
Learning	Long-Term	Dependencies	
with	Gradient	Descent	is	Difficult	

June	23,	2016,	ICML,	New	York	City	
Back-to-the-future	Workshop	

Yoshua	Bengio	
Montreal	InsDtute	for	Learning	Algorithms	

Université	de	Montréal	

Y.	Bengio,	P.	Simard	&	P.	Frasconi,	IEEE	Trans.	Neural	Nets,	1994	

Simple Experiments from 1992 while I
was at MIT

•  2	categories	of	sequences	
•  Can	the	single	tanh	unit	learn	to	store		for	T	Hme	steps	1	bit	of	

informaHon	given	by	the	sign	of	iniHal	input?	

2	

Prob(success	|	seq.	length	T)	

How to store 1 bit? Dynamics with
multiple basins of attraction in some
dimensions
•  Some	subspace	of	the	state	can	store	1	or	more	bits	of	

informaHon	if	the	dynamical	system	has	mulHple	basins	of	
aQracHon	in	some	dimensions	

3	

Basins	boundary	

Bit=1	

Bit=0	

Robustly storing 1 bit in the presence
of bounded noise

•  With	spectral	radius	>	1,	noise	can	kick	state	out	of	aQractor	

•  Not	so	with	radius<1	

4	

X
β

Γ

Domain of at
(a)

X

β

Domain of at

Γ

(b)

|M’|>1

|M’|<1

|M’|<1

|M’|>1

X
β

Γ

Domain of at
(a)

X

β

Domain of at

Γ

(b)

|M’|>1

|M’|<1

|M’|<1

|M’|>1

UNSTABLE	

CONTRACTIVE	
à	STABLE	

Storing Reliably è Vanishing gradients

•  Reliably	storing	bits	of	informaHon	requires	spectral	radius<1	
•  The	product	of	T	matrices	whose	spectral	radius	is	<	1	is	a	matrix	

whose	spectral	radius	converges	to	0		at	exponenHal	rate	in	T	

•  If	spectral	radius	of	Jacobian	is	<	1	è	propagated	gradients	vanish	

	

5	

Vanishing or Exploding Gradients

•  Hochreiter’s	1991	MSc	thesis	(in	German)	had	independently	
discovered	that	backpropagated	gradients	in	RNNs	tend	to	
either	vanish	or	explode	as	sequence	length	increases	

6	

Why it hurts gradient-based learning

•  Long-term	dependencies	get	a	weight	that	is	exponenHally	
smaller	(in	T)	compared	to	short-term	dependencies	

7	

Becomes	exponenHally	smaller	
for	longer	Hme	differences,	
when	spectral	radius	<	1	

Dealing with Gradient Explosion by
Gradient Norm Clipping

8	

(Mikolov	thesis	2012;	
Pascanu,	Mikolov,	Bengio,	ICML	2013)	

error

✓

✓

Conference version (1993) of the 1994
paper by the same authors had a
predecessor of GRU and targetprop

•  Flip-flop	unit	to	store	1	bit,	with	gaHng	
signal	to	control	when	to	write	

•  Pseudo-backprop	through	it	by	a	form	of	
targetprop	

9	

(The	problem	of	learning	long-term	dependencies	in	recurrent	networks,		
Bengio,	Frasconi	&	Simard		ICNN’1993)	

Bypassing nonlinearities to learn
longer term dependencies
•  Delays	(Lin	et	al	&	Giles	1995)	
•  MulHple	Hme	scales	(Elhihi	&	Bengio	NIPS	1995)	

10	

xtxt�1 xt+1x

unfold

s

o

st�1

ot�1 ot

st st+1

ot+1

W1

W3

W1 W1 W1 W1

W3

st�2

W3 W3 W3

×

input input gate forget gate output gate

output

state

self-loop

×

+ ×

Fighting the vanishing gradient:
LSTM & GRU

•  Create	a	path	where	
gradients	can	flow	for	
longer	with	a	self-loop	

•  Corresponds	to	an	
eigenvalue	of	Jacobian	
slightly	less	than	1	

•  LSTM	is	now	heavily	used	
(Hochreiter	&	Schmidhuber	
1997)	

•  GRU	light-weight	version	
(Cho	et	al	2014)	

11	

LSTM:	(Hochreiter	&	Schmidhuber	1997)	(Hochreiter	1991);	first	version	of	
the	LSTM,	called	Neural	Long-
Term	Storage	with	self-loop	

Fast Forward 20 years: Attention
Mechanisms for Memory Access

•  Neural	Turing	Machines	(Graves	et	al	2014)	
•  and	Memory	Networks	(Weston	et	al	2014)	
•  Use	a	content-based	aQenHon	mechanism	

(Bahdanau	et	al	2014)	to	control	the	read	
and	write	access	into	a	memory	

•  The	aQenHon	mechanism	outputs	a	soimax	
over	memory	locaHons	

12	

write	

read	

Large Memory Networks: Sparse Access
Memory for Long-Term Dependencies
•  A	mental	state	stored	in	an	external	memory	can	stay	for	

arbitrarily	long	duraHons,	unHl	it	is	overwriQen	(parHally	or	not)	
•  Forgekng	=	vanishing	gradient.	
•  Memory	=	higher-dimensional	state,	avoiding	or	reducing	the	

need	for	forgekng/vanishing	

13	

passive	copy	

access	

Designing the RNN Architecture

•  Recurrent	depth:	max	path	length	divided	by	sequence	length	
•  Feedforward	depth:	max	length	from	input	to	nearest	output	
•  Skip	coefficient:	shortest	path	length	divided	sequence	length	

14	

(a) (b)

Figure 1: (a) An example of an RNN’s Gc and G
un

. V
in

is denoted by square, V
hid

is denoted by circle and V
out

is denoted by diamond. In Gc, the number on each edge is its corresponding �. The longest path is colored in
red. The longest input-output path is colored in yellow and the shortest path is colored blue. The value of three
measures are dr = 3

2

, df = 3 and s = 2. (b) 5 more examples. (1) and (2) have dr = 2, 3

2

, (3) has df = 5, (4)
and (5) has s = 2, 3

2

.

have m = 1, while some special structures like hierarchical or clockwork RNN [15, 21] have m > 1.89

For example, Figure 1(a) (unfolded graph representation G
un

) shows that the period number of this90

specific RNN is 2.91

The connecting architecture describes how information flows among RNN units. Assume v̄ 2 V

c

92

is a node in G
c

, let In(v̄) denotes the set of incoming nodes of v̄, In(v̄) = {ū|(ū, v̄) 2 E

c

}. In93

the forward pass of the RNN, the transition function F

v̄

takes outputs of nodes In(v̄) as inputs and94

computes a new output. For example, vanilla RNNs units with different activation functions, LSTMs95

and GRUs can all be viewed as units with specific transition functions. We now give the general96

definition of an RNN:97

Definition 2.3. An RNN is a tuple (G
c

,G
un

, {F
v̄

}
v̄2Vc), in which G

un

= (V

un

, E

un

) is the unfolding98

of RNN cyclic graph G
c

, and {F
v̄

}
v̄2Vc is the set of transition functions. In the forward pass, for99

each hidden and output node v 2 V

un

, the transition function F

v̄

takes all incoming nodes of v as the100

input to compute the output.101

An RNN is homogeneous if all the hidden nodes share the same form of the transition function.102

3 Measures of Architectural Complexity103

In this section, we develop different measures of RNNs’ architectural complexity, focusing mostly104

on the graph-theoretic properties of RNNs. To analyze an RNN solely from its architectural aspect,105

we make the mild assumption that the RNN is homogeneous. We further assume the RNN to106

be unidirectional. For a bidirectional RNN, it is more natural to measure the complexities of its107

unidirectional components.108

3.1 Recurrent Depth109

Unlike feedforward models where computations are done within one time frame, RNNs map inputs110

to outputs over multiple time steps. In some sense, an RNN undergoes transformations along both111

feedforward and recurrent dimensions. This fact suggests that we should investigate its architectural112

complexity from these two different perspectives. We first consider the recurrent perspective.113

The conventional definition of depth is the maximum number of nonlinear transformations from inputs114

to outputs. Observe that a directed path in an unfolded graph representation G

un

corresponds to a115

sequence of nonlinear transformations. Given an unfolded RNN graph G

un

, 8i, n 2 Z, let D
i

(n) be116

the length of the longest path from any node at starting time i to any node at time i+ n. From the117

recurrent perspective, it is natural to investigate how D
i

(n) changes over time. Generally speaking,118

D
i

(n) increases as n increases for all i. Such increase is caused by the recurrent structure of the RNN119

which keeps adding new nonlinearities over time. Since D
i

(n) approaches 1 as n approaches 1,3120

to measure the complexity of D
i

(n), we consider its asymptotic behaviour, i.e., the limit of Di(n)

n

121

as n ! 1. Under a mild assumption, this limit exists. The following theorem prove such limit’s122

computability and well-definedness:123

Theorem 3.2 (Recurrent Depth). Given an RNN and its two graph representation G
un

and G
c

, we124

denote C(G
c

) to be the set of directed cycles in G
c

. For # 2 C(G
c

), let l(#) denote the length of #125

3Without loss of generality, we assume the unidirectional RNN approaches positive infinity.

3

(Zhang	et	al	2016)	

(a) (b)(a) (b)

(1) (2)

(3) (4)

Figure 2: Left: (a) the architectures for sh, st, bu and td, with their (dr, df) equal to (1, 2), (1, 3), (1, 3) and
(2, 3), respectively. The longest path in td are colored in red. (b) The 9 architectures denoted by their (df , dr)
with dr = 1, 2, 3 and df = 2, 3, 4. We only plot the hidden states within 1 time step (which also have a period
of 1) in both (a) and (b). Right: (a) Various architectures that we consider in Section 4.4. From top to bottom
are baseline s = 1, and s = 2, s = 3. (b) Proposed architectures that we consider in Section 4.5 where we take
k = 3 as an example. The shortest paths in (a) and (b) that correspond to the recurrent skip coefficients are
colored in blue.

DATASET MODELS\ARCHS sh st bu td

PennTreebank tanh RNN 1.54 1.59 1.54 1.49
tanh RNN-SMALL 1.80 1.82 1.80 1.77

text8 tanh RNN-LARGE 1.69 1.67 1.64 1.59
LSTM-SMALL 1.65 1.66 1.65 1.63
LSTM-LARGE 1.52 1.53 1.52 1.49

df \dr dr = 1 dr = 2 dr = 3
df = 2 1.88 1.84 1.83
df = 3 1.86 1.84 1.85
df = 4 1.94 1.89 1.88

Table 1: Left: test BPCs of sh, st, bu, td for tanh RNNs and LSTMs. Right: test BPCs of tanh RNNs with
recurrent depth dr = 1, 2, 3 and feedforward depth df = 2, 3, 4 respectively.

sequential MNIST dataset: Each MNIST image data is reshaped into a 784⇥ 1 sequence, turning218

the digit classification task into a sequence classification one with long-term dependencies [25, 24].219

A slight modification of the dataset is to permute the image sequences by a fixed random order220

beforehand (permuted MNIST). Results in [25] have shown that both tanh RNNs and LSTMs did not221

achieve satisfying performance, which also highlights the difficulty of this task.222

For all of our experiments we use Adam [26] for optimization, and conduct a grid search on the223

learning rate in {10�2

, 10

�3

, 10

�4

, 10

�5}. For tanh RNNs, the parameters are initialized with224

samples from a uniform distribution. For LSTM networks we adopt a similar initialization scheme,225

while the forget gate biases are chosen by the grid search on {�5,�3,�1, 0, 1, 3, 5}. We employ226

early stopping and the batch size was set to 50.227

4.2 Recurrent Depth is Non-trivial228

To investigate the first question, we compare 4 similar connecting architectures: 1-layer (shallow)229

“sh”, 2-layers stacked “st”, 2-layers stacked with an extra bottom-up connection “bu”, and 2-layers230

stacked with an extra top-down connection “td”, as shown in Figure 2(a), left panel. Although the231

four architectures look quite similar, they have different recurrent depths: sh, st and bu have d

r

= 1,232

while td has d
r

= 2. Note that the specific construction of the extra nonlinear transformations in td is233

not conventional. Instead of simply adding intermediate layers in hidden-to-hidden connection, as234

reported in [18], more nonlinearities are gained by a recurrent flow from the first layer to the second235

layer and then back to the first layer at each time step (see the red path in Figure 2a, left panel).236

We first evaluate our architectures using tanh RNN on PennTreebank, where sh has hidden-layer237

size of 1600. Next, we evaluate four different models for text8 which are tanh RNN-small, tanh238

RNN-large, LSTM-small, LSTM large, where the model’s sh architecture has hidden-layer size of239

512, 2048, 512, 1024 respectively. Given the architecture of the sh model, we set the remaining three240

architectures to have the same number of parameters.241

Table 1, left panel, shows that the td architecture outperforms all the other architectures for all the242

different models. Specifically, td in tanh RNN achieves a test BPC of 1.49, which is comparable to243

the BPC of 1.48 reported in [27] using stabilization techniques. Similar improvements are shown for244

LSTMs, where td architecture in LSTM-large achieves BPC of 1.49, outperforming the BPC of 1.54245

reported in [23] with MRNN (Multiplicative RNN).246

It is also interesting to note the improvement we obtain when switching from bu to td. The only247

difference between these two architectures lies in changing the direction of one connection (see248

Figure 2(a)), which also increases the recurrent depth. Such a fundamental difference is by no means249

self-evident, but this result highlights the necessity of the concept of recurrent depth.250

6

It makes a difference

•  Impact	of	change	in	recurrent	depth	

•  Impact	of	change	in	skip	coefficient	

15	

(a) (b)(a) (b)

(1) (2)

(3) (4)

Figure 2: Left: (a) the architectures for sh, st, bu and td, with their (dr, df) equal to (1, 2), (1, 3), (1, 3) and
(2, 3), respectively. The longest path in td are colored in red. (b) The 9 architectures denoted by their (df , dr)
with dr = 1, 2, 3 and df = 2, 3, 4. We only plot the hidden states within 1 time step (which also have a period
of 1) in both (a) and (b). Right: (a) Various architectures that we consider in Section 4.4. From top to bottom
are baseline s = 1, and s = 2, s = 3. (b) Proposed architectures that we consider in Section 4.5 where we take
k = 3 as an example. The shortest paths in (a) and (b) that correspond to the recurrent skip coefficients are
colored in blue.

DATASET MODELS\ARCHS sh st bu td

PennTreebank tanh RNN 1.54 1.59 1.54 1.49
tanh RNN-SMALL 1.80 1.82 1.80 1.77

text8 tanh RNN-LARGE 1.69 1.67 1.64 1.59
LSTM-SMALL 1.65 1.66 1.65 1.63
LSTM-LARGE 1.52 1.53 1.52 1.49

df \dr dr = 1 dr = 2 dr = 3
df = 2 1.88 1.84 1.83
df = 3 1.86 1.84 1.85
df = 4 1.94 1.89 1.88

Table 1: Left: test BPCs of sh, st, bu, td for tanh RNNs and LSTMs. Right: test BPCs of tanh RNNs with
recurrent depth dr = 1, 2, 3 and feedforward depth df = 2, 3, 4 respectively.

sequential MNIST dataset: Each MNIST image data is reshaped into a 784⇥ 1 sequence, turning218

the digit classification task into a sequence classification one with long-term dependencies [25, 24].219

A slight modification of the dataset is to permute the image sequences by a fixed random order220

beforehand (permuted MNIST). Results in [25] have shown that both tanh RNNs and LSTMs did not221

achieve satisfying performance, which also highlights the difficulty of this task.222

For all of our experiments we use Adam [26] for optimization, and conduct a grid search on the223

learning rate in {10�2

, 10

�3

, 10

�4

, 10

�5}. For tanh RNNs, the parameters are initialized with224

samples from a uniform distribution. For LSTM networks we adopt a similar initialization scheme,225

while the forget gate biases are chosen by the grid search on {�5,�3,�1, 0, 1, 3, 5}. We employ226

early stopping and the batch size was set to 50.227

4.2 Recurrent Depth is Non-trivial228

To investigate the first question, we compare 4 similar connecting architectures: 1-layer (shallow)229

“sh”, 2-layers stacked “st”, 2-layers stacked with an extra bottom-up connection “bu”, and 2-layers230

stacked with an extra top-down connection “td”, as shown in Figure 2(a), left panel. Although the231

four architectures look quite similar, they have different recurrent depths: sh, st and bu have d

r

= 1,232

while td has d
r

= 2. Note that the specific construction of the extra nonlinear transformations in td is233

not conventional. Instead of simply adding intermediate layers in hidden-to-hidden connection, as234

reported in [18], more nonlinearities are gained by a recurrent flow from the first layer to the second235

layer and then back to the first layer at each time step (see the red path in Figure 2a, left panel).236

We first evaluate our architectures using tanh RNN on PennTreebank, where sh has hidden-layer237

size of 1600. Next, we evaluate four different models for text8 which are tanh RNN-small, tanh238

RNN-large, LSTM-small, LSTM large, where the model’s sh architecture has hidden-layer size of239

512, 2048, 512, 1024 respectively. Given the architecture of the sh model, we set the remaining three240

architectures to have the same number of parameters.241

Table 1, left panel, shows that the td architecture outperforms all the other architectures for all the242

different models. Specifically, td in tanh RNN achieves a test BPC of 1.49, which is comparable to243

the BPC of 1.48 reported in [27] using stabilization techniques. Similar improvements are shown for244

LSTMs, where td architecture in LSTM-large achieves BPC of 1.49, outperforming the BPC of 1.54245

reported in [23] with MRNN (Multiplicative RNN).246

It is also interesting to note the improvement we obtain when switching from bu to td. The only247

difference between these two architectures lies in changing the direction of one connection (see248

Figure 2(a)), which also increases the recurrent depth. Such a fundamental difference is by no means249

self-evident, but this result highlights the necessity of the concept of recurrent depth.250

6

(a) (b)(a) (b)

(1) (2)

(3) (4)

Figure 2: Left: (a) the architectures for sh, st, bu and td, with their (dr, df) equal to (1, 2), (1, 3), (1, 3) and
(2, 3), respectively. The longest path in td are colored in red. (b) The 9 architectures denoted by their (df , dr)
with dr = 1, 2, 3 and df = 2, 3, 4. We only plot the hidden states within 1 time step (which also have a period
of 1) in both (a) and (b). Right: (a) Various architectures that we consider in Section 4.4. From top to bottom
are baseline s = 1, and s = 2, s = 3. (b) Proposed architectures that we consider in Section 4.5 where we take
k = 3 as an example. The shortest paths in (a) and (b) that correspond to the recurrent skip coefficients are
colored in blue.

DATASET MODELS\ARCHS sh st bu td

PennTreebank tanh RNN 1.54 1.59 1.54 1.49
tanh RNN-SMALL 1.80 1.82 1.80 1.77

text8 tanh RNN-LARGE 1.69 1.67 1.64 1.59
LSTM-SMALL 1.65 1.66 1.65 1.63
LSTM-LARGE 1.52 1.53 1.52 1.49

df \dr dr = 1 dr = 2 dr = 3
df = 2 1.88 1.84 1.83
df = 3 1.86 1.84 1.85
df = 4 1.94 1.89 1.88

Table 1: Left: test BPCs of sh, st, bu, td for tanh RNNs and LSTMs. Right: test BPCs of tanh RNNs with
recurrent depth dr = 1, 2, 3 and feedforward depth df = 2, 3, 4 respectively.

sequential MNIST dataset: Each MNIST image data is reshaped into a 784⇥ 1 sequence, turning218

the digit classification task into a sequence classification one with long-term dependencies [25, 24].219

A slight modification of the dataset is to permute the image sequences by a fixed random order220

beforehand (permuted MNIST). Results in [25] have shown that both tanh RNNs and LSTMs did not221

achieve satisfying performance, which also highlights the difficulty of this task.222

For all of our experiments we use Adam [26] for optimization, and conduct a grid search on the223

learning rate in {10�2

, 10

�3

, 10

�4

, 10

�5}. For tanh RNNs, the parameters are initialized with224

samples from a uniform distribution. For LSTM networks we adopt a similar initialization scheme,225

while the forget gate biases are chosen by the grid search on {�5,�3,�1, 0, 1, 3, 5}. We employ226

early stopping and the batch size was set to 50.227

4.2 Recurrent Depth is Non-trivial228

To investigate the first question, we compare 4 similar connecting architectures: 1-layer (shallow)229

“sh”, 2-layers stacked “st”, 2-layers stacked with an extra bottom-up connection “bu”, and 2-layers230

stacked with an extra top-down connection “td”, as shown in Figure 2(a), left panel. Although the231

four architectures look quite similar, they have different recurrent depths: sh, st and bu have d

r

= 1,232

while td has d
r

= 2. Note that the specific construction of the extra nonlinear transformations in td is233

not conventional. Instead of simply adding intermediate layers in hidden-to-hidden connection, as234

reported in [18], more nonlinearities are gained by a recurrent flow from the first layer to the second235

layer and then back to the first layer at each time step (see the red path in Figure 2a, left panel).236

We first evaluate our architectures using tanh RNN on PennTreebank, where sh has hidden-layer237

size of 1600. Next, we evaluate four different models for text8 which are tanh RNN-small, tanh238

RNN-large, LSTM-small, LSTM large, where the model’s sh architecture has hidden-layer size of239

512, 2048, 512, 1024 respectively. Given the architecture of the sh model, we set the remaining three240

architectures to have the same number of parameters.241

Table 1, left panel, shows that the td architecture outperforms all the other architectures for all the242

different models. Specifically, td in tanh RNN achieves a test BPC of 1.49, which is comparable to243

the BPC of 1.48 reported in [27] using stabilization techniques. Similar improvements are shown for244

LSTMs, where td architecture in LSTM-large achieves BPC of 1.49, outperforming the BPC of 1.54245

reported in [23] with MRNN (Multiplicative RNN).246

It is also interesting to note the improvement we obtain when switching from bu to td. The only247

difference between these two architectures lies in changing the direction of one connection (see248

Figure 2(a)), which also increases the recurrent depth. Such a fundamental difference is by no means249

self-evident, but this result highlights the necessity of the concept of recurrent depth.250

6

RNN(tanh) s = 1 s = 5 s = 9 s = 13 s = 21
MNIST 34.9 46.9 74.9 85.4 87.8

s = 1 s = 3 s = 5 s = 7 s = 9
pMNIST 49.8 79.1 84.3 88.9 88.0

LSTM s = 1 s = 3 s = 5 s = 7 s = 9
MNIST 56.2 87.2 86.4 86.4 84.8

s = 1 s = 3 s = 4 s = 5 s = 6
pMNIST 28.5 25.0 60.8 62.2 65.9

Model MNIST pMNIST
iRNN[25] 97.0 ⇡82.0
uRNN[24] 95.1 91.4
LSTM[24] 98.2 88.0

RNN(tanh)[25] ⇡35.0 ⇡35.0
stanh(s = 21, 11) 98.1 94.0

Architecture, s (1), 1 (2), 1 (3), k
2

(4), k
MNIST k = 17 39.5 39.4 54.2 77.8

k = 21 39.5 39.9 69.6 71.8
pMNIST k = 5 55.5 66.6 74.7 81.2

k = 9 55.5 71.1 78.6 86.9

Table 2: Results for MNIST/pMNIST. Top-left: test accuracies with different s for tanh RNN. Top-right: test
accuracies with different s for LSTM. Bottom: compared to previous results. Bottom-right: test accuracies for
architectures (1), (2), (3) and (4) for tanh RNN.

Table 2, bottom-left panel, shows that our simple architecture improves upon the uRNN by 2.6% on305

pMNIST, and achieves almost the same performance as LSTM on the MNIST dataset with only 25%306

number of parameters [24]. Note that obtaining good performance on sequential MNIST requires a307

larger s than that for pMNIST (see Appendix B.4 for more details). LSTMs also showed performance308

boost and much faster convergence speed when using larger s, as displayed in Table 2, top-right309

panel. LSTM with s = 3 already performs quite well and increasing s did not result in any significant310

improvement, while in pMNIST, the performance gradually improves as s increases from 4 to 6. We311

also observed that the LSTM network performed worse on permuted MNIST compared to a tanh312

RNN. Similar result was also reported in [25].313

4.5 Recurrent Skip Coefficients vs. Skip Connections314

We also investigated whether the recurrent skip coefficient can suggest something more than simply315

adding skip connections. We design 4 specific architectures shown in Figure 2(b), right panel. (1) is316

the baseline model with a 2-layer stacked architecture, while the other three models add extra skip317

connections in different ways. Note that these extra skip connections all cross the same time length318

k. In particular, (2) and (3) share quite similar architectures. However, the way in which the skip319

connections are allocated make a big difference on their recurrent skip coefficients: (2) has s = 1, (3)320

has s = k

2

and (4) has s = k. Therefore, even though (2), (3) and (4) all add extra skip connections,321

the fact that their recurrent skip coefficients are different might result in different performance.322

We evaluated these architectures on the sequential MNIST and pMNIST datasets. The results show323

that differences in s indeed cause big performance gaps regardless of the fact that they all have skip324

connections (see Table 2, bottom-right panel). Given the same k, the model with a larger s performs325

better. In particular, model (3) is better than model (2) even though they only differ in the direction of326

the skip connections. It is interesting to see that for MNIST (unpermuted), the extra skip connection327

in model (2) (which does not really increase the recurrent skip coefficient) brings almost no benefits,328

as model (2) and model (1) have almost the same results. This observation highlights the following329

point: when addressing the long term dependency problems using skip connections, instead of only330

considering the time intervals crossed by the skip connection, one should also consider the model’s331

recurrent skip coefficient, which can serve as a guide for introducing more powerful skip connections.332

5 Conclusion333

In this paper, we first introduced a general formulation of RNN architectures, which allows one334

to construct more general RNNs, and provides a solid framework for the architectural complexity335

analysis. We then proposed three architectural complexity measures: recurrent depth, feedforward336

depth, and recurrent skip coefficients, each capturing the complexity in the long term, complexity in337

the short term and the speed of information flow. We also find empirical evidence that increasing338

recurrent depth might yield performance improvements, increasing feedforward depth might not help339

on long term dependency tasks, while increasing the recurrent skip coefficient can largely improve340

performance on long term dependency tasks. These measures and results can provide guidance for341

the design of new recurrent architectures for a particular learning task. Future work could involve342

more comprehensive studies (e.g., providing analysis on more datasets, using different architectures343

with various transition functions) to investigate the effectiveness of the proposed measures.344

8

New Ideas to Help Information
Propagation

•  Unitary	matrices:	all	e-values	of	matrix	are	1	

•  Zoneout:	randomly	choose	to	simply	copy	the	state	unchanged	

16	

Figure 1: Zoneout as a special case of droput: h̃
t

is the hidden activation without zoneout, the hidden
state h

t

has zoneout applied stochastically as represented by the dashed line; this can be expressed as
dropout on the corresponding input node, which represents the difference h̃

t

� h

t�1.

Figure 2: Zoneout (left) vs the recurrent dropout strategy of [Semeniuta et al., 2016] in an LSTM.
Dashed lines are zero-masked, and, in zoneout, the corresponding dotted lines are masked with the
corresponding opposite zero-mask.

each hidden state is trained (implicitly) to remember and emphasize all task-relevant aspects of the84

preceding inputs, and to incorporate new inputs into its representation of state.85

In simple RNNs, the hidden state is computed by a standard “linear layer”, i.e., an affine transform86

followed by a nonlinearity, �.87

~

h

t

= �(W
h

~

h

t�1 +W
x

~x

t

+~

b), (1)

and a naive application of dropout simply applied zero-masking to the updated ~h
t

.88

In LSTM networks, the hidden state is divided into memory cells ~h
t

which are intended for internal89

long-term storage, and hidden state, ~h
t

which is used as a transient representation of state at time-step90

t. In LSTM, ~c
t

and ~

h

t

are computed via a set of the four “gates”, including the forget gate, f
t

,91

which directly connects ~c
t

to the memories of the previous time-step ~c

t�1, via an element-wise92

multiplication. Large values of the (ironically named) forget gate cause the cell to remember most93

(but not all) of its previous value. The other gates control the flow of information in (i
t

, g

t

) and out94

(o
t

) of the cell.95

LSTM:96

i

t

, f

t

, o

t

= �(W
x

x

t

+W

h

h

t�1 + b) (2)
g

t

= tanh(W
xc

x

t

+W

hc

+ b

c

) (3)
c

t

= f

t

� c

t�1 + i

t

� g

t

(4)
h

t

= o

t

� tanh(c
t

) (5)

A naive application of dropout in LSTMs zero-masks either or both of the memory cells and97

hidden states; here d

t

represents the dropout mask, which is a Bernoulli random variable sampled98

independently at each time-step during training, and is replaced by the expectation at test time.99

LSTM with dropout applied to memory cells:100

i

t

, f

t

, o

t

= �(W
x

x

t

+W

h

h

t�1 + b) (6)
g

t

= tanh(W
xc

x

t

+W

hc

+ b

c

) (7)
c

t

= d

t

� (f
t

� c

t�1 + i

t

� g

t

) (8)
h

t

= o

t

� tanh(c
t

) (9)

Alternatives abound, however; masks can be applied to any subset of the gates and/or cells/states.101

Recently, Semeniuta et al. [2016] proposed zero-masking the input gate:102

3

(Krueger	et	al	2016,	
submiYed)	

(Arjowski,	Amar	&	
Bengio	ICML	2016)	

