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Simple Experiments from 1992 while I
was abk M1

e 2 categories of sequences

e Can the single tanh unit learn to store for T time steps 1 bit of
information given by the sign of initial input?

1
Ty = f(at) = tanh(a.] w (a) j
a; = wry + hy B i

Prob(success | seq. length T)
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How ko store 1 bikt? Dunamics with
multiple basins of attraction in some
dimensions

e Some subspace of the state can store 1 or more bits of
information if the dynamical system has multiple basins of
attraction in some dimensions

Basins




Robustly storing 1 bit in the presence
of bounded noise

e With spectral radius > 1, noise can kick state out of attractor

UNSTABLE

Domain of a;

e Not so with radius<1
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Storing Reliably

Reliably storing bits of information requires spectral radius<1

The product of T matrices whose spectral radius is < 1 is a matrix
whose spectral radius converges to O at exponential ratein T

L= L(sr(sT-1(---St+1(8¢t5---))))
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e |f spectral radius of Jacobian is < 1 =» propagated gradients vanish



Vanishing or Exploding Gradients

 Hochreiter’s 1991 MSc thesis (in German) had independently
discovered that backpropagated gradients in RNNs tend to
either vanish or explode as sequence length increases

1991: SEPP HOCHREITER'S ANALYSIS OF TH
FUNDAMENTAL DEEP LEARNING PROBLEM

de(t-q)
de(f)

[ (B ﬁWF'(Ner(t -m))ll

m=|

<(IWlimax,, {IF'(Net)ll})’




Why it hurts gradient-based Learning

e Long-term dependencies get a weight that is exponentially
smaller (in T) compared to short-term dependencies
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Becomes exponentially smaller
for longer time differences,
when spectral radius < 1




Dealing with Gradient Explosion by
Gradient Norm Clipping

(Mikolov thesis 2012;
Pascanu, Mikolov, Bengio, ICML 2013)
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Conference version (1993) of the 1994
paper by the same authors had a
predecessor of GRU and targetprop

(The problem of learning long-term dependencies in recurrent networks,
Bengio, Frasconi & Simard ICNN’1993)

IV. A TRAINABLE Frip-FLoP
e Flip-flop unit to store 1 bit, with gating
signal to control when to write
Tepr = f2e,uy)

1 if lul<1 and z2>0
orif u>1 (8)
-1 otherwise

f(z,u) -

e Pseudo-backprop through it by a form of
targetoroo

A:B(Af,u)=l Af if |ul<1 (11)

0 otherwise




Bypassing nonlinearities to Learn
Longer term dependencies

e Delays (Lin et al & Giles 1995)
e Multiple time scales (Elhihi & Bengio NIPS 1995)
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Fighting the vanishing gradient:
LSTM & GRU

(Hochreiter 1991); first version of LSTM: (Hochreiter & Schmidhuber 1997)
the LSTM, called Neural Long-
Term Storage with self-loop output

e Create a path where
gradients can flow for
longer with a self-loop

self-loop

e Corresponds to an
eigenvalue of Jacobian
slightly less than 1

e LSTM is now heavily used
(Hochreiter & Schmidhuber
1997)

e GRU light-weight version
(Cho et al 2014)
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Fast Forward 20 years: Attention
Mechanisms for Memory Access

e Neural Turing Machines (Graves et al 2014)
e and Memory Networks (Weston et al 2014)

e Use a content-based attention mechanism
(Bahdanau et al 2014) to control the read
and write access into a memory

e The attention mechanism outputs a softmax
over memory locations
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Large Memory Networlkes: Sparse Access
Memory for Long-Term Dependencies

e A mental state stored in an external memory can stay for
arbitrarily long durations, until it is overwritten (partially or not)

e Forgetting = vanishing gradient.

Memory = higher-dimensional state, avoiding or reducing the
need for forgetting/vanishing
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Desighing the RNN Architecture

(Zhang et al 2016)

e Recurrent depth: max path length divided by sequence length
. : max length from input to nearest output
e Skip coefficient: shortest path length divided sequence length
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It malkees a difference

e |Impact of change in recurrent depth
DATASET MODELS\ARCHS sh st bu td

PennTreebank tanh RNN 1.54 1.59 1.54 1.49
tanh RNN-sMALL | 1.80 1.82 1.80 1.77
text8 tanh RNN-LARGE | 1.69 1.67 1.64 1.59
LSTM-SMALL | 1.65 1.66 1.65 1.63
LSTM-LARGE 1.52 1.53 1.52 1.49

e |mpact of change in skip coefficient
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RNN(tanh)| s=1 s=5 s=9 s=13 s=21 LSTM |s=1 s=3 s=5 s=7 s=9
MNIST 349 469 749 854 8§7.8 MNIST | 56.2 87.2 864 864 &84.8
s=1 s=3 s=5 s=7 s=9 s=1 s=3 s=4 s=5 s=6
pMNIST | 49.8 79.1 843 88.9 88.0 pMNIST| 28.5 25.0 60.8 62.2 65.9
_Model MNIST _ pMNIST Architecture,s | (1,1 (2),1 (3). £ (&), k
1RNNJ25] 97.0 ~82.0 2
MNIST k=17 | 395 394 542 77.8
uRNNJ[24] 95.1 91.4
k=211 395 399 696 718
LSTM[24] 98.2 88.0
N N pMNIST k=5 | 555 666 747 81.2
RNN(tanh)[25] ~35.0 ~35.0 k=0 | 555 7.1 786 869
stanh(s =21, 11) 98.1 94.0 — i : : .

Table 2: Results for MNIST/pMNIST. Top-left: test accuracies with different s for tanh RNN. Top-right: test
accuracies with different s for LSTM. Bottom: compared to previous results. Bottom-right: test accuracies for
architectures (1), (2), (3) and (4) for tanh RNN.
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New Ideas to Help Information
Propagation

e Unitary matrices: all e-values of matrix are 1 (Ariowski, Amar &

1 Bengio ICML 2016)
e Zoneout: randomly choose to simply copy the state unchanged

(Krueger et al 2016,
5 submitted)
t
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