B (when the al-
ternative is B ! A). Furthermore, this can be equivalently
written as

@R
@�

= �(� +�)� �(�), (4)

where � = logLA!B � logLB!A is the difference be-
tween the log-likelihoods of the two hypotheses on the trans-
fer data D2.

The proof is given in Appendix D. Note how this poste-
rior probability is basically measuring which hypothesis
is better explaining the episode transfer data D2 overall
along the adaptation trajectory. D2 is a meta-example for
updating the structural parameters like �. Larger � of one
hypothesis over the other leads to moving meta-parameters
faster towards the favoured hypothesis. This difference in
online accumulated log-likelihoods � also relates to log-
likelihood scores in score-based methods for structure learn-
ing of graphical models (Koller & Friedman, 2009)1.

To find where SGD converges, note that the actual posterior
depends on the prior �(�) and thus keeps changing after
each gradient step. We are really doing SGD on the expected
value of R over transfer sets D2. Equating the gradient
of this expected value to zero to look for the stationary
convergence point, we thus see �(�) on both sides of the
equation, and we obtain convergence when the new value
of �(�) is consistent with the old value, as clarified in this
proposition.
Proposition 3. Stochastic gradient descent (with appropri-
ately decreasing learning rate) on ED2 [R] with steps from
@R
@� converges towards �(�) = 1 if ED2 [logLA!B ] >

ED2 [logLB!A], or �(�) = 0 otherwise.
1One can see logLA!B as a score attributed to graph A ! B,

analogously for logLB!A. The gradient is then pushing toward
the graph with the highest score.
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ing the data and we won’t be able to enumerate all of them
(and pick the best one after observing episodes of adapta-
tion). However, we can parameterize our belief about an
exponentially large set of hypotheses by keeping track of the
probability for each directed edge of the graph to be present,
i.e., specify for each variable B whether some variable A is
a direct causal parent of B (for all pairs (A,B) in the graph).
We will develop such a smooth parametrization further in
Appendix F, but it hinges on gradually changing our belief
in the individual binary decisions associated with each edge
of the causal graph, so we can jointly do gradient descent
on all these beliefs at the same time.

In this section, we study the simplest possible version of this
idea, representing that edge belief via a structural parameter
� with �(�) = sigmoid(�), our believed probability that
A ! B is the correct choice. For that single pair of vari-
ables scenario, let us consider two explanations for the data
(as in the above sections, for models A ! B and B ! A),
one with probability p(A ! B) = �(�) and the other with
probability p(B ! A) = 1 � �(�). We can write down
our transfer objective as a log-likelihood over the mixture
of these two models. Note this is different from the usual
mixture models, which assume separately for each example
that it was sampled from one component or another with
some probability. Here, we assume that all of the observed
data was sampled from one component or the other. The
transfer data regret (negative log-likelihood accumulated
along the online adaptation trajectory) under that mixture is
therefore as follows:

R = � log [�(�)LA!B + (1� �(�))LB!A] (2)

where LA!B and LB!A are the online likelihoods of both
models respectively on the transfer data. They are defined
as

LA!B =
TY

t=1

PA!B(at, bt ; ✓t)

LB!A =
TY

t=1

PB!A(at, bt ; ✓t),

where {(at, bt)}t is the set of transfer examples for a given
episode and ✓t aggregates all the modules’ parameters as
of time step t (since the parameters could be updated after
each observation of an example (at, bt) from the transfer
distribution). Pmodel(a, b; ✓) is the likelihood of example
(a, b) under some model that has parameters ✓.

The quantity of interest here is @R
@� , which is our training

signal for updating �. In the experiments below, after each
episode involving T transfer examples we update � by doing
one step of gradient descent, to reduce the transfer negative
log-likelihood or regret R. What we are proposing is a
meta-learning framework in which the inner training loop

updates the module parameters (separately) as examples
are seen (from either distribution being currently observed),
while the outer loop updates the structural parameters (here
it is only the scalar �) with respect to the transfer negative
log-likelihood.

The gradient of the transfer log-likelihood with respect to the
structural parameter � is pushing �(�) towards the posterior
probability that the correct model is A ! B and (1� �(�))
towards the posterior probability that the correct model is
B ! A:
Proposition 2. The gradient of the negative log-likelihood
of the transfer data in Equation 2 wrt. the structural param-
eter @R

@� is given by

@R
@�

= P (A ! B | D2)� �(�), (3)

where D2 is the transfer data, and P (A ! B | D2) is the
posterior probability of the hypothesis A ! B (when the al-
ternative is B ! A). Furthermore, this can be equivalently
written as

@R
@�

= �(� +�)� �(�), (4)

where � = logLA!B � logLB!A is the difference be-
tween the log-likelihoods of the two hypotheses on the trans-
fer data D2.

The proof is given in Appendix D. Note how this poste-
rior probability is basically measuring which hypothesis
is better explaining the episode transfer data D2 overall
along the adaptation trajectory. D2 is a meta-example for
updating the structural parameters like �. Larger � of one
hypothesis over the other leads to moving meta-parameters
faster towards the favoured hypothesis. This difference in
online accumulated log-likelihoods � also relates to log-
likelihood scores in score-based methods for structure learn-
ing of graphical models (Koller & Friedman, 2009)1.

To find where SGD converges, note that the actual posterior
depends on the prior �(�) and thus keeps changing after
each gradient step. We are really doing SGD on the expected
value of R over transfer sets D2. Equating the gradient
of this expected value to zero to look for the stationary
convergence point, we thus see �(�) on both sides of the
equation, and we obtain convergence when the new value
of �(�) is consistent with the old value, as clarified in this
proposition.
Proposition 3. Stochastic gradient descent (with appropri-
ately decreasing learning rate) on ED2 [R] with steps from
@R
@� converges towards �(�) = 1 if ED2 [logLA!B ] >

ED2 [logLB!A], or �(�) = 0 otherwise.
1One can see logLA!B as a score attributed to graph A ! B,

analogously for logLB!A. The gradient is then pushing toward
the graph with the highest score.



Transfer Regret Gradient
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ing the data and we won’t be able to enumerate all of them
(and pick the best one after observing episodes of adapta-
tion). However, we can parameterize our belief about an
exponentially large set of hypotheses by keeping track of the
probability for each directed edge of the graph to be present,
i.e., specify for each variable B whether some variable A is
a direct causal parent of B (for all pairs (A,B) in the graph).
We will develop such a smooth parametrization further in
Appendix F, but it hinges on gradually changing our belief
in the individual binary decisions associated with each edge
of the causal graph, so we can jointly do gradient descent
on all these beliefs at the same time.

In this section, we study the simplest possible version of this
idea, representing that edge belief via a structural parameter
� with �(�) = sigmoid(�), our believed probability that
A ! B is the correct choice. For that single pair of vari-
ables scenario, let us consider two explanations for the data
(as in the above sections, for models A ! B and B ! A),
one with probability p(A ! B) = �(�) and the other with
probability p(B ! A) = 1 � �(�). We can write down
our transfer objective as a log-likelihood over the mixture
of these two models. Note this is different from the usual
mixture models, which assume separately for each example
that it was sampled from one component or another with
some probability. Here, we assume that all of the observed
data was sampled from one component or the other. The
transfer data regret (negative log-likelihood accumulated
along the online adaptation trajectory) under that mixture is
therefore as follows:

R = � log [�(�)LA!B + (1� �(�))LB!A] (2)

where LA!B and LB!A are the online likelihoods of both
models respectively on the transfer data. They are defined
as

LA!B =
TY

t=1

PA!B(at, bt ; ✓t)

LB!A =
TY

t=1

PB!A(at, bt ; ✓t),

where {(at, bt)}t is the set of transfer examples for a given
episode and ✓t aggregates all the modules’ parameters as
of time step t (since the parameters could be updated after
each observation of an example (at, bt) from the transfer
distribution). Pmodel(a, b; ✓) is the likelihood of example
(a, b) under some model that has parameters ✓.

The quantity of interest here is @R
@� , which is our training

signal for updating �. In the experiments below, after each
episode involving T transfer examples we update � by doing
one step of gradient descent, to reduce the transfer negative
log-likelihood or regret R. What we are proposing is a
meta-learning framework in which the inner training loop

updates the module parameters (separately) as examples
are seen (from either distribution being currently observed),
while the outer loop updates the structural parameters (here
it is only the scalar �) with respect to the transfer negative
log-likelihood.

The gradient of the transfer log-likelihood with respect to the
structural parameter � is pushing �(�) towards the posterior
probability that the correct model is A ! B and (1� �(�))
towards the posterior probability that the correct model is
B ! A:
Proposition 2. The gradient of the negative log-likelihood
of the transfer data in Equation (2) wrt. the structural
parameter @R

@� is given by

@R
@�

= �(�)� P (A ! B | D2), (3)

where D2 is the transfer data, and P (A ! B | D2) is the
posterior probability of the hypothesis A ! B (when the al-
ternative is B ! A). Furthermore, this can be equivalently
written as

@R
@�

= �(�)� �(� +�), (4)

where � = logLA!B � logLB!A is the difference be-
tween the log-likelihoods of the two hypotheses on the trans-
fer data D2.

The proof is given in Appendix D. Note how this poste-
rior probability is basically measuring which hypothesis
is better explaining the episode transfer data D2 overall
along the adaptation trajectory. D2 is a meta-example for
updating the structural parameters like �. Larger � of one
hypothesis over the other leads to moving meta-parameters
faster towards the favoured hypothesis. This difference in
online accumulated log-likelihoods � also relates to log-
likelihood scores in score-based methods for structure learn-
ing of graphical models (Koller & Friedman, 2009)1.

To find where SGD converges, note that the actual posterior
depends on the prior �(�) and thus keeps changing after
each gradient step. We are really doing SGD on the expected
value of R over transfer sets D2. Equating the gradient
of this expected value to zero to look for the stationary
convergence point, we thus see �(�) on both sides of the
equation, and we obtain convergence when the new value
of �(�) is consistent with the old value, as clarified in this
proposition.
Proposition 3. Stochastic gradient descent (with appropri-
ately decreasing learning rate) on ED2 [R] with steps from
@R
@� converges towards �(�) = 1 if ED2 [logLA!B ] >

ED2 [logLB!A], or �(�) = 0 otherwise.
1One can see logLA!B as a score attributed to graph A ! B,

analogously for logLB!A. The gradient is then pushing toward
the graph with the highest score.
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ing the data and we won’t be able to enumerate all of them
(and pick the best one after observing episodes of adapta-
tion). However, we can parameterize our belief about an
exponentially large set of hypotheses by keeping track of the
probability for each directed edge of the graph to be present,
i.e., specify for each variable B whether some variable A is
a direct causal parent of B (for all pairs (A,B) in the graph).
We will develop such a smooth parametrization further in
Appendix F, but it hinges on gradually changing our belief
in the individual binary decisions associated with each edge
of the causal graph, so we can jointly do gradient descent
on all these beliefs at the same time.

In this section, we study the simplest possible version of this
idea, representing that edge belief via a structural parameter
� with �(�) = sigmoid(�), our believed probability that
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one with probability p(A ! B) = �(�) and the other with
probability p(B ! A) = 1 � �(�). We can write down
our transfer objective as a log-likelihood over the mixture
of these two models. Note this is different from the usual
mixture models, which assume separately for each example
that it was sampled from one component or another with
some probability. Here, we assume that all of the observed
data was sampled from one component or the other. The
transfer data regret (negative log-likelihood accumulated
along the online adaptation trajectory) under that mixture is
therefore as follows:

R = � log [�(�)LA!B + (1� �(�))LB!A] (2)

where LA!B and LB!A are the online likelihoods of both
models respectively on the transfer data. They are defined
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LA!B =
TY

t=1

PA!B(at, bt ; ✓t)

LB!A =
TY

t=1

PB!A(at, bt ; ✓t),

where {(at, bt)}t is the set of transfer examples for a given
episode and ✓t aggregates all the modules’ parameters as
of time step t (since the parameters could be updated after
each observation of an example (at, bt) from the transfer
distribution). Pmodel(a, b; ✓) is the likelihood of example
(a, b) under some model that has parameters ✓.

The quantity of interest here is @R
@� , which is our training

signal for updating �. In the experiments below, after each
episode involving T transfer examples we update � by doing
one step of gradient descent, to reduce the transfer negative
log-likelihood or regret R. What we are proposing is a
meta-learning framework in which the inner training loop

updates the module parameters (separately) as examples
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log-likelihood.

The gradient of the transfer log-likelihood with respect to the
structural parameter � is pushing �(�) towards the posterior
probability that the correct model is A ! B and (1� �(�))
towards the posterior probability that the correct model is
B ! A:
Proposition 2. The gradient of the negative log-likelihood
of the transfer data in Equation (2) wrt. the structural
parameter @R

@� is given by

@R
@�

= �(�)� P (A ! B | D2), (3)

where D2 is the transfer data, and P (A ! B | D2) is the
posterior probability of the hypothesis A ! B (when the al-
ternative is B ! A). Furthermore, this can be equivalently
written as

@R
@�

= �(�)� �(� +�), (4)

where � = logLA!B � logLB!A is the difference be-
tween the log-likelihoods of the two hypotheses on the trans-
fer data D2.

The proof is given in Appendix D. Note how this poste-
rior probability is basically measuring which hypothesis
is better explaining the episode transfer data D2 overall
along the adaptation trajectory. D2 is a meta-example for
updating the structural parameters like �. Larger � of one
hypothesis over the other leads to moving meta-parameters
faster towards the favoured hypothesis. This difference in
online accumulated log-likelihoods � also relates to log-
likelihood scores in score-based methods for structure learn-
ing of graphical models (Koller & Friedman, 2009)1.

To find where SGD converges, note that the actual posterior
depends on the prior �(�) and thus keeps changing after
each gradient step. We are really doing SGD on the expected
value of R over transfer sets D2. Equating the gradient
of this expected value to zero to look for the stationary
convergence point, we thus see �(�) on both sides of the
equation, and we obtain convergence when the new value
of �(�) is consistent with the old value, as clarified in this
proposition.
Proposition 3. Stochastic gradient descent (with appropri-
ately decreasing learning rate) on ED2 [R] with steps from
@R
@� converges towards �(�) = 1 if ED2 [logLA!B ] >

ED2 [logLB!A], or �(�) = 0 otherwise.
1One can see logLA!B as a score attributed to graph A ! B,

analogously for logLB!A. The gradient is then pushing toward
the graph with the highest score.
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MLP Conditionals Results
Each conditional is
represented by	a	one-
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one-hot	inputs,	
softmax outputs.
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Linear Gaussian Results

Quickly recovers the	correct	structure
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evolution of �(�) as training progresses. This is expected,
given that we expect the causal model to perform better on
the transfer distributions, i.e. we expect RA!B < RB!A

in expection. Consequently, assigning a larger weight to
RA!B optimizes the objective.

Figure G.2. Evolution of the sigmoid of structural meta-parameter
�(�) with training iterations. It is indeed expected to increase if
A ! B is the true causal graph (see Equation (46)).

G.4. Linear Gaussian Model

In this experiment, the two variables we consider are vectors
(i.e. A 2 Rd and B 2 Rd). The ground truth causal model
is given by

A ⇠ N (µA,⌃A)

B := �1A+ �0 +NB NB ⇠ N (0,⌃B) (47)

where µA 2 Rd, �0 2 Rd and �1 2 Rd⇥d. ⌃A and ⌃B

are d ⇥ d covariance matrices2. In our experiments, d =
100. Once again, we want to identify the correct causal
direction between A and B. To do so, we consider two
models: A ! B and B ! A. We parameterize both
models symmetrically:

PA!B(A) = N (A; µ̂A, ⌃̂A)

PA!B(B | A = a) = N (B; Ŵ1a+ Ŵ0, ⌃̂A!B)

PB!A(B) = N (B; µ̂B , ⌃̂B)

PB!A(A | B = b) = N (B; V̂1b+ V̂0, ⌃̂B!A) (48)

Note that each covariance matrix is parameterized using the
Cholesky decomposition. Unlike previous experiments, we
are not conducting any pre-training on actual data. Instead,
we fix the parameters of both models to their exact values
according to the ground truth parameters introduced in Equa-
tion 47. For model A ! B, this can be done trivially. For

2Ground truth parameters µA, �1 and �0 are sampled from
a Gaussian distribution, while ⌃A and ⌃B are sampled from an
inverse Wishart distribution.

the second model, we can compute its exact parameters ana-
lytically. Once the exact parameters are set, both models are
equivalent in the sense that PA!B(A,B) = PB!A(A,B)
8A,B.

Each meta-learning episode starts by initializing the pa-
rameters of both models to the values identified during
the pre-training. Afterward, a transfer distribution is sam-
pled (i.e. µA ⇠ N (0, I)). Then, both models are trained
on samples from this distribution, for 10 iterations only.
During this adaptation, the log-likelihoods of both models
are accumulated in order to compute LA!B and LB!A.
At this stage, we compute the meta objective estimate
R = � log [�(�)LA!B + (1� �(�))LB!A], compute its
gradient w.r.t. � and update �.

Figure G.3 shows that, after 200 episodes, �(�) converges
to 1, indicating the success of the method on this particular
task. The good performance of the algorithm was dependent
on d being sufficiently large. We explain this observation
by the fact that the parameter counting argument presented
in Section 2.2.1 gets stronger as the d grows. Indeed, model
A ! B needs to adapt only O(d) scalar parameters, while
model B ! A needs to adapt O(d2) scalar parameters, even
though both models have the same number of parameters.

Figure G.3. Convergence of the causal belief (to the correct an-
swer) as a function of the number of meta-learning episodes, for
the linear Gaussian experiments.

H. Results on Learning the Correct Encoder
The causal variables (A,B) are sampled from the distri-
bution described in Eqn 42, and are mapped to observa-
tions (X,Y ) ⇠ Pµ(X,Y ) via a hidden (and a priori un-
known) decoder D = R(✓D), where R is a rotation ma-
trix. The observations are then mapped to the hidden state
(U, V ) ⇠ Pµ(U, V ) via the encoder E = R(✓E). The com-
putational graph is depicted in Figure 4.

Analogous to Equation 46 in Appendix G.3, we now define
the regret over the variables (U, V ) instead of (A,B):

R(�, ✓E) = log[�(�)eRU!V + (1� �(�))eRV !U ] (49)

where the dependence on ✓E is implicit in (U, V ). In every
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evolution of �(�) as training progresses. This is expected,
given that we expect the causal model to perform better on
the transfer distributions, i.e. we expect RA!B < RB!A

in expection. Consequently, assigning a larger weight to
RA!B optimizes the objective.

Figure G.2. Evolution of the sigmoid of structural meta-parameter
�(�) with training iterations. It is indeed expected to increase if
A ! B is the true causal graph (see Equation (46)).

G.4. Linear Gaussian Model

In this experiment, the two variables we consider are vectors
(i.e. A 2 Rd and B 2 Rd). The ground truth causal model
is given by

A ⇠ N (µA,⌃A)

B := �1A+ �0 +NB NB ⇠ N (0,⌃B) (47)

where µA 2 Rd, �0 2 Rd and �1 2 Rd⇥d. ⌃A and ⌃B

are d ⇥ d covariance matrices2. In our experiments, d =
100. Once again, we want to identify the correct causal
direction between A and B. To do so, we consider two
models: A ! B and B ! A. We parameterize both
models symmetrically:

PA!B(A) = N (A; µ̂A, ⌃̂A)

PA!B(B | A = a) = N (B; Ŵ1a+ Ŵ0, ⌃̂A!B)

PB!A(B) = N (B; µ̂B , ⌃̂B)

PB!A(A | B = b) = N (B; V̂1b+ V̂0, ⌃̂B!A) (48)

Note that each covariance matrix is parameterized using the
Cholesky decomposition. Unlike previous experiments, we
are not conducting any pre-training on actual data. Instead,
we fix the parameters of both models to their exact values
according to the ground truth parameters introduced in Equa-
tion 47. For model A ! B, this can be done trivially. For

2Ground truth parameters µA, �1 and �0 are sampled from
a Gaussian distribution, while ⌃A and ⌃B are sampled from an
inverse Wishart distribution.

the second model, we can compute its exact parameters ana-
lytically. Once the exact parameters are set, both models are
equivalent in the sense that PA!B(A,B) = PB!A(A,B)
8A,B.

Each meta-learning episode starts by initializing the pa-
rameters of both models to the values identified during
the pre-training. Afterward, a transfer distribution is sam-
pled (i.e. µA ⇠ N (0, I)). Then, both models are trained
on samples from this distribution, for 10 iterations only.
During this adaptation, the log-likelihoods of both models
are accumulated in order to compute LA!B and LB!A.
At this stage, we compute the meta objective estimate
R = � log [�(�)LA!B + (1� �(�))LB!A], compute its
gradient w.r.t. � and update �.

Figure G.3 shows that, after 200 episodes, �(�) converges
to 1, indicating the success of the method on this particular
task. The good performance of the algorithm was dependent
on d being sufficiently large. We explain this observation
by the fact that the parameter counting argument presented
in Section 2.2.1 gets stronger as the d grows. Indeed, model
A ! B needs to adapt only O(d) scalar parameters, while
model B ! A needs to adapt O(d2) scalar parameters, even
though both models have the same number of parameters.

Figure G.3. Convergence of the causal belief (to the correct an-
swer) as a function of the number of meta-learning episodes, for
the linear Gaussian experiments.

H. Results on Learning the Correct Encoder
The causal variables (A,B) are sampled from the distri-
bution described in Eqn 42, and are mapped to observa-
tions (X,Y ) ⇠ Pµ(X,Y ) via a hidden (and a priori un-
known) decoder D = R(✓D), where R is a rotation ma-
trix. The observations are then mapped to the hidden state
(U, V ) ⇠ Pµ(U, V ) via the encoder E = R(✓E). The com-
putational graph is depicted in Figure 4.

Analogous to Equation 46 in Appendix G.3, we now define
the regret over the variables (U, V ) instead of (A,B):

R(�, ✓E) = log[�(�)eRU!V + (1� �(�))eRV !U ] (49)

where the dependence on ✓E is implicit in (U, V ). In every



Multimodal Continuous
Variables Results

Ground	truth data	=	spline+noise

Vary mean of	P(A)	to	obtain transfer
distributions

Models =	MLP	with GMM	output

Quickly recover causal	direction.



Disentangling the Causes

• Realistic settings:	causal	variables	are	not	directly observed
• Need to	learn an	encoder	which maps raw data	to	causal	space
• Consider both the	encoder	parameters and	the	causal	graph	
structural	parameters as	meta-parameters trained together
wrt proposed meta-transfer objective

Simplest possible	scenario:	linear mixing (rotating decoder)	and	unmixing (rotating decoder)



Disentangling the Causes
Recovers the	
correct	encoder	
parameter:	
disentangles up	
to	permutation.

Simultaneously
recovers causal	
direction	
(smaller figure	
inside).



With More Variables
• Pre-train	conditionals	with	random	dropout	on	the	graph	structure	
binomials

• Ground	truth	changes	in	distribution:	randomly	modify	one	of	the	
conditionals	or	marginals (generalized	intervention)

• Each	transfer	distribution	is	a	meta-example
• Each	variable	|	parents:	modeled	by	MLP
• Structural	choice	B:	which	parents?	Represented	by	binomial	
probability	(belief)	of	dropping	that	parent.

• Meta-objective:

Again, this can only be 0 if LA!B = M all the time, i.e., p = 1. We conclude that the solutions p 2 (0, 1)
are not possible because they would lead to inconsistent conclusions, which leaves only p = 0 or p = 1. When
p = 0 we have E[R] = E[logLA!B ], and when p = 1 we have E[R] = E[logLB!A]. Thus the minimum will
be achieved at p = 1 when ED2 [logLA!B ] > ED2 [logLB!A], or p = 0 otherwise.

Appendix F. More Than Two Causal Hypotheses

In this section, we consider one approach to generalize to more than two causal structures. We consider m
variables, corresponding to O(2m

2

) possible causal graphs, since each variable Vj could be (or not) a direct
cause of any variable Vi, leading to m2 binary decisions. Note that a causal graph can in principle have
cycles (if time is not measured with su�cient precision), although having a directed acyclic graph allows a
much simpler sampling procedure (ancestral sampling). In our experiments the ground truth graph will
always be directed, to make sampling easier and faster, but the learning procedure will not directly assume
that. Motivated by the mechanism independence assumption, we propose a heuristic to learn the causal
graph in which we independently parametrize the binary probability pij that Vj is a parent (direct cause)
of Vi. As was the case for Section 2, we parametrize this Binomial distribution via binary edges Bij that
specify the graph structure:

Bij ⇠ Bernoulli(pij),

P (B) =
Y

ij

P (Bij). (24)

where pij = sigmoid(�ij). Let us define the parents of Vi, given B, as the set of Vj ’s such that Bij = 1:

pa(i, V,Bi) = {Vj | Bij = 1, j 6= i} (25)

where Bi is the bit vector with elements Bij (and Bii = 0 is ignored). Similarly, we could parametrize the
causal graph with a structural causal model where some of the inputs (from variable j) of each function (for
variable i) can be ignored with some probability pij :

Vi = fi(✓i, Bi, V,Ni) (26)

where Ni is an independent noise source to generate Vi and fi parametrizes the generator (as in a GAN),
while not being allowed to use variable Vj unless Bij = 1 (and of course not being allowed to use Vi). We can
consider that fi is a kind of neural network similar to the denoising auto-encoders or with dropout on the
input, where Bi is a binary mask vector that prevents fi from using some of the Vj ’s (for which Bij = 0).

The conditional likelihood PBi(Vi = vti | pa(i, vt, Bi)) measures how well the model that uses the
incoming edges Bi for node i performs for example vt. We build a multiplicative (or exponentiated) form of
regret by multiplying these likelihoods as ✓t changes during an adaptation episode, for node i:

LBi =
Y

t

PBi(Vi = vti | pa(i, vt, Bi)). (27)

The overall exponentiated regret for the given graph structure B is LB =
Q

i LBi . Similarly to the bivariate
case, we want to consider a mixture over all the possible graph structures, but where each component must
explain the whole adaptation sequence, thus we define as a loss for the generalized multi-variable case

R = � logEB [LB ] (28)

Note the expectation over the 2m
2

possible values of B, which is intractable. However, we can still get an
e�cient stochastic gradient estimator, which can be computed separately for each node of the graph (with
samples arising only out of Bi, the incoming edges into Vi):
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Again, this can only be 0 if LA!B = M all the time, i.e., p = 1. We conclude that the solutions p 2 (0, 1)
are not possible because they would lead to inconsistent conclusions, which leaves only p = 0 or p = 1. When
p = 0 we have E[R] = E[logLA!B ], and when p = 1 we have E[R] = E[logLB!A]. Thus the minimum will
be achieved at p = 1 when ED2 [logLA!B ] > ED2 [logLB!A], or p = 0 otherwise.

Appendix F. More Than Two Causal Hypotheses

In this section, we consider one approach to generalize to more than two causal structures. We consider m
variables, corresponding to O(2m

2

) possible causal graphs, since each variable Vj could be (or not) a direct
cause of any variable Vi, leading to m2 binary decisions. Note that a causal graph can in principle have
cycles (if time is not measured with su�cient precision), although having a directed acyclic graph allows a
much simpler sampling procedure (ancestral sampling). In our experiments the ground truth graph will
always be directed, to make sampling easier and faster, but the learning procedure will not directly assume
that. Motivated by the mechanism independence assumption, we propose a heuristic to learn the causal
graph in which we independently parametrize the binary probability pij that Vj is a parent (direct cause)
of Vi. As was the case for Section 2, we parametrize this Binomial distribution via binary edges Bij that
specify the graph structure:

Bij ⇠ Bernoulli(pij),

P (B) =
Y

ij

P (Bij). (24)

where pij = sigmoid(�ij). Let us define the parents of Vi, given B, as the set of Vj ’s such that Bij = 1:

pa(i, V,Bi) = {Vj | Bij = 1, j 6= i} (25)

where Bi is the bit vector with elements Bij (and Bii = 0 is ignored). Similarly, we could parametrize the
causal graph with a structural causal model where some of the inputs (from variable j) of each function (for
variable i) can be ignored with some probability pij :

Vi = fi(✓i, Bi, V,Ni) (26)

where Ni is an independent noise source to generate Vi and fi parametrizes the generator (as in a GAN),
while not being allowed to use variable Vj unless Bij = 1 (and of course not being allowed to use Vi). We can
consider that fi is a kind of neural network similar to the denoising auto-encoders or with dropout on the
input, where Bi is a binary mask vector that prevents fi from using some of the Vj ’s (for which Bij = 0).

The conditional likelihood PBi(Vi = vti | pa(i, vt, Bi)) measures how well the model that uses the
incoming edges Bi for node i performs for example vt. We build a multiplicative (or exponentiated) form of
regret by multiplying these likelihoods as ✓t changes during an adaptation episode, for node i:

LBi =
Y

t

PBi(Vi = vti | pa(i, vt, Bi)). (27)

The overall exponentiated regret for the given graph structure B is LB =
Q

i LBi . Similarly to the bivariate
case, we want to consider a mixture over all the possible graph structures, but where each component must
explain the whole adaptation sequence, thus we define as a loss for the generalized multi-variable case

R = � logEB [LB ] (28)

Note the expectation over the 2m
2

possible values of B, which is intractable. However, we can still get an
e�cient stochastic gradient estimator, which can be computed separately for each node of the graph (with
samples arising only out of Bi, the incoming edges into Vi):
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Proposition 4 The overall regret (Equation (28)) rewrites

R = �
X

i

log
X

Bi

P (Bi)LBi (29)

and if we are willing to consider multiple samples of B in parallel, a biased but asymptotically unbiased (as
the number K of these samples B(k) increases to infinity) estimator of the gradient of the overall regret with
respect to meta-parameters can be defined:

gij =

P
k(�(�ij)�B(k)

ij )L(k)
BiP

k L
(k)
Bi

(30)

where the (k) index indicates the values obtained for the k-th draw of B.

Proof Recall that LB =
Q

i LBi so we can rewrite the regress loss as follows:

R = � logEB [LB ]

= � log
X

B

P (B)LB

= � log
X

B1

X

B2

. . .
X

BM

Y

i

P (Bi)LBi

= � log
Y

i

 
X

Bi

P (Bi)LBi

!

= �
X

i

log
X

Bi

P (Bi)LBi (31)

So the regret gradient on meta-parameters �i of node i is

@R
@�i

= �
P

Bi
P (Bi)LBi

@ logP (Bi)
@�iP

Bi
P (Bi)LBi

= �
EBi [LBi

@ logP (Bi)
@�i

]

EBi [LBi ]
(32)

Note that with the sigmoidal parametrization of P (Bij),

logP (Bij) = Bij log sigmoid(�ij) + (1�Bij) log(1� sigmoid(�ij))

as in the cross-entropy loss. Its gradient can similarly be simplified to

@ logP (Bij)

@�ij
=

Bij

sigmoid(�ij)
sigmoid(�ij)(1� sigmoid(�ij))

� (1�Bij)

(1� sigmoid(�ij))
sigmoid(�ij)(1� sigmoid(�ij)))

= Bij � sigmoid(�ij) (33)

A biased but asymptotically unbiased estimator of @R
@�ij

is thus obtained by sampling K graphs (over which

the means below are run):

gij =
X

k

(�(�ij)�B(k)
ij )

L
B(k)

iP
k0 LB(k0)

i

(34)

where index (k) indicates the k-th draw of B, and we obtain a weighted sum of the individual binomial

gradients weighted by the relative regret of each draw B(k)
i of Bi, leading to Equation (30).
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theorem

Again, this can only be 0 if LA!B = M all the time, i.e., p = 1. We conclude that the solutions p 2 (0, 1)
are not possible because they would lead to inconsistent conclusions, which leaves only p = 0 or p = 1. When
p = 0 we have E[R] = E[logLA!B ], and when p = 1 we have E[R] = E[logLB!A]. Thus the minimum will
be achieved at p = 1 when ED2 [logLA!B ] > ED2 [logLB!A], or p = 0 otherwise.

Appendix F. More Than Two Causal Hypotheses

In this section, we consider one approach to generalize to more than two causal structures. We consider m
variables, corresponding to O(2m

2

) possible causal graphs, since each variable Vj could be (or not) a direct
cause of any variable Vi, leading to m2 binary decisions. Note that a causal graph can in principle have
cycles (if time is not measured with su�cient precision), although having a directed acyclic graph allows a
much simpler sampling procedure (ancestral sampling). In our experiments the ground truth graph will
always be directed, to make sampling easier and faster, but the learning procedure will not directly assume
that. Motivated by the mechanism independence assumption, we propose a heuristic to learn the causal
graph in which we independently parametrize the binary probability pij that Vj is a parent (direct cause)
of Vi. As was the case for Section 2, we parametrize this Binomial distribution via binary edges Bij that
specify the graph structure:

Bij ⇠ Bernoulli(pij),

P (B) =
Y

ij

P (Bij). (24)

where pij = sigmoid(�ij). Let us define the parents of Vi, given B, as the set of Vj ’s such that Bij = 1:

pa(i, V,Bi) = {Vj | Bij = 1, j 6= i} (25)

where Bi is the bit vector with elements Bij (and Bii = 0 is ignored). Similarly, we could parametrize the
causal graph with a structural causal model where some of the inputs (from variable j) of each function (for
variable i) can be ignored with some probability pij :

Vi = fi(✓i, Bi, V,Ni) (26)

where Ni is an independent noise source to generate Vi and fi parametrizes the generator (as in a GAN),
while not being allowed to use variable Vj unless Bij = 1 (and of course not being allowed to use Vi). We can
consider that fi is a kind of neural network similar to the denoising auto-encoders or with dropout on the
input, where Bi is a binary mask vector that prevents fi from using some of the Vj ’s (for which Bij = 0).

The conditional likelihood PBi(Vi = vti | pa(i, vt, Bi)) measures how well the model that uses the
incoming edges Bi for node i performs for example vt. We build a multiplicative (or exponentiated) form of
regret by multiplying these likelihoods as ✓t changes during an adaptation episode, for node i:

LBi =
Y

t

PBi(Vi = vti | pa(i, vt, Bi)). (27)

The overall exponentiated regret for the given graph structure B is LB =
Q

i LBi . Similarly to the bivariate
case, we want to consider a mixture over all the possible graph structures, but where each component must
explain the whole adaptation sequence, thus we define as a loss for the generalized multi-variable case

R = � logEB [LB ] (28)

Note the expectation over the 2m
2

possible values of B, which is intractable. However, we can still get an
e�cient stochastic gradient estimator, which can be computed separately for each node of the graph (with
samples arising only out of Bi, the incoming edges into Vi):
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