Learning Long-Term Dependencies with Gradient Descent is Difficult

Y. Bengio, P. Simard & P. Frasconi, IEEE Trans. Neural Nets, **1994**

June 23, 2016, ICML, New York City Back-to-the-future Workshop Yoshua Bengio Montreal Institute for Learning Algorithms Université de Montréal Université de Montréal

CIFAR | ICRA

Université **m** de Montréal

Simple Experiments from 1992 while I was at MIT

- 2 categories of sequences
- Can the single tanh unit learn to store for T time steps 1 bit of information given by the sign of initial input?

How to store 1 bit? Dynamics with multiple basins of attraction in some dimensions

 Some subspace of the state can store 1 or more bits of information if the dynamical system has multiple basins of attraction in some dimensions

Robustly storing 1 bit in the presence of bounded noise

• With spectral radius > 1, noise can kick state out of attractor

Storing Reliably → Vanishing gradients

- Reliably storing bits of information requires spectral radius<1
- The product of T matrices whose spectral radius is < 1 is a matrix whose spectral radius converges to 0 at exponential rate in T

$$L = L(s_T(s_{T-1}(\dots s_{t+1}(s_t, \dots))))$$
$$\frac{\partial L}{\partial s_t} = \frac{\partial L}{\partial s_T} \frac{\partial s_T}{\partial s_{T-1}} \dots \frac{\partial s_{t+1}}{\partial s_t}$$

• If spectral radius of Jacobian is $< 1 \rightarrow$ propagated gradients vanish

Vanishing or Exploding Gradients

 Hochreiter's 1991 MSc thesis (in German) had independently discovered that backpropagated gradients in RNNs tend to either vanish or explode as sequence length increases

Why it hurts gradient-based learning

 Long-term dependencies get a weight that is exponentially smaller (in T) compared to short-term dependencies

$$\frac{\partial C_t}{\partial W} = \sum_{\tau \le t} \frac{\partial C_t}{\partial a_\tau} \frac{\partial a_\tau}{\partial W} = \sum_{\tau \le t} \frac{\partial C_t}{\partial a_t} \frac{\partial a_t}{\partial a_\tau} \frac{\partial a_\tau}{\partial W}$$

Becomes exponentially smaller for longer time differences, when spectral radius < 1

Dealing with Gradient Explosion by Gradient Norm Clipping

Conference version (1993) of the 1994 paper by the same authors had a predecessor of GRU and targetprop

(The problem of learning long-term dependencies in recurrent networks, Bengio, Frasconi & Simard ICNN'1993)

IV. A TRAINABLE FLIP-FLOP

• Flip-flop unit to store 1 bit, with gating signal to control when to write

$$\begin{aligned} x_{t+1} &= f(x_t, u_t) \\ f(x, u) &= \begin{vmatrix} 1 & \text{if } |u| < 1 \text{ and } x \ge 0 \\ & \text{or if } u \ge 1 \\ -1 & \text{otherwise} \end{vmatrix}$$
(8)

 Pseudo-backprop through it by a form of targetprop

$$\Delta x(\Delta f, u) = \begin{vmatrix} \Delta f & \text{if } |u| < 1\\ 0 & \text{otherwise} \end{vmatrix}$$
(11)

Bypassing nonlinearities to Learn Longer term dependencies

- Delays (Lin et al & Giles 1995)
- Multiple time scales (Elhihi & Bengio NIPS 1995)

Fighting the vanishing gradient: LSTM & GRU

(Hochreiter 1991); first version of the LSTM, called Neural Long-Term Storage with self-loop

- Create a path where gradients can flow for longer with a self-loop
- Corresponds to an eigenvalue of Jacobian slightly less than 1
- LSTM is now heavily used (Hochreiter & Schmidhuber 1997)
- GRU light-weight version (Cho et al 2014)

LSTM: (Hochreiter & Schmidhuber 1997)

Fast Forward 20 years: Attention Mechanisms for Memory Access

- Neural Turing Machines (Graves et al 2014)
- and Memory Networks (Weston et al 2014)
- Use a content-based attention mechanism (Bahdanau et al 2014) to control the read and write access into a memory
- The attention mechanism outputs a softmax over memory locations

Large Memory Networks: Sparse Access Memory for Long-Term Dependencies

- A mental state stored in an external memory can stay for arbitrarily long durations, until it is overwritten (partially or not)
- Forgetting = vanishing gradient.
- Memory = higher-dimensional state, avoiding or reducing the need for forgetting/vanishing

Designing the RNN Architecture (Zhang et al 2016)

- **Recurrent depth**: max path length divided by sequence length
- Feedforward depth: max length from input to nearest output
- Skip coefficient: shortest path length divided sequence length

It makes a difference

• Impact of change in recurrent depth

DATASET	MODELS\ARCHS	sh	st	bu	td
PennTreebank	tanh RNN	1.54	1.59	1.54	1.49
	tanh RNN-SMALL	1.80	1.82	1.80	1.77
text8	tanh RNN-large	1.69	1.67	1.64	1.59
	LSTM-SMALL	1.65	1.66	1.65	1.63
	LSTM-LARGE	1.52	1.53	1.52	1.49

Impact of change in skip coefficient

RNN(tanh)	s = 1	s = 5	s = 9	s = 13	s = 21		LSTM	s = 1	s = 3 s =	= 5 s =	7 s = 9
MNIST	34.9	46.9	74.9	85.4	87.8	1	MNIST	56.2	87.2 80	5.4 86.4	4 84.8
	s = 1	s = 3	s = 5	s = 7	s = 9			s = 1	s = 3 s =	= 4 s =	$5 \ s = 6$
pMNIST	49.8	79.1	84.3	88.9	88.0	p	MNIST	28.5	25.0 60	0.8 62.2	2 65.9
					_						
Model		MNIS	ST p	MNIST		1.4		(1) 1	(0) 1	$(\mathbf{a}) k$	(1) 1
iRNN[25	1	97 ()	≈ 82.0	– <u>A</u>	rchite	cture, s	(1), 1	(2), 1	$(3), \frac{\pi}{2}$	(4), <i>K</i>
		07.0	,	~ 02.0	N	ANIST	k = 17	39.5	39.4	54.2	77.8
uRNN[24	ł]	95.1		91.4			k = 21	30.5	30.0	60.6	71 8
I STM[2/	11	98.2	2	88.0			K - 2I	39.5	39.9	09.0	/1.0
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~									01 8
DNN(tan h)	.] [25]	~ 25	0	~ 25.0	pN	MNIS".	l' k = 5	55.5	66.6	74.7	81.2
RNN(tanh)	[25]	$\approx 35.$	0	≈35.0	pN	MNIS	k = 5 k = 9	55.5	66.6 71.1	74.7 78.6	81.2 86 9

Table 2: Results for MNIST/*p*MNIST. **Top-left**: test accuracies with different *s* for *tanh* RNN. **Top-right**: test accuracies with different *s* for LSTM. **Bottom**: compared to previous results. **Bottom-right**: test accuracies for architectures (1), (2), (3) and (4) for *tanh* RNN.

New Ideas to Help Information Propagation

• Unitary matrices: all e-values of matrix are 1

(Arjowski, Amar & Bengio ICML 2016)

$\mathbf{W} = \mathbf{D}_3 \mathbf{R}_2 \mathcal{F}^{-1} \mathbf{D}_2 \mathbf{\Pi} \mathbf{R}_1 \mathcal{F} \mathbf{D}_1$

Zoneout: randomly choose to simply copy the state unchanged

16