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Deep Motivations

m Brains have a deep architecture

® Humans organize their ideas hierarchically, through
composition of simpler ideas

m Unsufficiently deep architectures can be exponentially
inefficient

m Distributed (possibly sparse) representations necessary to
achieve non-local generalization, exponentially more efficient
than 1-of-N enumeration of latent variable values

. . task 1 task 2 task 3
= Multiple levels of latent variables allow - —_— —

combinatorial sharing of statistical strength

shared
intermediate
representations

raw input x



Deep Architecture in our Mind

® Humans organize their ideas and
concepfts hierarchically

m Humans first learn simpler concepts and
then compose them o represent more
abstract ones

® Engineers break-up solutions into multiple
levels of abstraction and processing

It would be nice to learn / discover these
concepfts

(knowledge engineering failed because
of poor infrospection?)

very high level representation:
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slightly higher level representation

raw input vector representation:
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Deep Architectures are More Expressive

Theoretical arguments:

pu—

Logic gates
2 layers of § Formal neurons = universal approximator
RBF units o

“—

Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al 2007)

Functions compactly
represented with k layers
may require exponential
size with k-1 layers




Sharing Components in a Deep Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(1129)(x9X3) + (1129)(23204) + (x2X3)2 + (x9X3)(2374)



Feature and Sub-Feature Sharing

. . fask 1 Task N
= Different tasks can share the same high- oojfpum SUTPUT Y

level feature
H|gh -level featyres

m Different high-level features can be built .y(
from the same set of lower-level features O

Low-level features

m More levels = up to exponential gain in
representational efficiency



Local vs Distributed
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RBM Hidden Units Carve Input Space

Partition 3

\ Partition 2
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Boltzman Machines and MRFs

1 T T
= Boltzmann machines: P(x) = — g~ Energy(z) _ ¢’ zta Wa

(Hinton 84)

m Markov Random Fields:

1 3
P(CU) — ZGZ% ws fi(x)

® More interesting with latent variables!



Restricted Bolizman Machine

= The most popular 1 b ThtcT ot h T Wa
building block for deep P(z,h) = Z©
architectures
OO0 - ¢ n hidden

m Bipartfite undirected
graphical model

m Inference is frivial: x observed

P(h|x) & P(x | h) factorize



Layer-Wise Unsupervised Pre-Training:
learn mulfiple levels of representation

(Hinton et al 2006, Bengio et al 2007, Ranzato et al 2007)
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Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)

or Stacking Denoising Auto-Encoders

+ supervised fine-tuning - classifier



Supervised fine-tuning of deep MLP

m DBN or stack of RBMs or stack of auto-encoders trained to
model P(X), initialize a deep Multi-Layer Perceptron (MLP)

m Best classification results with (long) final supervised phase
® Trained by stochastic gradient descent on log P(Y | X)
® Why does unsupervised pre-training help?

m Stanford’s alternative: only train a classifier (SVM) on top of
concatenation of all hidden layers (and possibly input).



Training RBMs

Conftrastive Divergence:
(CD-k)

Persistent CD:
(PCD)

Fast PCD:

Herding:

Tempered MCMC:

start negative Giblbs chain at
observed x, run k Gibbs steps (Hinton 99)

run negative Gibbs chain in
background while weights slowly
change (Tieleman 08)

two sets of weights, one with large
learning rate only for negative phase,
quickly exploring modes (tieleman et al 09)

PCD at O-temperature, large learning
rate (Welling 09)

use higher temperature to escape
modes (Salakhutdinov 10; Desjardins et al 09)



Problems with CD & Giblbs Sampling

In practice, Gibbs sampling does not always mix well... (Tieleman 08)

RBM trained by CD on MNIST

DODDDDRRERaR
nnnnnuuunn Chains from random state
INNNDODOEEEN -
Chains from real digifs



Hypothesis to Explain Poor Mixing in
CD-Trained RBMs (G. Desjardins)

m CD-fraining creates wells (or valleys) at (or between) data
points and barriers around them

Spurious
) modes
failure of
Gibbs from
random init.

Success of
Gibbs from
j + data point




Parallel Tempered MCMC

(Desjardins, Courville, Bengio, Vincent, Delalleau: AISTATS 2010)

= Higher tfemperature = more noise = smoothed

.Y
energy landscape: can escape modes faster, mix W

better

and reversible swaps between adjacent chains

m Model samples are from T=1

= Swap prob = [ P (Xe1) Peer (X 17 [ PelXid) Prsr (K1) ]
= exp((by = by ) (E(X) = E(Xks1)))

where b, =inv. temp., E(x) = energy of x.

m PCD learning with PTMCMC chain
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Parallel Tempered MCMC

clolrlul4l7]ss]slo@élslelololofoldlolo
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FIREIRAAGAGEnn
nnnnnnnvunn AA8HEREEEHE

PCD-Gibbs during PCD-Gibbs
training. after training.
Mixes well Does not mix
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TMCMC during TMCMC after
training. training.
Mixes well Mixes well

Sample Generation Procedure
Training Procedure TMCMC Gibbs (random start) Gibbs (test start)

TMCMC 208
FPCD 180
PCD 30
CD -1979

211 210
175 176
128 139
-854 37

Indirect Sampling Likelihood



Unlearning for Better Mixing

(with Breuleux, AISTATS breaking news)

m Fast Persistent CD (FPCD) and Herding exploit impressively
faster mixing achieved when parameters change quickly
(large learning rate) while sampling

m FPCD and Herding decrease probability of just-visited states,
but change other probabilities through RBM parametrization.
FPCD is more conservative by making those changes
temporary with exponentially fast decay.



Unlearning for Better Mixing

m All chains with the same leading eigenvector go to the same
distribution but may converge at very different rates!

m Consider an MCMC with transition probability matrix A with
asymptotic distribution p = A p.

m Want to spend less time in modes: reduce probability of staying
INn same state by A:

Let A = (A=A D/(1-L)
m Proposition:
Ap=p,

l.e. converge to the same distribution.



Rates-FPCD Sampler

= Estimate sufficient statistics (s; s;) during fraining
(Rates idea from Welling's Herding)

® During sampling, change weights to move away from current
state (FPCD ideaq)

m But update moves towards preserving sufficient statistic



Gibbs vs Rates-Herding vs Rates-FPCD
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Mixes very slowly!

Giblbs



Giblbs vs Rates-Herding vs Rates-FPCD
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Gibbs too poor to show.

Rates-FPCD converges
faster.



Why are Classifiers Obtained from
Pre-Trained Deep Nets Working so
Welle

m General principles?
m Would these principles work for other single-level algorithms?

® Why does it work?



Replacing RBMs by Other Layer-
Local Unsupervised Learning

m Auto-encoders (Bengio et al, NIPS'06)

m Sparse coding (Lee et al NIPS'06, Bradley & Bagnell NIPS'09)
m Sparse Predictive Decomposition (Ranzato et al, NIPS'06)

m Kernel PCA (Erhan 2008)

= Denoising auto-encoders (Vincent et al, ICML’'08), simpler than
RBMs and matches or beats RBMs

m Unsupervised embedding (Weston et al, ICML'08)

m Slow features (Mohabi et al, ICML'09, Bergstra & Bengio
NIPS’'09)




Denoising Auto-Encoder

m Stacked, unsupervised pre-training (Vincent et al, ICML'08)
m Corrupt the input (e.g. set 25% of randomly chosen inputs 1o 0)
m Reconstruct the uncorrupted input

m Use uncorrupted encoding as input to next level

KL(reconstruction | raw input)

Hidden code (representation)

OO0

X
// \

-
-
-

ROROOl- (00000) (00000)

Corrupted input Raw input reconstruction




Denoising Auto-Encoders vs RBMs

m DAE easier to grasp & teach than RBMs
m DAEs worked as well or better than RBMs as feature learners

m DAEs training criterion lower bounds log-lik of generative
models, but their generative ability has not been well studied

(for now | would still use RBMs to generate data, e.g. for
animations)

m DAEs more flexible (can choose any parametrization for
encoders and decoders)



Level-Local Learning Is Important
m |nifializing each layer of an unsupervised deep Boltzmann
machine as an RBM helps a lot (Salakhutdinov & Hinton 2009).

m |nifializing each layer of a supervised neural network as an RBM
or denoising auto-encoder helps a lot

m Helps most the layers further away from the target

m Jointly training all the levels of a deep architecture is difficult:
initialization matters!



Why is Unsupervised Pre-Training
Working So Welle

(with Erhan, Courville, Manzagol, Vincent, Bengio: JMLR, 2010)

m Regularization hypothesis:
« Unsupervised component forces model close to P(x)
« Representations good for P(x) are good for P(y | x)

m Opftimization hypothesis:

« Unsupervised initialization near better local minimum of supervised
training error

« Canreach lower local minimum otherwise not achievable by
random inifialization



Learning Trajectories in Function Space

®m Fach point a model
in function space

m Color = epoch A
m Top: trajectories . o
w/0o pre-fraining &, o we o

® FEach trajectory
converges in
different local min.

LS
L
(

= No overlap of
regions with and
W/0 pre-training




Visualization in Function Space

m Using ISOMAP instead
of t-SNE, preserve
distances

® Pre-fraining: small
volume compared to
without.
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Unsupervised Learning as Regularizer

il
. . . 3-layer DEN
m Adding extra regularization 3-layer SDAE

(reducing # hidden units) — 3lyers W_fo.p'r_e-tr‘aipin_c_tni—
hurts more the pre-tfrained 1 S R
models sl \;

® Pre-trained models have
less variance wrt fraining
sample

Test error

m Regularizer = infinite S, TR
penalty outside of region e R
compatible with ¢
unsupervised pre-fraining R

3 1 2 3
) 10 10 10

MNumber of hidden units



Unsupervised Disentangling of
Factors of Variation

il
3-layer DEN

3-layer SDAE

3 layers wio pre-training

= Explanatory theory:

(Denoising Auto-Encoder) <l _

- Stacked RBMs & DAE disentangle factors S

of variation in P(x) (Goodfellow et al, NIPS'09) & .|

+ Most salient factors are unrelated to y, but &

some factors are highly predictive of y N g

- RBMs with too few units learn features 2

worse at predicting y than randomly LR NN

initialized networks s B ¢
—->RBMs with many hidden units are much 3 '101 o2 o’

more prediCTive of Y Mumber of hidden units



Better Optimization of Online Error

m Both training and online error
are smaller with unsupervised
pre-training

m As # samples 2 00
training err. = online err. =
generalization err.

= Without unsup. pre-tfraining:
can't exploit capacity to
capture complexity in target
function from fraining data

ine classification error

..... S ——— layer without pre-training

| — 3 layers without pre-training
f' T ==y layer with REM pre-training

3 layers with RBM pre-training 3
U T T layer with denoising auto-encoder pre-training |-

.......................

3 layers with denoising auto-encoder pre-training

..........

........

............................

..............

...........

.....................

RN R R R R R Y A R

0 1 2 3 4 5 B 7 8 9 10
Number of exampjgs seen .

Denoising auto-encoder




Initial Examples Matter More
(crifical periode)

(o] ~

%]

w

Mean of the variance and the std to the mean
N I

[

Variance of the output

< =x 1-layer network without pretraining

® @ 1-layer network with RBM pre-training

O

0 01

02 03 04 05 06 07
Fraction at which we vary the examples

Vary 10% of the
training set at the
beginning, middle,
or end of the
online sequence.
Measure the effect
on learned
function.



Learning Dynamics of Deep Nets

Before fine-tuning After fine-tuning

A
= As weights become larger, get trapped in(\ ]_/

basin of attraction (sign does not change) q

» Critical period. Initialization matters. K ¥>




The Credit Assignment Problem

m Even with the correct gradient, lower layers (far from the
prediction, close to input) are the most difficult to train

m Lower layers benefit most from unsupervised pre-training
* Local unsupervised signal = extract / disentangle factors

m Credit assignment / error information not flowing easily?

m Related to difficulty of credit assignment through time?



Order & Selection of Examples Maftters

(with Louradour, Collobert & Weston, ICML'2009)

m Curriculum learning
(Bengio et al, ICML'2009; Krueger & Dayan 2009) " Savo.

m Start with easier examples

m Faster convergence to a better local
minimum in deep architectures —— curriculum

= = no-curriculum

m Also acts like a regularizer with
optimization effecte

® Influencing learning dynamics can
make a big difference



Understanding the difficulty of
fraining deep feedforward neural
networks

Study the activations and gradients
« wrt depth
* Qs fraining progresses
 for different initializations
 for different activation non-linearities



Empirical Analyses of Gradient
PI’OpCIgCIﬂO M\ (Glorot & Bengio, AISTATS 2010)

» Understood conditions under which top hidden layer with
sigmoids goes into initial saturation

» No saturation with softer (non-exp.jnon-linearity,
e.q. softsign(x)=x/(1+|x|)

— Sigmoid depth 5
— Sigmoid depth 4
— Tanh
— Softsign

- Tanh N

- Softsign N
Pre-training

s Effect of initialization, too
small or too large, on
activations and gradients

» Want Jacobian around 1:
variance preserving

test error %

Unsupervised

pre-training: I

Automatically )

variance-

preserving! 05 05 1.0 15 20 2

# exemples seen le7



Means and variances

Sigmoids Saturate and then UnSaturate!

m Top hidden layer quickly (50k updates) saturates, error stuck on
plateau, then slowly desaturates as lower layers learn
something more sensible.

layer(
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Most initial hidden units almost uncorrelated with target: want to kill off output W'h



Histograms at epoch:192

No Saturation with Softsign = x/(1+ | x| )

Activation depth:5 activation:softsign
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Softsign offen beats fanh & sigmoid

Generalization Error on MNIST

" Deep
supervised
dense nefts

Generalization Error on SHAPESET

Generalization Error on FLICKR

X 75 tanh
70 B tan

65 [ softsign




Histograms at epoch:0

Initial layer-wise gradients vanish

m First observed by D. Bradley (CMU thesis, 2009)

m With 1/sgrt(fan_in) initialization, tfanh units.

Gradient on the biais depth:5 activation:tanh2
1

o
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Values
. L]
m But not weight gradients! Var(dC/dW) at level k ~ ak gd-k= qd
Gradient on the weights depth:5 activation:tanh2
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Effect of Small Jacobian

prediction

m Activations become smaller
going from input to output by ]
factor a

m Activation gradients become
smaller going from target
towards input by factor a

m Product dC/dWi=dC/dx * x;
Is constant in linear(ized) case,
proportional to gderth

input x,



Normalized Initialization with
Variance-Preserving Jacobians

Sigmoid depth 5

§

80
Sigmoid depth 4
2ol Tanh
i Softsign
- Tanh N
60| Softsign N
R Pre-training
X
§50*
GLJ : \
4(7") . '|| 7y ,
340t '"\ ;'.\/.5
30¢
207
107 ; . ‘ | -
0.0 0.5 1.0 15 2.0 2.t

# exemples seen

Shapeset

| 2x3 data

| Unsupervised

pre-training:

| Automatically

variance-

| preserving!



Rectifier Neurons & Sparsity:

MOﬂVQﬂO NS (Glorot & Bengio, Learning Workshop 2010)

K- - S i e ]
m Biologically more plausible epilepsy
activation function 150, -
g real neuron
= Leads fo sparse outputs: real 2100t~ =+ -
neurons activatfionis sparse = | _:__/
/ \ operating zone: rectifier
= Motivations: 0= ; i ;
\ 0 2 4 6

m I[nformation disentangling
m Variable-size representation .
m Easier separability

m Humans define concepts
sparsely (from few others)

m Regularizer

Few bits of information

hut current

~—_——-

10
2

Many bits of information



Gradient flow in sparse nets

m Non-linearity = paths selection

. . Output
® Linear given paths

m Exponential number of possible

. Hidden layer 2
paths / linear models

m Gradients flow well through
selected paths

Hidden layer 1

m Does the hard non-linearity hurt

training? Apparently not! Input




Sparse Rectifier Nefts:

m 3 hidden layers, purely
supervised

m Beats soft rectifier & tanh
m Achieves 80%-95% sparsity

m With layer-wise normalization,
achieves best result ever
without convolution, pre-
tfraining or deformations: 1.3%

m Also helps stacked denoising
auto-encoders

Results
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Deep Learning Research: Al is Back

m Biological inspiration — comp. neuro. (Cox, DiCarlo, Pinto @ MIT)

m Not just neural nets: machine learning towards Al
= Object grammars, parts models (McAllester @ TTI-C)
= Markov logic networks (Domingos @ U. Washington)
= Graphical models with many levels of latent var.
= Hierarchical / stacking sparse coding (Bach @ ENS)

m DARPA Deep Learning program (Ng + Koller, LeCun + Bengio +
Fergus + Collobert)

m See http://deeplearning.net




http://deeplearning.net

*. Deep Learnin

... moving beyond shallowgearning since 2006!

.

Recent Posts Welcome to Deep Learning

Deep learning papers at
AISTATS 2010

New forum feature This website is intended to host a variety of resources and pointers to information about Deep Learning. In

these pages you will find

Welcome
¢ areading list,
Taas ¢ links to software,
g e datasets,
e a discussion forum,
Meta e as well as tutorials and cool demos.
Regi_ster For the latest additions, including papers and software announcement, be sure to visit the Blog section
Log in of the website. Contact us if you have any comments or suggestions!
Entries RSS
Comments RSS Last modified on March 29, 2010, at 3:55 pm by Dumitru Erhan
WordPress.org

http://deeplearning.net/software/theano : numpy - GPU




Conclusions

« Deep architectures: potential exponential gain in
representation thanks to composition of abstractions

« Unsupervised pre-training helps a lot: RBMs, auto-encoders,...
« CD and Gibbs for RBMs have weaknesses
- Improved training and sampling algorithms for RBMs

« Why does unsupervised pre-training worke Regularization and
optimization effects intertwined

- Why is it difficult to train deep neural nets¢ Principled ways to
initialize and changing the non-linearity can help quite a bit!

« A more biologically plausible non-linearity brings sparsity and
better faster training.



Thank you for your attention!

m Questions?

m Commentse



Classification error

Learning Slow Features

a NIPS'2009 paper with James Bergsira

» Combine efficient computation of slowness with quadraftic
(complex cell, sum of squared filters)

™

a Pretrained on video

23 23 BN MIXED-Movies | Bt

24 1 MNIST-Movies

22

20

18

16

0 10 20 30 40 50
Amount of pretraining



Online Multl-Shape Detection

m 3 shape categories

m All 9 combinations of 1
or 2 shapes in an image
= 9 target classes

m 32x32 inputs
m 1000 units/layer
m | to 5layers

m All hyper-parameters
separately optimized
for each case shown




Gradual Saturation with Tanh

Activation depth:S activation:tanh2 lay erl0
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Normalized Initialization with
Variance-Preserving Jacobians

2 0 | | CIFAR1O |
5 8 Tanh N 64 | Tanh N
| Softsign N| | Softsign N
2.6} Tanh — Tanh
54l Softsign S Softsign
322‘. .......................................................... A 858 ’ :
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b T e e I ] R e e e
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# exemples seen le7 # exemples seen le7



ISL vs Analytic Likelihood

Negative Log-Likelihood (analytic)

Negative Log-Likelihood (analytic)

110

Analyfic

105 //

100} 1
— model=cd
951 — model=fpcd |4
—  model=pcd
90| 1
85| 1
80 . . L
10 107 102 107 10°
Learning Rate (learning)
170 -
— model=cd
160} — model=fpcd ||
— model=pcd
90 - -
10 107 107 107 10°

Learning Rate (learning)

Negative Log-Likelihood (sampling)

Negative Log-Likelihood (sampling)

ISL

— model=cd
moaa—pea || 0/1 units
9‘110"' 16'3 16'2 1ol'1 10°
Learning Rate (learning)
150 ;
— model=cd
— model=fpcd
1401 — model=pcd [
-1/1 units
Note CD discrepency
because sampler
-, does noft reflect

Learning Rate (learning)

model



