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Outline of the Tutorial

1. Motivations and Scope
2. Algorithms

3. Practical Considerations
4. Challenges

See (Bengio, Courville & Vincent 2013)
“Unsupervised Feature Learning and Deep Learning: A Review and New Perspectives”
and for a

pdf of the slides and a detailed list of references.



OLkimate Goals

* Al

Needs knowledge
Needs learning

Needs generalization

Needs ways to fight the curse of dimensionality

Needs disentangling the underlying explanatory factors



Represen&a&ian Leariing

e Good features essential for successful ML

raw represented MACHINE
input * by trersed '» LEARNING
data features

e Handcrafting features vs learning them

e Good representation: captures posterlor bellabout
explanatory causes, disentangles these. | g
factors of variation

* Representation learning: guesses
the features / factors / causes = V.
good representation of observed data. SIS



DEQP Representation Learning

Learn multiple levels of representation

of increasing complexity/abstraction )
* potentially exponential gain in expressive power i
X

* brains are deep
* humans organize knowledge in a compositional way
e Better MCMC mixing in space of deeper representations
(Bengio et al, ICML 2013)

e They work! SOTA on industrial-scale Al tasks
(object recognition, speech recognition,
language modeling, music modeling)



Deep Learning

When the number of levels can be data-
selected, this is a deep architecture

h, e—
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A Good 0lLd ‘Deep Architecture: MLPs

—

Output layer

Here predicting a supervised target

Hidden layers

These learn more abstrac
representations as you head up

Input layer —

This has raw sensory inputs (roughly)



A (Vanilla) Modern Deep Architecture

~ @
Optional Output layer ™ / \

Here predicting or conditioning on a
supervised target

Hidden layers

These learn more abstrac
representations as you head up

Input layer

Inputs can be reconstructed, filled-in V

or sampled —




ML 1ol, What We Are Fighting Against:
The Curse of ‘mmehsiovml,i!:v

To generalize locally,
need representative
examples for all
relevant variations!

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting good
features / kernel

1 dimension:
10 positions

2 dimensions:
100 positions
Q

» 3 dimensions:
1000 positions!



Easy Learning

learned function: prediction = f(x)




Local Swmookthwess Prior: Local.l.j
Capture the Variaktions

* = training example

YA

true functjgn: unknbwn

prediction

.-~""learnt = interpolat
f X I , .’ .
(x) oy




However, Real Data Are hear Highly
Curved Sub- Manifolds
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Not bime:nsionati&v so much as
Number of Variations ‘

e Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

M
//’\\/\/ \//X/x

e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(2¢)
examples




Putting Probability Mass where
Structure is Plausible

e Empirical distribution: mass at
training examples

e Smoothness: spread mass around
e |nsufficient

e Guess some ‘structure’ and
generalize accordingly

14



Is there any ho pe to
generalize v\ov\%ocattv?

Yes! Need gqood pri.ors!
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Part 1

Six Grood Reasons ko Exptare.
Repre.sev\&aﬁov\ Leariing



# 1 Learning fe.a&wre.s , hot jus&
handerafting them

Most ML systems use very carefully hand-designed
features and representations

Many practitioners are very experienced — and good — at such
feature design (or kernel design)

“Machine learning” often reduces to linear models (including
CRFs) and nearest-neighbor-like features/models (including n-
grams, kernel SVMs, etc.)

Hand-crafting features is time-consuming, brittle, incomplete

17



# 2 The need for distributed
representations

e (lustering, Nearest-
Neighbors, RBF SVMs, local
non-parametric density
estimation & prediction,
decision trees, etc.

Clustering

e Parameters for each
distinguishable region

LOCAL PARTITION

e # of distinguishable regions
is linear in # of parameters

- No non-trivial generalization to regions without examples

18



# 2 The need for distributed
represehbabiohs

19

Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

Each parameter influences
many regions, not just local
neighbors

# of distinguishable regions

grows almost exponentially
with # of parameters

GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Multi-
Clustering

C1

artition 1

Cl=1
C2=0
C3=0

Cl1=0
C2=1
C3=0

Sub—partition 3
\

e, Sub—partition 2
\ Cl= ;

\ CjZ:() .,:'
\( .‘:I!~

\ C1=0
C2=1
\ C3=1

\

DISTRIBUTED PARTITION \

C2

input

C3

Non-mutually
exclusive features/
attributes create a
combinatorially large
set of distinguiable
configurations



# 2 The need for distributed
representations

Multi-

Clustering Clustering

Sub—partition 3 o
\ Sub-—partition 2

v Cl=1

X Cl=1 \ C2=0
C2=0 \C3=1 7
C3=0 \ 7
\/
o 7\ Cl=1
/ Sub—partition 1 : 5
X
C1=0
C2=1 \ C1=0
C3=0 \ =1
\ C3=1

DISTRIBUTED PARTITION
LOCAL PARTITION

Learning a set of features that are not mutually exclusive
can be exponentially more statistically efficient than
having nearest-neighbor-like or clustering-like models

20



# 3 Unsupervised feature Learning

Today, most practical ML applications require (lots of)
labeled training data

But almost all data is unlabeled

The brain needs to learn about 104 synaptic strengths

... in about 10° seconds
Labels cannot possibly provide enough information

Most information acquired in an unsupervised fashion

21



#3 How do humans generalize
from very few examples?

22

They transfer knowledge from previous learning:
* Representations

*  Explanatory factors

Previous learning from: unlabeled data
+ labels for other tasks

Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)



F 3 Sharing Statistical Strength bj
Semi-Supervised Learning

e Hypothesis: P(x) shares structure with P(y|x)

purely semi-
supervised P supervised

23



#4‘ Learning muﬂ:i.pl.e Llevels
of representation

There is theoretical and empirical evidence in favor of
multiple levels of representation

Exponential gain for some families of functions

Biologically inspired learning
Brain has a deep architecture

Cortex seems to have a
generic learning algorithm

Humans first learn simpler
concepts and then compose
them into more complex ones

24



#4 Sharing Compov\eu!:s i a ‘Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(r179)(XoX3) + (r129) (23224) + (X2X3)2 + (x9x3)(7374)

3) 2X3) + (1374)
Sum-product
network
LYy

Theorems in
(Bengio & Delalleau, ALT 2011;

Delalleau & Bengio NIPS 2011)
xrs T4



# 4" Learning mul&ipi.e levels P
Of YEPTQSQV\EQ&EOV\ (Lee, Pham, Largman & Ng, NS 209)

) (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

O‘-,?, ,T"T'

- High-level

VT i
‘..?' ‘T’ ,g g Layer 3 linguistic representations
:

Parts combine
ito form objects

Layer 2

L] TNV
_\\ \\ N \,"‘ Layer 1

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




#4“ Handling the compasi&iohau.&v
of human Language and thought

e Human languages, ideas, and “ \ i -
artifacts are composed from £>

simpler components I
Xt X, X1

e Recursion:the same
operator (same parameters) is
applied repeatedly on
different states/components
of the computation

e Result after unfolding = deep l(Bottou 2011, Socher et al 2011)
b

. computation / representation




#E Mulli-Task Learning

e Generalizing better to new tasks
(tens of thousands!) is crucial to
approach Al

e Deep architectures learn good
intermediate representations that
can be shared across tasks

(Collobert & Weston ICML 2008,
Bengio et al AISTATS 2011)

e Good representations that
disentangle underlying factors of
variation make sense for many tasks  E.g. dictionary, with intermediate
because each task concerns a concepts re-used across many definitions
subset of the factors

Prior: shared underlying explanatory factors between tasks
28



HE Combining Mulkiple Sources of
Evidence with Shared Representations

peron || wert
hi
e Relational learning: multiple sources, ol Jwords | history |

different tuples of variables
e Share representations of same types N
across data sources
e Shared learned representations help event ur' person

propagate information among data
sources: e.g., WordNet, XWN,
Wikipedia, FreeBase, ImageNet...

(Bordes et al AISTATS 2012, MLJ 2013)
* FACTS = DATA = P(person,url,event)
e Deduction = Generalization S

P(url,words,history)

e Traditional ML: data = matrix

history words url

29



#6 Different object types

represented in same space

DOLPHIN
OBAMA
—EIFFEL TOWER

) Google:

| S. Bengio, J.
Weston & N.
Usunier

Lo (1CAI 2011,

NIPS’2010,
JMLR 2010,
ML J. 2010)

100-dim
embedding space

Learn ®(<) and &,(-) to optimize precision@k.



#6 Invariance and Disen&ahgtihg

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality

31



#6 Emergence of Disentangling

TR ;‘;—!
7 N
T

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot et al. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)

Bas St

32



#6 Sparse Representations

e Just add a sparsifying penalty on learned representation
(prefer Os in the representation)

e Information disentangling (compare to dense compression)
e More likely to be linearly separable (high-dimensional space)

e Locally low-dimensional representation = local chart
e Hi-dim. sparse = efficient variable size representation
= data structure

Few bits of information Many bits of information

H B I .

Prior: only few concepts and attributes relevant per example

33




arse Qec&bfier Neural Nebworles

and Bengio AISTATS 2011), foIIowmg up on (Nair & Hinton 2010) softplus RBMs

‘De.eor
Bordés

Glor

Neuroscience motivations Machine learning motivations

Leaky integrate-and-fire model

mm) Sparse representations
mm) Sparse gradients
mm) Trains deep nets even w/o pretraining

Rectifier mite container ship motor scooter leopard
f(X) =ma X(O ,X) mite container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

Output

Outstanding results by Krizhevsky et al 2012
killing the state-of-the-art on ImageNet 1000:

Hidden layer 2
e 2"d best 27% err
i Previous SOTA  45% err 26% err
Krizhevsky etal 37% err 15% err




Tem Foral. Coherence and Scales

* Hints from nature about different explanatory factors:
e Rapidly changing factors (often noise)
* Slowly changing (generally more abstract)
e Different factors at different time scales

e Exploit those hints to disentangle better!

e (Becker & Hinton 1993, Wiskott & Sejnowski 2002, Hurri &
Hyvarinen 2003, Berkes & Wiskott 2005, Mobahi et al
2009, Bergstra & Bengio 2009)



Bypassing the curse

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently

36



Bypassing the curse by sharing
statistical strength

e Besides very fast GPU-enabled predictors, the main advantage
of representation learning is statistical: potential to learn from
less labeled examples because of sharing of statistical strength:

* Unsupervised pre-training and semi-supervised training
* Multi-task learning

* Multi-data sharing, learning about symbolic objects and their
relations

37



Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on

Unsup. &

Transfer Learning:™”|

095

085

curve (AUC)
o

o
< 065

3 layers

Cha%ﬁvxgez ‘De.e,gwg‘.aamm

2 layers

3 4
N umber ot tiaining e xamples)

SYLVESTER VALID: ALC=09316

q 1lst Place

NIPS’2011
Transfer
Learning

Challenge
Paper:
ICML’2012

& 9 & &
4 layers

LogziN umber ot training examples)




W‘kv NOwW ¢

Despite prior investigation and understanding of many of the
algorithmic techniques ...

Before 2006 training deep architectures was unsuccessful
(except for convolutional neural nets when used by people who speak French)

What has changed?

*  New methods for unsupervised pre-training have been
developed (variants of Restricted Boltzmann Machines =
RBMs, regularized auto-encoders, sparse coding, etc.)

*  New methods to successfully train deep supervised nets
even without unsupervised pre-training

*  Successful real-world applications, winning challenges and

beating SOTASs in various areas, large-scale industrial apps
39



40

Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

Unsupervised feature learners:
* RBMs

e  Auto-encoder variants

Sparse coding variants

WA  Bengi
Montréal
Torontg 7R
Hinto -
%8 Le Cun
212 New York



2012: Industrial-scale success in
speech recognition

41

Google uses DL in their android speech recognizer (both server-
side and on some phones with enough memory)

Microsoft uses DL in their speech recognizer
Error reductions on the order of 30%, a major progress

/\l \

o They are In fact qute  few arvcie

'8 much work 1o be done In this rea. .
i vary
- And w hm‘ Be able 10 brask down the
, —{ v

S




Deep Nebworks for Speech Recognition:
results from Google, IBM, Microsoft

Hours of Deep net+HMM | GMM+HMM GMM+HMM
training data same data more data
09 16.1 23.6

Switchboard 3 17.1 (2k hours)

English 50 17.5 18.8

Broadcast news

Bing voice 24 30.4 36.2

search

Google voice 5870 12.3 16.0 (lots more)
input

Youtube 1400 47.6 52.3

42 (numbers taken from Geoff Hinton’s June 22, 2012 Google talk)



Industrial-scale success in object

TQCOSV\f-Ef-GV\
¢ Q snake 2

e Krizhevsky, Sutskever & Hinton NIPS 2012

______ [1ichoice Top5

2nd pest 27% err
Previous SOTA 45% err 26% err
Krizhevsky etal  37% err 15% err

e Google incorporates DL in Google+ photo
search, “A step across the semantic
gap” (Google Research blog, June 12, 2013

B o L A

e Baidu now offers with similar services

(T - —— (T




More Successful Applications

44

Microsoft uses DL for speech rec. service (audio video indexing), based on
Hinton/Toronto’s DBNs (Mohamed et al 2012)

Google uses DL in its Google Goggles service, using Ng/Stanford DL systems,
and in its Google+ photo search service, using deep convolutional nets

NYT talks about these: http://www.nytimes.com/2012/06/26/technology/in-a-
big-network-of-computers-evidence-of-machine-learning.html?_r=1

Substantially beating SOTA in language modeling (perplexity from 140 to 102
on Broadcast News) for speech recognition (WSJ WER from 16.9% to 14.4%)
(Mikolov et al 2011) and translation (+1.8 BLEU) (Schwenk 2012)

SENNA: Unsup. pre-training + multi-task DL reaches SOTA on POS, NER, SRL,
chunking, parsing, with >10x better speed & memory (Collobert et al 2011)

Recursive nets surpass SOTA in paraphrasing (Socher et al 2011)
Denoising AEs substantially beat SOTA in sentiment analysis (Glorot et al 2011)
Contractive AEs SOTA in knowledge-free MNIST (.8% err) (Rifai et al NIPS 2011)

Le Cun/NYU'’s stacked PSDs most accurate & fastest in pedestrian detection
and DL in top 2 winning entries of German road sign recognition competition



Already Many NLP Applications of DL

e Language Modeling (Speech Recognition, Machine Translation)
e Acoustic Modeling

e Part-Of-Speech Tagging

e Chunking

e Named Entity Recognition
 Semantic Role Labeling

e Parsing

* Sentiment Analysis

e Paraphrasing

* (Question-Answering

e Word-Sense Disambiguation

45



Neural Language Model

 Bengio et al NIPS’2000
and JMLR 2003 “A

Neural Probabilistic
Language Model”

* Each word represented by
a distributed continuous-
valued code vector =
embedding

* Generalizes to sequences
of words that are
semantically similar to
training sequences

46

i-th output = P(w; = i | context)

normalized exponential

(e o [ ]

000 )

most| computation here

W

tanh
( 00 ..)

----------------------

shared parameters
across words

Wt—n+1 Wt—2 Wi—1



Neural word embeddings -
visualization

need help
come
go
take
give keep
make  get
meet cee continue
expect want become
think
say remain
are .
is
be
wergas
being
been

hadnaS

47 have



Analogical Representations for Free
(Mc.kc;tov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome

48



More aboul de.p&k

49



Architecture bep!:k

output

element

e s




'Dee.p Architectures are Mo»re
Expre.sswe.

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal opproximo‘ror
RBF units

RBMs & ou’ro encoders = universal approximat;
Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007, Bengio &

Delalleau 2011, Braverman 2011)

Some functions compactly
represented with k layers may
require exponential size with 2
layers




N

bsubsub] subsubsub?

subsubsu //////////fBbS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



9 TR3 a8°

* A ov SK.O' 5 A ~EATER
COMNECTION ADNTS SEE
BELow FOR NEATR CRCUT

COMPLETE CIRCUIT DIAGRAM, SERIES 420




“Shallow” circuit

iInput

123 n

Falsely reassuring theorems: one can approximate any
reasonable (smooth, boolean, etc.) function with a 2-layer
architecture



/

Good zwork -- but 7 think
we rmiight need a little
rmiore detail right fere.

56
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Part 2

Representation Learhing
Algorithms



A neural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs

But we don’t have to decide
ahead of time what variables

these logistic regressions are
trying to predict!

58



A neural network = running several
Logistic regressions at the same time

... which we can feed into another logistic regression function

and it is the training
criterion that will
decide what those
intermediate binary
target variables should
be, so as to make a
good job of predicting
the targets for the next
layer, etc.

59



A neural network = running several
Logistic regressions at the same time

e Before we know it, we have a multilayer neural network....

60



Bac:k-—?rap

e Compute gradient of example-wise loss wrt
parameters

* Simply applying the derivative chain rule wisely
_ _ Oz __ Oz Oy
e=fly) y=9) 5 =573

* |f computing the loss(example, parameters) is O(n)
computation, then so is computing the gradient

61



Simn Fte. Chain Rule

62

Az = %Ay

Ay = =2 Ax

Az = g; ngx
9z _ 9z dy

Ox ~ Oy Ox



Mutl:i;pte. Palbths Chain Rule

Oz __ Oz Oy

Oz OYo

X Ox ~ Oy; Ox

63

Oys Ox



Mutf:ipte. Pabhs Chain Rule - General

&

64



Chain Rule in Flow G-'mpk
2

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

{y1, Y2, ... yn}=successors of T

0z 0vy;
Z 0y; Ox

65



Back—-‘?ralo TN Mutti—Laye.r Net
NLL = —log P(Y = y|x)

66



Bmck'-?rrpp in Greneral Flow G*mpk

Single scalar output 2

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{yl, Y2, « .. yn} = successors of I

67



Back-Prop in Recurrent & Recursive

Nets

* Replicate a
parameterized function
over different time
steps or nodes of a DAG

* Qutput state at one
time-step / node is used
as input for another
time-step / node

68

Zt—l Zt zt+1
o () o
- ® >® 0L
o () > )
> @ () )
Xi-1 Xe | Xt+1
0000 0000 0000
A small crowd
quietly enters
the historic
eeDes church
VP S
"""" emantic
NP VP ,,,,,,, P Representations
A small quietly N P
crowd enters Det Adj. N.

i J i }
istoric  church




Backpropagation Through Structure

* Inference - discrete choices
* (e.g., shortest path in HMM, best output configuration in CRF)

E.g. Max over configurations or sum weighted by posterior

The loss to be optimized depends on these choices

The inference operations are flow graph nodes

If continuous, can perform stochastic gradient descent

* Max(a,b) is continuous. o
O______.

69



Automatic Differentiation

70

W

* The gradient computation can
be automatically inferred from
the symbolic expression of the
fprop.

* Each node type needs to know
how to compute its output and
how to compute the gradient
wrt its inputs given the
gradient wrt its output.

* Easy and fast prototyping



“Dee.p Su.pervi.sed Neural Nets

71

We can now train them even
without unsupervised pre-
training, thanks to better
initialization and non-linearities
(rectifiers, maxout) and they can
generalize well with large labeled
sets and dropout.

Unsupervised pre-training still
useful for rare classes, transfer,
smaller labeled sets, or as an extra
regularizer.




Stochastic Neurowns as Regularizer:
Improving neural networks by preventing co-adaptation of

feature detectors (Hinkown ek al 2012, arXiv)

e Dropouts trick: during training multiply neuron output by
random bit (p=0.5), during test by 0.5

e Used in deep supervised networks
e Similar to denoising auto-encoder, but corrupting every layer

e Works better with some non-linearities (rectifiers, maxout)
(Goodfellow et al. ICML 2013)

e Equivalent to averaging over exponentially many architectures
* Used by Krizhevsky et al to break through ImageNet SOTA
e Also improves SOTA on CIFAR-10 (18—2>16% err)
* Knowledge-free MNIST with DBMs (.952.79% err)
o TIMIT phoneme classification (22.7219.7% err)

72






Temporal & Spatial Inputs:
Convolutional & Recurrent Nets

e Local connectivity across time/space
e Sharing weights across time/space (translation equivariance)

e Pooling (translation invariance, cross-channel pooling for learned invariances)
Input layer (S1) 4 feature maps

(Cl) 4 feature maps (S2) 6 feature maps

(C2) 6 feature maps

l sub-sampling layer l convolution layer l sub-sampling layer | fully connected MLP |

><1048 dense ‘ ‘ ‘
Xt Xt Xt

dense|

Il Recurrent nets (RNNs) can summarize
information from the past

Bidirectional RNNs also summarize
24 information from the future



Distributed Representations
& Neural Nets:

How ko do uv\supervised

training?

75
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i CA code= latent features h

C0000

= Linear Manifold / \
= Linear Auto-Encoder
=L

ear Gaussian Factors 000 @ @0 - O

input reconstruction
Input x, 0-mean Linear manifold
features=code=h(x)=W x
reconstruction(x)=W" h(x) = W™ W x x x

W = principal eigen-basis of Cov(X)

Probabilistic interpretations:

1. Gaussian with full
covariance W' W+Al

2. Latent marginally iid
Gaussian factors h with
x = WT h + noise



Directed Factor Models:

77

‘P(x,k).-‘?(k)‘?(xlh)

factors prior  likelihood
P(h) factorizes into P(h,) P(h.,)...
Different priors: 1 2 2’) 2N D s
* PCA: P(h,) is Gaussian
* ICA: P(h,) is non-parametric
* Sparse coding: P(h,) is concentrated near O
Likelihood is typically Gaussian x [ h

with mean given by W' h
procedures (predicting h, given x) differ

Sparse h: x is explained by the weighted addition of selected filters h,
X hl h3 W3 h5 W5

ZA<=.9x / +.8x +.7x \




Sparse autoencoder illustration for
images

Natural Images

Learned bases: }

Test example

[h,, ... hg) = 10,0, ..,0,0.8,0,.,0,0.3,0,..,0,0.5,0]
s (feature representation)




Stacking Single-Layer Learners

e PCAis great but can’t be stacked into deeper more abstract

representations (linear x linear = linear)
e One of the big ideas from Hinton et al. 2006: layer-wise

unsupervised feature learning

P e— — — — — — — —

10OCOO0O) h!

RBM |

..... >
'©oooooo) by

'(OOOOOOO) bl
!
!

©000000 !

| RBM

Cooo'ooo@ x

RBM for hy

RBM for x

" T ©0O00000) hy

' RBM '
| |

(O @OOOOOO) hal

(OOOOOOO) X

RBM for ¥ and hy

Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)
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Effective deep Learning first became

Possibi.e. with unsup

test classification error (perc)
+H

number of layers

80

ervised pre-training
S )

(with RBMs and Denoising Auto-Encoders)

With unsupervised pre-training

number of layers




Optimizing Deep Non-Linear
ComPosi.l:iov\ of Functions Seems Hard

81

Failure of training deep supervised nets before 2006

Regularization effect vs optimization effect of
unsupervised pre-training

Is optimization difficulty due to
* ill-conditioning?

* local minima?

*  both?

The jury is still out, but we now have success stories of training
deep supervised nets without unsupervised pre-training



Initial Examytes Matter More
(eritical peri‘.od?)

Variance of the output

[os]

4 < =x 1-layer network without pretraining
€5 _“ ® @ 1-layer network with RBM pre-training
[} \ . N N . N N . .
£ \ 5
P20 N WS RV SO RS S SN S R
e N
= \\“
m5_ ..... \. ............................................................................................
gl A\
° b
%4_ ........ %\ ......................................................................................
o e : : : : : : ;
Solo S K S R S
5 s NIRRT : s e
> : Q : : X"'%----:-_X ) !
) ' ' . H \ . -~
] IS R SN SRR S— SN S S
®.. y
g L R S ‘.-“---‘-____._“/

; ; i ; ; i
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction at which we vary the examples

(o)
o
o—-
=

82



Order & Selection of Examples Ma!:&ars

(Bengio, Louradour, Collobert & Weston, ICML’2009)

e Curriculum learning

e (Bengio et al 2009, Krueger & Dayan 2009) Ik ok VN

e Start with easier examples

—curriculum

e Faster convergence to a better local = = no-curriculum
minimum in deep architectures
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Understanding the difficully of
training deep feedforward heural
networlkes

(Glorot & Bengio, AISTATS 2010)

Study the activations and gradients
* wrt depth
* as training progresses
 for different initializations = big difference
 for different non-linearities = big difference

First demonstration that deep supervised nets can be
successfully trained almost as well as with unsupervised pre-
training, by setting up the optimization problem appropriately...



Layer-wise Uhsupervised Learning

Input 000 .. O
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Layer-Wise Unsupervised Pre-training

features O00©® ... @
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Layer-Wise Unsupervised Pre-training

features O 0®@®

_ ?
reconstruptlon 00 ..0 = 000 O input
of input '\
.\
Input %
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Layer-Wise Unsupervised Pre-training

features O00©® ... @
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Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..
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Layer-wise Unsupervised Learning

reconstruction '
Q0O 09 .. ©

"
of features O »\ T l

More abstract

features ;'

features O0® ... @
input %@y
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Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..
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Layer-wise Uhsupervised Learning

Even more abstract
features O

® ..
More abstract I/;><
features V o 'ﬁ

features 00©® ... @

Input o0 ..
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Supervi.se.d Fine-Tuning

Output - Target
f(X) six _Y
@
Even more abstract / / \
features O

.. @
More abstract I/;><T
features V 'ﬁ

features WV
iInput o0 ..

e Additional hypothesis: features good for P(x) good for P(y|x)
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Reskricted Bolkzmann Machines



Undirected Models:

the Restricted

[Hinton et al 2006]

, Boltzmann Machine

Probabilistic model of the joint distribution of
the observed variables (inputs alone or inputs
and targets) x

hy hy hy

Latent (hidden) variables h model high-order
dependencies

Inference is easy, P(h|x) factorizes into product
of P(h; | x)

X1 X

See Bengio (2009) detailed monograph/review: ﬂ
“Learning Deep Architectures for Al”.

See Hinton (2010)
“A practical guide to training Restricted Boltzmann Machines”



Bolkzmann Machines & MRFs

e Boltzmann machines:

- 1 1 1 S oo —
(Hinton 84) P(CE) _ Ze—Energy(m) _ ZecTzz:-{—a:TWm _ Eezz 'L-'L'z'*‘zz.’j z;Wijxj

e Markov Random Fields:
Undirected

graphical

1 i o models
P(x) = Eezi ’Lfi.(\)

Soft constraint / probabilistic statement

® More interesting with latent variables!



Restricted Boltzmann Machine
(RBM)

P(m h) — lebTh-i-cT:L’-i-hTWm — lezz bihi+2j Cjil}j-i-zi,j hiW;;x;
) 7 7
e A popular building
block for deep
architectures

O - ¢ n hidden

e Bipartite undirected
graphical model

x Observed



Gibbs Sampling & Block Gibbs Sampling

 Want to sample from P(X,X,,..X,)
e Gibbs sampling
* |terate or randomly chooseiin {1...n}

e Sample X, from P(X, | X;,X,..X: 1, Xi11,---X,,) g B
can only make small changes at a time! = slow mixing ® ex
Note how fixed point samples from the joint. .,
Special case of Metropolis-Hastings. / \
A
oX, o - ®x; . C
X, o Xy

e Block Gibbs sampling  (not always possible)
* X’s organized in blocks, e.g. A=(X,,X,,X;), B=(X,,Xs,X;), C=...
* Do Gibbs on P(A,B,C,...), i.e.
e Sample A from P(A|B,C)
e Sample B from P(B|A,C)
e Sample C from P(C|A,B), and iterate...

e Larger changes > faster mixing
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Block Gribbs Sampling in RBMs

h, ~P(h]x) h, ~P(h1X,) hs ~P(h|x;)

N~

C
X, X, ~ P(x|h,) X3~ P(x|h,)

pum—

® Fasy inference

P(h]x) and P(x|h) factorize = ' . p 1\ Gibbs

P(h|x)=T1 P(h,|x) sampling x>h=>x->N...

“—

T T T
P($,h) — %6b h+c” z+h” Wx



Obstacle: Vicious Circle Bebtween
Learhing and MCMC Sampling

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?

Training updates

Gicious circl§

Mixing

100 A\WUAN



RBM with (imaqe, Label) visible uniks

hidden

OCOOO OO0

A
@XXX) 00000

label

Y

(Larochelle & Bengio 2008)



RBMs are Universal Approximators

(Le Roux & Bengio 2008)

e Adding one hidden unit (with proper choice of parameters)
guarantees increasing likelihood

e With enough hidden units, can perfectly model any discrete
distribution

e RBMs with variable # of hidden units = non-parametric



REBM Conditionals Factorize

b/ / /
P(hix) — exp(b’x + c’h + h/Wx)

St exp(b/x + ¢/h + h/Wx)
I, exp(c;h; + h; W;x)
H,L- Zfli eXp(Cifli + EZWZX)

B H exp(h;(c; + W;x))
2 exp(hy (s + Wix)

= H P(h;|x).




RBM Energy Gives Binomial Neurons

With h; € {0,1}, recall Energy(x,h) = —b’x — c’h — h'Wx

elci +1W;x+other terms

P(hz = 1|X) - elci—{—lwix—i—other terms + eOc,-+OW,-x—|—other terms

eci +W;x

eci+Wix + 1
1
1 _|_ e_ci_Wix
= sigm(c; + W;x).

1
l+e—a"

since sigm(a) =



G—Energy(x,h)

RBM Free Energy Pxh=—7p

* Free Energy = equivalent energy when marginalizing

—Energy(x,h) e—FreeEnergy(X)

€

P(x) = Eh: = = =

e Can be computed exactly and efficiently in RBMs
FreeEnergy(x) b'x — Z log Z ehi(ci +Wix)

e Marginal likelihood P(x) tractable up to partltlon function Z



Energy-Based Models Gradient

e —Energy(x)

_ _ —Energy(x)
P(x) = 7 Z = Z e sy
Olog P(x)  OEnergy(x) 0OlogZ
00 B 00 00
dlogZ  dlog). e Eneray(®)
oo B 00
10 ZX e—Energy(x)
- Z 0
— _i Energy(x) 8EnergY( )
Z 00

B Z P(x (9Energy( )




Bolkzmann Machine Gradient

P(.T) =~ Zh e—Energy(m h) _

e Gradient has two components:

0log P(x)

o6

[“posiﬂve phose”]

—FreeEnergy(:c)

[“negaﬂve phase” ]

Vs

| OFreeE ~ 6FreeEnergy(5:)\
(b My, P02
OE h OE h
— 3 P(h|z) negriat) Zg{;ﬁp( h) S=Re (L. )
o J

® |n RBMs, easy to sample or sum over h|x
m Difficult part: sampling from P(x), typically with a Markov chain




Positive & Negative Samples

 Observed (+) examples push the energy down

e Generated / dream / fantasy (-) samples / particles push
the energy up

X- Equilibrium: E[gradient] =0



Training RBMs

Contrastive Divergence: start negative Gibbs chain at observed x, run k
(CD-k) Gibbs steps

SML/Persistent CD: run negative Gibbs chain in background while
(PCD) weights slowly change

Fast PCD: two sets of weights, one with a large learning rate

only used for negative phase, quickly exploring
modes

Herding: Deterministic near-chaos dynamical system defines
both learning and sampling

Tempered MCMC: use higher temperature to escape modes



Contrastive Divergence

Contrastive Divergence (CD-k): start negative phase

block Gibbs chain at observed x, run k Gibls steps
(Hinton 2002)

h™ ~P(h|x") h™~P(h|x)
é c
Observed x* k=2steps Sampledx
positive phase negative phase
push down

Free Energy

push up



Persistent CD (PCD) / Skochastic Max.

Likelihood (SML)

Run negative Gibbs chain in background while weights sloy¥s
change (Younes 1999, Tieleman 2008).

* Guarantees (Younes 1999; Yuille 2005)

* |f learning rate decreases in 1/t,

chain mixes before parameters change too much,

chain stays converged when parameters change

h*~P(h|x")

Observed x*
(positive phase)

previous X

new x



Sowme RBM Variawks

e Different energy functions and allowed
values for the hidden and visible units:

* Hinton et al 2006: binary-binary RBMs
Welling NIPS’2004: exponential family units )

Ranzato & Hinton CVPR’2010: Gaussian RBM weaknesses (no
conditional covariance), propose mcRBM

e Ranzato et al NIPS’2010: mPoT, similar energy function
Courville et al ICML’2011: spike-and-slab RBM
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Convolubionally Trained
Spilke & Slab RBMs Samples




ssRBM is not Cheating

Samples from p-ssRBM:

T:
9
o
£
©
(%)
©
Q
)
O
| -
()]
C
()
OF

Nearest examples in CIFAR:
(least square dist.)

Training examples




Auto-Encoders & Variants:
Learning a computational graph
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Compu&a&iov\ai. Grapks

e Operations for particular task

 Neural nets’ structure = computational graph for P(y|x)
e Graphical model’s structure # computational graph for inference

e Recurrent nets & graphical models

= family of computational graphs sharing parameters

e Could we have a parametrized family of computational graphs
defining “the model”?
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Sim pl.e. Aubto-Encoders

117

code= latent features h

MLP whose target output = input CO0000

encoder
Reconstruction= decoder(encoder(mput / Wr
mput X

e.g. O
h = tanh(b + Wx
reconstruction = tanh(c+ W7h)
Loss L(z,reconstruction) = ||reconstruction — z||?

With bottleneck, code = new coordinate system
Encoder and decoder can have 1 or more layers
Training deep auto-encoders notoriously difficult

Ce0 - O

reconstruction

r(x)



Link Between Contrastive Divergence
oand Aubto-Encoder Reconstruction
Error Gradient

e (Bengio & Delalleau 2009):

e CD-2k estimates the log-likelihood gradient from 2k
diminishing terms of an expansion that mimics the Gibbs
steps

e reconstruction error gradient looks only at the first step, i.e.,
is a kind of mean-field approximation of CD-0.5

d

-1
0log P(xy) Z(ElélogP(xslhs) 4 . ElﬁlogPa(l;slxm)

00

|

s=1

0log P(x;)
+ E [ 50




I finally understand what
auto-encoders do!

e Tryto carve holes in ||r(x)-x||*> or -log P(x | h(x)) at examples

vy

e Vector r(x)-x points in direction of increasing prob., i.e. estimate
score = d log p(x) / dx: learn score vector field = local mean

e Generalize (valleys) in between above holes to form manifolds

e drlx)/dx estimates the local covariance and is linked to the
Hessian d?log p(x) / dx?

A Markov Chain associated with AEs estimates the data-
generating distribution (Bengio et al, arxiv 1305.663, 2013)
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Stacking Auto-Encoders

r

U
hz@OOQOOO) hz@OOQOOO)
W, w;' W,
llelelelelelel0) h;@OOOOO>OOOOOOO)HI nOOOO000)
W, Wy W;A W:A
x ©O000CO000D x©OO0O x ©O000)

Auto-encoders can be stacked successfully (Bengio et al NIPS’2006) to form !
highly non-linear representations, which with fine-tuning overperformed i
purely supervised MLPs
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Greedy Layerwise Supervised Training

s

U
h2©OQ§)OOO> hz(OOOCA)OOO)
W» U, W,
nQOOOO00D hr@OOCADOOO) y m(OOOCA)OOO)
W, Uy W1 Wi
x s xQO0O00 x ©O0000)

Generally worse than unsupervised pre-training but better than ordinary
training of a deep neural network (Bengio et al. NIPS’2006). Has been used
successfully on large labeled datasets, where unsupervised pre-training did
not make as much of an impact.



Supervised Fine-Tuning is Important

e Greedy layer-wise
unsupervised pre-

0.10

1Nt 1 —— No AA, hidden supervised fine-tuning
traln | ng phase Wlth ------ No AA, no hidden supervised fine-tuning
_ ---- AA, hidden supervised fine-tuning
RBMS or aUtO enCOderS - - AA, no hidden supervised fine-tuning

on MNIST

e Supervised phase with or
without unsupervised
updates, with or without
fine-tuning of hidden
layers

e (Cantrain all RBMs at the °® 5 160 150 700
same time, same results

0.05F

o



(Auto-Encoder) Reconskruction Loss

e Discrete inputs: cross-entropy for binary inputs
* -2 x log r(x) + (1-x.) log(1-r,(x)) (with 0<r,(x)<1)

or log-likelihood reconstruction criterion, e.g., for a
multinomial (one-hot) input

* -2 x logri(x) (where 2.r(x)=1, summing over subset of inputs
associated with this multinomial variable)

e |In general: consider what are appropriate loss functions to
predict each of the input variables,

typically, reconstruction neg. log-likelihood —log P(x | h(x))
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anifold Learning

Additional prior: examples concentrate near a lower
dimensional “manifold” (region of high density with only few

operations allowed which allow small changes while staying on
the manifold)

variable dimension locally?
- Soft # of dimensions?

“ fshrinking
'trgnsfonnation

4 ,,

raw input vector space




Denoising Auto-Encoder B

(Vincent et al 2008)

e Corrupt the input during training only
e Train to reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)

(OO0

-V W

-
-
-~
-

-
-

RORO Ole— (00000 (OO000)

Corrupted input Raw input reconstruction

e Encoder & decoder: any parametrization
e As good or better than RBMs for unsupervised pre-training



Denoising Auto-Encoder
e Learns a vector field pointing towards

higher probability direction (Alain & Bengio 2013) concentrate near a
r(x)-x o< dlogp(x)/dx lower dimensional
“manifold”

e Some DAEs correspond toa kmd of

Matching (Vincent 2011)
[equivalent when noise—>0]
* Compared to RBM: Corrupted input
No partition function issue, -~ —g_
+ can measure training

. \ 1
criterion .« _ 7

prior: examples



Stacked Denoising Auto-Encoders

Budget of 10 million iterations

1 layer w/o pre-training
3 layers w/o pre-training

1 layer with RBM pretraining
3 layers with RBM pre-training
1 layer with denoising AA pre-training [4
3 layers with denoising AA pre-training :

Infinite MNIST

Note how
advantage of
better
initialization
does not vanish
like other
regularizers as
#texemples—> oo

Online classification error

0 1 2 3 4 5 6 7 8 9 10
Number of examples seen 10"



Auto-Encoders Learn Salienk
Variakions, Like a non-Linear PCA

..0 .(

* Minimizing reconstruction error forces to

keep variations along manifold. ®
* Regularizer wants to throw away all

variations. 9
e With both: keep ONLY sensitivity to

variations ON the manifold.
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ularized Auto-Encoders Learn a

9
Vector Field or a Markov Chain

Transition Diskribution

e (Bengio, Vincent & Courville, TPAMI 2013) review paper
(Alain & Bengio ICLR 2013; Bengio et al, arxiv 2013)

Ke

g
‘g o 4 N N~ VM.AA.A « ¥
> Ne i 7
TR A, /V/Y/YI"‘VeAId
A S E S SAINN gl
LJ
>y . 4 \\ . % % v
Xy \\\\\ - % % v >
A AT, ‘\\\ N ~ % % % - >
AA T T . , »4.:. ~ % % w > -
AT A A , ,‘,,..,,«4.///« - -
R VI - $P v v XX %y -
VR I A RVEVE . © °° ol GG N U U U Y - wr
VSR I A A A P VRSN S S S N S S U S ..
- PO P A A A B B N N N S S U O U O S Y N
- FRVEEP A B B B N B B B N N S S < xa
P PR A B N N N N N S »n,m
i 1
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Lamﬁraﬁhve Aubto-Encoders

‘ 6 (Rifai, Vincent, Muller, Glorot, Bengio ICML 2011; Rifai, Mesnil,
- Vincent, Bengio, Dauphin, Glorot ECML 2011; Rifai, Dauphin,
Vincent, Bengio, Muller NIPS 2011)

reconstruction(x) = g(h(x)) = decoder(encoder(z))

Training criterion:

2
Jcar(0) Z )\Z 8:1: ) + L(z, reconstruction(x))

xeD, 1] |

wants contraction in all cannot afford contraction in
directions manifold directions

If h;=sigmoid(b;+W; x)

(dh,(x)/dx)? = h2(1-h)2W,2



L.c:»v\%ra\&%wa Aubto-Encoders

BF ¥ (Rifai, Vincent, Muller, Glorot, Bengio ICML 2011; Rifai, Mesnil,
- Vincent, Bengio, Dauphin, Glorot ECML 2011; Rifai, Dauphin,
Vincent, Bengio, Muller NIPS 2011)

Most hidden units saturate (near
0 or 1, derivative near 0):

few responsive units represent
the active subspace (local chart)

Each region/chart = subset of active hidden units
Neighboring region: one of the units becomes active/inactive
SHARED SET OF FILTERS ACROSS REGIONS, EACH USING A SUBSET



1.5

O
in

Jacobian singular values

CIFAR-10

o AE
o CAE

- -
-

Jacobian’s spectrum is peaked =
RN local low-dimensional
: _>.representation / relevant factors

[E—

100 200 300 400 500 600 700 800
# singular values
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Cownkractive Auto-Encoders

Benchmark of medium-size datasets on which several deep learning
algorithms had been evaluated (Larochelle et al ICML 2007)

Data Set | SVM, ;| SAE-3| RBM-3|DAE-b-3| CAE-1| CAE-2
basic 3.03:015| 3.46x016| 3.11x015| 2.84x015] 2.83:015| 2.48:014
rot I1.11+02s8|10.30+027]| 10.30x027| 9.532026| 11.59+028] 9.66=026
bg-rand 14.582031| 11.28z028| 6.73x022| 10.30x027| 13.57+030] 10.90 2027
bg-img 22.6120379|23.00x037| 16.312032| 16.68+033| 16.70+033| 15.50+0.32
bg-img-rot| 55.18+0.44|51.93+044(47.39+0.44| 43.760.43|48. 102044 | 45.2320.44
rect 2.15:013| 2.41+013| 2.60x014 1.99+012| 1.48+010] 1.2120.10
rect-img | 24.04+037|24.05+037]22.50+037| 21.59+036| 21.86036 | 21.5420.36




Input Point Tangents

MNIST
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Input Point Tangents

MNIST Tangents
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Diskributed vs Local
(CIFAR-10 unsupe.rvised)

Input Point Tangents

Contractive Auto-Encoder
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Denoising auto-encoders
are also contractive!

e Taylor-expand Gaussian corruption noise in reconstruction

error.

El(z,r(z+¢€))]

Q

E

(zz: — (r(m) +

E|

or(x)
oz

N’ (- (mmggu))]

or(x)

e Yields a contractive penalty in the reconstruction function
(instead of encoder) proportional to amount of corruption noise
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Learhed Tangent Pro !:
the Manifold Tangent Classifier

(Rifai et al NIPS 2011)

3 hypotheses:

1. Semi-supervised hypothesis (P(x) related to P(y|x))

2. Unsupervised manifold hypothesis (data
concentrates near low-dim. manifolds)

3. Manifold hypothesis for classification (low density
between class manifolds)



Learhed Tangent Pro &P:
the Manifold Tangent Classifier

Algorithm:

1. Estimate local principal directions of variation U(x)
by CAE (principal singular vectors of dh(x)/dx)

2. Penalize f(x)=P(y|x) predictor by || df/dx U(x) ||

Makes f(x) insensitive to variations on manifold at x,
tangent plane characterized by U(x).



Manifold Tangent Classifier Resulbs

e Leading singular vectors on MNIST, CIFAR-10, RCV1:

Trading +gilt -slow +matur -percent | +bin -anti +interest -sen
& +yen -term +auction -sent +coupon  -predict | +calcul -californ
Markets +usda -debt +treasur -pressure | +discount -belgian | +overnight -introduc

e Knowledge-free MNIST: 0.81% error

K-NN NN SVM  DBN CAE DBM CNN MTC
3.09% 1.60% 1.40% 1.17% 1.04% 095% 0.95% 0.81%

° -
Semi-su P. NN SVM CNN TSVM DBN-INCA EmbedNN CAE MTC
100 | 25.81 2344 2298 16.81 - 16.86 1347 12.03
600 | 1144 885 7.68 6.16 8.7 5.97 6.3 5.13
1000 | 10.7  7.77  6.45 5.38 - 5.73 477  3.64
3000 | 6.04 421  3.35 3.45 3.3 3.59 3.22  2.57

SVM  Distributed SVM MTC

* Forest (500k examples)
4.11% 3.46% 3.13%




Inference and Explaining Away

e Easy inference in RBMs and regularized Auto-Encoders
e But no explaining away (competition between causes)

e (Coates et al 2011): even when training filters as RBMs it helps
to perform additional explaining away (e.g. plug them into a
Sparse Coding inference), to obtain better-classifying features

e RBMs would need lateral connections to achieve similar effect

e Auto-Encoders would need to have lateral recurrent

connections or deep recurrent structure
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SPQT'SQ COdﬂhg (plshausen et al 97)

e Directed graphical model:

P(h) x e M z|h ~ N(WTh,o?I)
e One of the first unsupervised feature learning algorithms with
non-linear feature extraction (but linear decoder)

|z — WTh|?
2

min
h o

+ Alh|1

MAP inference recovers sparse h although P(h|x) not concentrated at O

e Linear decoder, non-parametric encoder
e Sparse Coding inference: convex but expensive optimization
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Predictive Sparse ‘De.composikiov\

Approximate the inference of sparse coding by aP_ q
parametric encoder: A€ ¥

Very successful applications in machine vision
with convolutional architectures

143

Predictive Sparse Decomposition
(Kavukcuoglu et al 2008)

o — |13




Predictive Sparse. ‘be.composikioh

e Stacked to form deep architectures F“EE-

 Alternating convolution, rectification, pooling ﬁ‘ilﬁ““

 Tiling: no sharing across overlapping filters I.Iﬂ‘nh.ii.nili

e Group sparsity penalty yields topographic Sl Frar
maps

Overlapping — ) .
Neighborhoods v = ,/2 w; 2} fx\\ Fo(z; K) ()
Pi P1 'P\ls JEPR; U e ) v
~ | ~
e — &2 NN
D (2)
oY
K
/\Z wjzj2
. _ i=1 \| jeP
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Deep Varianks



Level-Local Learning is Important

e |nitializing each layer of an unsupervised deep Boltzmann
machine helps a lot

e |nitializing each layer of a supervised neural network as an RBM,
auto-encoder, denoising auto-encoder, etc can help a lot

e Helps most the layers further away from the target
* Not just an effect of the unsupervised prior

e Jointly training all the levels of a deep architecture is difficult
because of the increased non-linearity / non-smoothness

e |nitializing using a level-local learning algorithm is a useful trick

e Providing intermediate-level targets can help tremendously
(Gulcehre & Bengio ICLR 2013)



Stack of RBMs / AEs
> Deep MLY

 Encoder or P(h|v) becomes MLP layer
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Staclk of RBMs / AEs
= De.e.r Auto-Encoder

(Hinton & Salakhdtdinov 2006)

e Stack encoders / P(h|x) into deep encoder
e Stack decoders / P(x|h) into deep decoder

o
"
j—
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Stack of RBMs / AEs

> 'De.e.p Recurrent Auto-Encoder
(Savard 2011) REl (Bengio & Laufer, arxiv 2013). R,

e Each hidden layer receives input from below and above h

2
e Deterministic (mean-field) recurrent computation (Savard 2011) $W2
e Stochastic (injecting noise) recurrent computation: Deep

Generative Stochastic Networks (GSNs) h,
(Bengio & Laufer arxiv 2013) §W1

h; e——
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9 DQQF BQLE"Q{ NQ& (Hinon e\aI2006)

e Stack lower levels RBMs’ P(x| h) along with top-level RBM
° P(X/ h1/ h2/ h3) = P(h2/ h3) P(hllhz) P(X | hl)
e Sample: Gibbs on top RBM, propagate down

150

hs

h,

X




Stack of RBMs ll

> De.eﬁ Bolbtzmann Machine

(Salakhutdinov &*™Hinton AISTATS 2009)

e Halve the RBM weights because each layer now has inputs from
below and from above

e Positive phase: (mean-field) variational inference = recurrent AE

e Negative phase: Gibbs sampling (stochastic units)
e train by SML/PCD

h;mees e y E— T—
Ya 3 2
h, —— Ms
2 2 2
h, ? A
T

!
2 2VV5

. S s

x‘wzl —ZT 2%

:
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Stack of Auto-Encoders
> Deep Greherative Auto-Encoder

(Rifai et al ICML 2012)

e MCMC on top-level auto-encoder
* h,,; = encode(decode(h,))+o noise
where noise is Normal(0, d/dh encode(decode(h,)))
e Then deterministically propagate down with decoders
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Grenerative Stochastic Networks (GSN)

(Bengio, Yao, Alain & Vincent, arxiv 2013; Bengio & Laufer, arxiv 2013)

e Recurrent parametrized stochastic computational graph that
defines a transition operator for a Markov chain whose
asymptotic distribution is implicitly estimated by the model

 Noise injected in input and hidden layers
e Trained to max. reconstruction prob. of example at each step
e Example structure inspired from the DBM Gibbs chain:

h, noise

h Wi\wg\)/wz/’

sample x;

sample x, sample x;

3 to 5 steps
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Denoising Auto-Encoder Marikov Chain

* P(X): true data-generating distribution
« C(X|X): corruption process

e Py, (X|X)i denoising auto-encoder trained with n examples X, X
from C(X|X)P(X) , probabilistically “inverts” corruption

o I : Markov chain over X alternating X ~ C(X|X), X ~Py, (X|X)

corrupt

C(X|X)

<2

t+2

Xt X t+1 X t+2
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Previous Theoretical Resullts on
Probabilistic Interpretation of Auto-
E\f\t:oders (Vincent 2011, Alain & Bengio 2013)

* Continuous X

* @Gaussian corruption

e Noiseoc—=>0

e Squared reconstruction error | | r(X+noise)-X| |2

(r(X)-X)/o? estimates the score d log p(X) / dX
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New Theoretical Results

* Denoising AE are consistent estimators of the data-generating
distribution through their Markov chain, so long as they
consistently estimate the conditional denoising distribution and

the Markov chain converges.

~

Making Py (X|X) match P(X|X) makes 7, (X) match P(X)

/1

truth stationary distr. truth

denoising distr.

156



Grenerative Stochastic Networks (GSN)

e |If we decompose the reconstruction probability into a
parametrized noise—depenglent part X = f¢,(X,Z) and a noise-
independent part Py, (X|X), we also get a consistent
estimator of the data generating distribution, if the chain

converges.
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&SN Eixpercmev\!:s' validating the
theorem in a conkinuous non-

pamme&m: setting
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Continuous data,
X in R0 Gaussian
corruption

Reconstruction
distribution =
Parzen (mixture of
Gaussians)
estimator

5000 training
examples, 5000
samples

Visualize a pair of
dimensions

samples
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GSN Experiments: validating the theorem in
a continuous non-parametric setting
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Shallow Model: Generalizing the Denoising
Auto-Encoder Probabilistic Interpretation

e C(Classical denoising auto-encoder architecture, single hidden layer
with noise only injected in input

e Factored Bernouilli reconstruction prob. distr.

X = fo,(X,7Z)= parameter-less, salt-and-pepper noise on top of X

W T 3 mLI T
1 \W% !
X, 1
sample x, sample x, sample x,

e Generalizes (Alain & Bengio ICLR 2013): not just continuous r.v.,
any training criterion (as log-likelihood), not just Gaussian but
any corruption (no need to be tiny to correctly estimate
distribution).
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Experimav\!:s: Shallow vs ‘Dee.p
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Deep GSN:
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sample x;
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Quontitative Evaluation of Samples

e Previous procedure for evaluating samples (Breuleux et al 2011, Rifai
et al 2012, Bengio et al 2013):

* Generate 10000 samples from model
* Use them as training examples for Parzen density estimator
* Evaluate its log-likelihood on MNIST test data

Training
examples

GSN-2 DAE RBM DBM-3 DBN-2 MNIST

LOG-LIKELIHOOD 214 -152 -244 32 138 24
STANDARD ERROR 1.1 2.2 54 1.9 2.0 1.6
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Question Answering, Missing Inputs
and Skructured Oub pu&

e Once trained, a GSN can provably sample from any conditional
over subsets of its inputs, so long as we use the conditional
associated with the reconstruction distribution and clamp the
right-hand side variables.

(Bengio & Laufer arXiv 2013)
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Etxpe.rime.u&s: Structured Cownditionals

e Stochastically fill-in missing inputs, sampling from the chain that
generates the conditional distribution of the missing inputs
given the observed ones (notice the fast burn-in!)
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Nobt Just MNIST: e.xpe.ri‘.mev\!:s on TFD

e 3 hidden layer model, consecutive samples:
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Part 3

Proctical Considerations
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Deep Learning Tricks of the Trade

* Y.Bengio (2013), “Practical Recommendations for Gradient-
Based Training of Deep Architectures”

* Unsupervised pre-training -
* Stochastic gradient descent and setting learning rates

* Main hyper-parameters
e Learning rate schedule
e Early stopping
* Minibatches
e Parameter initialization
e Number of hidden units
e L1 and L2 weight decay
e Sparsity regularization

* Debugging

How to efficiently search for hyper-parameter configurations
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Stochastic Gradient Descent (SGD)

e Gradient descent uses total gradient over all examples per
update, SGD updates after only 1 or few examples:

8L(Zt, 0)
00

* L=loss function, z,= current example, © = parameter vector, and
g, = learning rate.

H(t) < H(t_l) — €4

e Ordinary gradient descent is a batch method, very slow, should
never be used. 2" order batch method are being explored as an

alternative but SGD with selected learning schedule remains the
method to beat.
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Learning Rates

e Simplest recipe: keep it fixed and use the same for all
parameters.

e Collobert scales them by the inverse of square root of the fan-in
of each neuron

e Better results can generally be obtained by allowing learning
rates to decrease, typically in O(1/t) because of theoretical

convergence guara ntees, e.g.,
€EQT

T max(t, 7)

with hyper-parameters g, and t.

e New papers on adaptive learning rates procedures (Schaul 2012,
2013), Adagrad (Duchi et al 2011 ), ADADELTA (Zeiler 2012)
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Early Stopping

» Beautiful FREE LUNCH (no need to launch many different
training runs for each value of hyper-parameter for #iterations)

e Monitor validation error during training (after visiting # of
training examples = a multiple of validation set size)

e Keep track of parameters with best validation error and report
them at the end

e If error does not improve enough (with some patience), stop.
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Long-Term Dependencies i

* Invery deep networks such as recurrent networks (or possibly
recursive ones), the gradient is a product of Jacobian matrices,
each associated with a step in the forward computation. This
can become very small or very large quickly [Bengio et al 1994],
and the locality assumption of gradient descent breaks down.

L= L(sr(s7—1(---8t+1(8¢,-...))))
8_L B 0L Ost 0St11
Os;  OsT Osp—_1 ~ Osy

e Two kinds of problems:
* sing. values of Jacobians > 1 - gradients explode

 or sing. values < 1 = gradients shrink & vanish
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The Optimization Challenge in
Deep / Recurrent Nets

e Higher-level abstractions require highly non-linear
transformations to be learned

e Sharp non-linearities are difficult to learn by gradient

e Composition of many non-linearities = sharp non-linearity

e Exploding or vanishing gradients

i1 & Eir1
l &1 l 9& l O&t11
Oxt-1 O OXpq1
N Xi-1 - > Xt - > Xty pa—




RNN Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2" order)

e |nitialization (start in right ballpark avoids exploding/vanishing)

e Sparse Gradients (symmetry breaking)
e Gradient propagation regularizer (avoid vanishing gradient)
e LSTM self-loops (avoid vanishing gradient)

0.35
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0.25 o
o
0.20 =
w
0.15
0.10
0.05

eIrror

4.6 ' =
/6
% 5-
Or 3-2 -2.0
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Long-Term Dependencies
and Clipping Trick

L I
@E') Xt1 X; Xt+1
Trick first introduced by Mikolov is to clip gradients

to a maximum NORM value.

Makes a big difference in Recurrent Nets (Pascanu et al ICML 2013)

Allows SGD to compete with HF optimization on difficult long-term
dependencies tasks. Helped to beat SOTA in text compression,
language modeling, speech recognition.
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Combining ctipgi‘.hg to avoid gradient
explosion and Jacobian regularizer to
avold gradient vanishing

e (Pascanu, Mikolov & Bengio, ICML 2013)

basic tanh

1.0 @ @ @i @ i @ i @i o

0.8}
()]
306l
§ : e - MSGD
qg o—e MSGD-C
%0_4_ oo MSGD-CR]|
o

0.2

0.0 O o- -0

5'0 160 1'50 260 2_"50
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Normalized Initializabtion ko Achieve
Uniby-Like Jacobian
Assuming f'(act=0)=1

To keep information flowing in both direction we would like to have the
following properties.

e Forward-propagation:
V(i,4'), Var[z'] = Var[z"] & Vi,n;Var[Wi = 1
e Back-propagation:
v(i,4'), Var[a§;8t] Var [6C°St] & Viyni Var[WY =1
Possible compromise:

Vi, Var[W? = - +2n (4)
3 1+1

This gives rise to proposed normalized initialization procedure:

Wi Ul V6 V6 )
Vi T 1 /Ty T g




test error %

Normalized Initialization with Variance-

Preserving Jacobians
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Parameter Initializakion

178

Initialize hidden layer biases to 0 and output (or reconstruction)
biases to optimal value if weights were 0 (e.g. mean target or
inverse sigmoid of mean target).

Initialize weights ~ Uniform(-r,r), r inversely proportional to fan-
in (previous layer size) and fan-out (next layer size):

\/6/(fan-in + fan-out)

for tanh units (and 4x bigger for sigmoid units)
(Glorot & Bengio AISTATS 2010)
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Handling Large Output Spaces

e Auto-encoders and RBMs reconstruct the input, which is sparse and high-
dimensional; Language models have a huge output space (1 unit per word).

code= latent features

C0000
Y JORA | 00® ~ O
sparse input dense output probabilities /

e (Dauphin et al, ICML 2011) Reconstruct the non-zeros in
the input, and reconstruct as many randomly chosen
zeros, + importance weights 1N

categories

* Decompose output probabilities hierarchically (Mo
& Bengio 2005; Blitzer et al 2005; Mnih & Hinton words within each category

2007,2009; Mikolov et al 2011) ﬂﬂ. n
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Automatic Differentiation

* Makes it easier to quickly and
safely try new models.

* Theano Library (python) does it
symbolically. Other neural
network packages (Torch,
Lush) can compute gradients
for any given run-time value.

(Bergstra et al SciPy’2010)
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Random Sampling of Hyperparameters
(Bergstra & Bengio 2012) &
e Common approach: manual + grid search b
e Grid search over hyperparameters: simple & wasteful
e Random search: simple & efficient
* Independently sample each HP, e.g. l.rate~exp(U[log(.1),log(.0001)])
e Each training trial is iid
e IfaHPisirrelevant grid search is wasteful
* More convenient: ok to early-stop, continue further, etc.

Grid Layout Random Layout

Unimportant parameter
O
O
O
Unimportant parameter
(@)
O

“O O O
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Sequehﬁai. Model-Rased Op&imiz.a!:iov\
of Hyper-Parameters

o
30

25r

20F

(Hutter et al JAIR 2009; Bergstra et al NIPS 2011; Thornton et al

arXiv 2012; Snoek et al NIPS 2012)
Iterate

Estimate P(valid. err | hyper-params config x, D)

choose optimistic x, e.g. max, P(valid. err < current min. err | x)

train with config x, observe valid. err. v, D < D U {(x,v)}

— GP mean||

o o data

0 u.1v
0.08
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Discussion
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Concerns

e Many algorithms and variants (burgeoning field)

 Hyper-parameters (layer size, regularization, possibly
learning rate)

* Use multi-core machines, clusters and
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Concerns

e Slower to train than linear models

* Only by a small constant factor, and much more compact
than non-parametric (e.g. n-gram models or kernel machines)

* Very fast during inference/test time (feed-forward pass is just
a few matrix multiplies)

e Need more training data?

e Can handle and benefit from more training data (esp.
unlabeled), suitable for Big Data (Google trains nets with a
billion connections, [Le et al, ICML 2012; Dean et al NIPS 2012])

e Actually needs less labeled data
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Concerin: non—convex op&imi.z.al:aon

e Can initialize system with convex learner
* Convex SVM
* Fixed feature space

 Then optimize non-convex variant (add and tune learned
features), can’t be worse than convex learner
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Part 4

Challenges & Questions
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Why is Unsupervised Pre-~Training
Sometimes Working So Well?

e Regularization hypothesis:
* Unsupervised component forces model close to P(x)
* Representations good for P(x) are good for P(y|x)

e Optimization hypothesis:
e Unsupervised initialization near better local minimum of P(y|x)

e Can reach lower local minimum otherwise not achievable by random initialization
* Easier to train each layer using a layer-local criterion

(Erhan et al IMLR 2010)




Learining Tra jectories in
Function Space

e Each point a model in
function space

e Color=epoch .
i

e Top: trajectories w/o
pre-training

e Each trajectory é
converges in differen@%@ |
local min. T

 No overlap of regions
with and w/o pre-
training



Learining Tra jectories in
Function Space

e Each trajectory I
converges in different e — ........ ............ out pre tralnmg ............ ............ .............
local min. Fan, S

* With ISOMAP, try to
preserve geometry:
pretrained nets =
converge near each ' B Tk N R
other (less variance) 1000 a .......... ............. ............. ............. ............. .............
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beeﬁ Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling

e Optimization & Underfitting
 Approximate Inference & Sampling

e Disentangling Factors of Variation

e Reasoning & One-Shot Learning of Facts
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Challenge: Compu&a&mnat Scaling

e Recent breakthroughs in speech, object recognition and NLP
hinged on faster computing, GPUs, and large datasets

e A 100-fold speedup is possible without waiting another 10yrs?

e Challenge of distributed training
* Challenge of conditional computation
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Conditional Com ;pu!:ad:iow i.; visik a

small fraction o

193

parame&ers e.xampi.e

Deep nets vs decision trees
Hard mixtures of experts

Conditional computation for deep nets: sparse distributed
gaters selecting combinatorial subsets of a deep net

Challenges:
e Back-prop through hard decisions Output softmax

* Gated architectures exploration Aunm

Symmetry breaking to reduce  cater patn

Gating units= @

ill-conditioning



Distributed Training

e Minibatches (too large = slow down)

e Large minibatches + 2" order methods

e Asynchronous SGD (Bengio et al 2003, Le et al ICML 2012, Dean et al NIPS 2012)
* Bottleneck: sharing weights/updates among nodes

e New ideas:
* Low-resolution sharing only where needed

e Specialized conditional computation (each computer

specializes in updates to some cluster of gated experts, and
prefers examples which trigger these experts)
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Optimization & Underfitting

e On large datasets, major obstacle is underfitting

* Marginal utility of wider MLPs decreases quickly below
memorization baseline P

B Baseline
100

Marginal utility (MU)
o

\

1000 3000 5000 7000 9000

Nb. of hidden units

e Current limitations: local minima or ill-conditioning?
e Adaptive learning rates and stochastic 2"® order methods

e Conditional comp. & sparse gradients = better conditioning:

when some gradients are 0, many cross-derivatives are also 0.
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MCMC Sampling Challenges

e Burn-in
* Going from an unlikely configuration to likely ones

e Mixing
* Local: auto-correlation between successive samples

J 7.7 79777

e Global: mixing between major “modes”
5555555500000 0
P vty W Py R o By o oy oy Sy i o S S o

challenge
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For gradient & inference:
More difficult ko mix with better
trained models

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?

Training updates

Gicious circl§

Mixing
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Poor Mixing: Depth to the Rescue

(Bengio et al ICML 2013)

e Sampling from DBNs and stacked Contractive Auto-Encoders:
1. MCMC sampling from top layer model
2. Propagate top-level representations to input-level repr.
e Deeper nets visit more modes (classes) faster
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Space-Filling in Representation-Space

e High-probability samples fill more the convex set between them
when viewed in the learned representation-space, making the
empirical distribution more uniform and unfolding manifolds

Linear interpolation at layer 2

ﬂ

3’s manifold

9’s manifold
Linear interpolation at layer 1
o

Linear mterpolatlon in pixel space

\

9 |




Poor Mixing: Depth to the Rescue

e Deeper representations =2 abstractions = disentangling

e E.g.reverse video bit, class bits in learned representations: easy
to Gibbs sample between modes at abstract level

e Hypotheses tested and not rejected:

* more abstract/disentangled representations unfold manifolds
and fill more the space

A Ppixel space A Representation space

9’s ifold 3’s manifold * 9sy B fold

> >
e can be exploited for better mixing between modes
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Inference Challenges

e Many latent variables involved in understanding
complex inputs (e.g. in NLP: sense ambiguity, parsing,
semantic role)

* Almost any inference mechanism can be combined
with deep learning

e See [Bottou, LeCun, Bengio 97], [Graves 2012]

“l

- )

e Complex inference can be hard (exponentially) and
needs to be approximate = learn to perform inference
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Inference & Sam pling

e Currently for unsupervised learning & structured output models
e P(h|x) intractable because of many important modes

e MAP, Variational, MCMC approximations limited to 1 or few
modes

e Approximate inference can hurt learning
(Kulesza & Pereira NIPS’2007)

A\UAN

e Mode mixing harder as training progresses Training updates

(Bengio et al ICML 2013) Gicious circ@
Mixing
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Lakent Variables Love-Hate Relationship

e GOOD! Appealing: model explanatory factors h

e BAD! Exact inference? Nope. Just Pain.
too many possible configurations of h
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AV\QV\jMC)US Latent Variables

* No pre-assigned semantics

e Learning discovers underlying factors,

e.g., PCA discovers leading directions of variations

* |ncreases expressiveness of P(x)=zh P(x,h)

e Universal approximators, e.g. for RBMs
(Le Roux & Bengio, Neural Comp. 2008)
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Approximate Inference

 MAP
* h* = argmax, P(h|x) =2 assume 1 dominant mode
e Variational
* Look for tractable Q(h) minimizing KL(Q(.)| | P(.|x))
* Qis either factorial or tree-structured
e =» strong assumption
e MCMC
e Setup Markov chain asymptotically sampling from P(h|x)
* Approx. marginalization through MC avg over few samples
* =» assume a few dominant modes
e Approximate inference can seriously hurt learning

(Kulesza & Pereira NIPS’2007)
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LQQ?V\Ed Appraxima&e Inference

1. Construct a computational graph corresponding to inference
* Loopy belief prop. (Ross et al CVPR 2011, Stoyanov et al 2011)
e Variational mean-field (Goodfellow et al, ICLR 2013)
e MAP (Kavukcuoglu et al 2008, Gregor & LeCun ICML 2010)

2. Optimize parameters wrt criterion of interest, possibly
decoupling from the generative model’s parameters

Learning can compensate for the inadequacy of approximate
inference, taking advantage of specifics of the data distribution
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However: ‘Po&e.u&mti. Hu Q.
Number of Modes m Posterior P(h]x)

e Foreign speech utterance example, y=answer to question:
* 10 word segments

100 plausible candidates per word

10° possible segmentations
* Most configurations (999999/1000000) implausible
=>» 10%° high-probability modes

e All known approximate inference scheme may break down if
the posterior has a huge number of modes (fails MAP & MCMC)
and not respecting a variational approximation (fails variational)
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Hint

e Deep neural nets learn good P(y|x) classifiers even if there are
potentially many true latent variables involved

e Exploits structure in P(y|x) that persist even after summing h

e But how do we generalize this idea to full joint-distribution
learning and answering any question about these variables, not
just one?
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Learning Computational Graphs

e Deep Stochastic Generative Networks (GSNs) trainable by
backprop (Bengio & Laufer, arxiv 1306.1091)

e Avoid any explicit latent variables whose marginalization is
intractable, instead train a stochastic computational graph that
generates the right {conditional} distribution.

h, noise

ma\/www\
W \WE

sample x;

3 to 5 steps
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Theoretical Results

e The Markov chain associated with a denoising auto-encoder is a

consistent estimator of the data generating distribution (if the
chain converges)

e Same thing for Generative Stochastic Networks (so long as the

reconstruction probability has enough expressive power to learn
the required conditional distribution).

:3 W W W
i WW

\wh
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GSN Experiments: validating the theorem in
a continuous non-parametric setting
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The Challenge of Disentangling
Underlying Factors

* Good disentangling =2

- figure out the underlying
structure of the data

- avoid curse of dimensionality fre
- mix better between modes

e How to obtained better
disentangling????
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Learning Multiple Levels of
Abstrackion

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and

transfer

Organizational Maturity
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If Time Permits...
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Issue: underfitting due to combinatorially many poor
effective local minima

e

where the optimizer gets stuck

Culture vs Effective Local
Minima

Bengio 2013 (also arXiv 2012)
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vaa&ke.si.s 1

e When the brain of a single biological agent learns, it performs an
approximate optimization with respect to some endogenous
objective.

ijakke.sis 2

e When the brain of a single biological agent learns, it relies on
approximate local descent in order to gradually improve itself.
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Theoretical and experimental results on deep learning suggest:

ijoékesis 3

 Higher-level abstractions in brains are represented by deeper
computations (going through more areas or more
computational steps in sequence over the same areas).

limited by effective local minima.

218 Possibly due to ill-conditioning, but behaves like local min



ijo!:hesis ]

* Asingle human learner is unlikely to discover high-level
abstractions by chance because these are represented by a deep
sub-network in the brain.

@ o)

\e° K\
0\‘)«\& ’a\\(’

<
Q\)“ GO ©

Nl
e A human brain can learn high-level abstractions if guided by the
signals produced by other humans, which act as hints or indirect

supervision for these high-level abstractions.

vaalzke.si.s &

Supporting evidence: (Gulcehre & Bengio ICLR 2013)
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How is one brain

transfer of information happens

transferring
abstractions to
another brain?

Linguistic Linguistic
representation representation

o ofmuoo_ o

Linguistic exchange
= tiny / noisy channel

Shared input X
220



How do we escape Llocal minima?

e |inguistic inputs = extra examples, summarize
knowledge

e criterion landscape easier to optimize (e.g.
curriculum learning)

e turn difficult unsupervised learning into easy
supervised learning of intermediate abstractions
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How could Langquage/education/
culture possibly help find the
better Local minima associated
with more useful abstractions?

More than random search:
potential exponential speed-
up by divide-and-conquer
combinatorial advantage:
can combine solutions to

HvFQ&kQSEvS 7 independently solved sub-

problems

e Language and meme recombination provide an efficient
evolutionary operator, allowing rapid search in the space of
memes, that helps humans build up better high-level internal
representations of their world.
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From where do new ideas emerqge?

e Seconds: inference (novel explanations for current x)
e Minutes, hours: learning (local descent, like current DL)

e Years, centuries: cultural evolution (global optimization,
recombination of ideas from other humans)
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Related Tuborials

e Deep Learning tutorials (python):

e Stanford deep learning tutorials with simple programming
assignments and reading list

e ACL 2012 Deep Learning for NLP tutorial

e |CML 2012 Representation Learning tutorial

e |PAM 2012 Summer school on Deep Learning

e More reading: Paper references in separate pdf, on my web page
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Software

* Theano (Python CPU/GPU) mathematical and deep learning
library

* Can do automatic, symbolic differentiation
* Senna: POS, Chunking, NER, SRL

* by Collobert et al.

* State-of-the-art performance on many tasks

* 3500 lines of C, extremely fast and using very little memory
e Torch ML Library (C++ + Lua)

e Recurrent Neural Network Language Model

e Recursive Neural Net and RAE models for paraphrase detection,
sentiment analysis, relation classification
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Software: what’s next

e Off-the-shelf SVM packages are useful to researchers
from a wide variety of fields (no need to understand
RKHS).

e To make deep learning more accessible: release off-
the-shelf learning packages that handle hyper-
parameter optimization, exploiting multi-core or
cluster at disposal of user.

e Spearmint (Snoek)
* HyperOpt (Bergstra)
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Cownclusions

227

Deep Learning & Representation Learning have matured
e |[nt. Conf. on Learning Representation 2013 a huge success!

Industrial strength applications in place (Google, Microsoft)

Room for more research:

e Scaling computation even more

* Better optimization

e Getting rid of intractable inference (in the works!)

* Coaxing the models into more disentangled abstractions
* Learning to reason from incrementally added facts
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