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Deep Motivations 
  Brains have a deep architecture 

  Humans organize their ideas hierarchically, through 
composition of simpler ideas 

  Unsufficiently deep architectures can be exponentially 
inefficient 

 Distributed (possibly sparse) representations necessary to 
achieve non-local generalization, exponentially more efficient 
than 1-of-N enumeration of latent variable values 

 Multiple levels of latent variables allow                             
combinatorial sharing of statistical strength 

raw input x 

task 1  task 3  task 2 

shared 
intermediate 
representations  



Deep Architecture in our Mind 

  Humans organize their ideas and 
concepts hierarchically 

  Humans first learn simpler concepts and 
then compose them to represent more 
abstract ones 

  Engineers break-up solutions into multiple 
levels of abstraction and processing 

   It would be nice to learn / discover these 
concepts  

  (knowledge engineering failed because 
of poor introspection?) 



Deep Architectures are More Expressive 

Theoretical arguments: 

… 
1 2 3 2n 

1 2 3 
… 

n 

= universal approximator 2 layers of 
Logic gates 
Formal neurons 
RBF units 

Theorems for all 3: 
(Hastad et al 86 & 91, Bengio et al 2007) 

Functions compactly 
represented with k layers 
may require exponential 
size with k-1 layers 



Sharing Components in a Deep Architecture 
Polynomial expressed with shared components: advantage of 
depth may grow exponentially 



Feature and Sub-Feature Sharing 

 Different tasks can share the same high-
level feature 

 Different high-level features can be built 
from the same set of lower-level features 

 More levels = up to exponential gain in 
representational efficiency 

… 

… 

… 

… 

… 

task 1  
output y1 

Task N  
output yN 

High-level features 

Low-level features 



Local vs Distributed 



RBM Hidden Units Carve Input Space 

h1 h2 h3 

x1 x2 



Boltzman Machines and MRFs 

  Boltzmann machines: 
   (Hinton 84) 

 Markov Random Fields: 

    
      

 More interesting with latent variables! 

          



Restricted Boltzman Machine 

  The most popular 
building block for deep 
architectures 

  Bipartite undirected 
graphical model 

  Inference is trivial: 

P(h|x) & P(x|h) factorize 

    
      

observed 

hidden 



Layer-Wise Unsupervised Pre-Training: 
learn multiple levels of representation 

Stacking Restricted Boltzmann Machines (RBM)  Deep Belief Network (DBN) 

or Stacking Denoising Auto-Encoders         + supervised fine-tuning  classifier 

(Hinton et al 2006, Bengio et al 2007, Ranzato et al 2007) 



Supervised fine-tuning of deep MLP 

 DBN or stack of RBMs or stack of auto-encoders trained to 
model P(X), initialize a deep Multi-Layer Perceptron (MLP) 

  Best classification results with (long) final supervised phase  

  Trained by stochastic gradient descent on log P(Y|X) 

 Why does unsupervised pre-training help? 

  Stanford’s alternative: only train a classifier (SVM) on top of 
concatenation of all hidden layers (and possibly input). 



Training RBMs 
Contrastive Divergence:  

(CD-k) 
start negative Gibbs chain at 
observed x, run k Gibbs steps (Hinton 99) 

Persistent CD: 
(PCD)  

run negative Gibbs chain in 
background while weights slowly 
change (Tieleman 08) 

Fast PCD: two sets of weights, one with large 
learning rate only for negative phase, 
quickly exploring modes (Tieleman et al 09) 

Herding: PCD at 0-temperature, large learning 
rate (Welling 09) 

Tempered MCMC: use higher temperature to escape 
modes (Salakhutdinov 10; Desjardins et al 09) 



Problems with CD & Gibbs Sampling 

In practice, Gibbs sampling does not always mix well… (Tieleman 08) 

Chains from random state 

Chains from real digits 

RBM trained by CD on MNIST 



Hypothesis to Explain Poor Mixing in 
CD-Trained RBMs (G. Desjardins) 

 CD-training creates wells (or valleys) at (or between) data 
points and barriers around them 

+ 

- - 

+ 

failure of 
Gibbs from  
random init.  

Success of 
Gibbs from  
data point  

Spurious 
modes 



  Higher temperature = more noise  = smoothed 
energy landscape: can escape modes faster, mix 
better 

 Consider multiple chains at different temperatures 
and reversible swaps between adjacent chains 

 Model samples are from T=1 

  Swap prob = [ pk(xk+1) pk+1(xk) ] / [ pk(xk) pk+1(xk+1) ] 

            = exp((bk – bk+1)(E(xk) – E(xk+1))) 

where bk = inv. temp.,  E(x) = energy of x. 

  PCD learning with PTMCMC chain 

Parallel Tempered MCMC 
(Desjardins, Courville, Bengio, Vincent, Delalleau: AISTATS 2010) 

T=1 

T=5 

swaps 

noisy 

model 



Parallel Tempered MCMC 

Sample Generation Procedure 

Training Procedure TMCMC Gibbs (random start) Gibbs (test start) 

TMCMC 208 211 210 

FPCD 180 175 176 

PCD 80 128 139 

CD -1979 -854 37 

TMCMC after 
training. 
Mixes well 

TMCMC during 
training. 
Mixes well 

PCD-Gibbs 
after training. 
Does not mix 

PCD-Gibbs during 
training. 
Mixes well 

Indirect Sampling Likelihood 



Unlearning for Better Mixing  
(with Breuleux, AISTATS breaking news) 

  Fast Persistent CD (FPCD) and Herding exploit impressively 
faster mixing achieved when parameters change quickly 
(large learning rate) while sampling 

  FPCD and Herding decrease probability of just-visited states, 
but change other probabilities through RBM parametrization. 
FPCD is more conservative by making those changes 
temporary with exponentially fast decay. 



Unlearning for Better Mixing 
 All chains with the same leading eigenvector go to the same 

distribution but may converge at very different rates! 

 Consider an MCMC with transition probability matrix A with 
asymptotic distribution p = A p. 

 Want to spend less time in modes: reduce probability of staying 
in same state by λ: 

    Let Â = (A – λ I)/(1-λ) 

  Proposition:  

    Â p = p,  

i.e. converge to the same distribution. 



Rates-FPCD Sampler 

  Estimate sufficient statistics (si sj) during training                              
(Rates idea from Welling’s Herding) 

 During sampling, change weights to move away from current 
state (FPCD idea) 

  But update moves towards preserving sufficient statistic 



Gibbs vs Rates-Herding vs Rates-FPCD 

Rates-FPCD Rates-Herding 

Gibbs 

Very surprising: 
Rates-herding = 
deterministic 
dynamical 
system 
 very good at 
sampling from a 
trained RBM! 

Mixes very slowly! 

Mixes very well! 



Gibbs vs Rates-Herding vs Rates-FPCD 

USPS.  
.  

MNIST.  
Gibbs too poor to show.  

Rates-FPCD converges 
faster. 



Why are Classifiers Obtained from 
Pre-Trained Deep Nets Working so 
Well? 

 General principles? 

 Would these principles work for other single-level algorithms? 

 Why does it work? 



Replacing RBMs by Other Layer-
Local Unsupervised Learning 
 Auto-encoders (Bengio et al, NIPS’06) 

  Sparse coding (Lee et al NIPS’06, Bradley & Bagnell NIPS’09) 

  Sparse Predictive Decomposition (Ranzato et al, NIPS’06) 

  Kernel PCA (Erhan 2008) 

 Denoising auto-encoders (Vincent et al, ICML’08), simpler than 
RBMs and matches or beats RBMs 

  Unsupervised embedding (Weston et al, ICML’08) 

  Slow features (Mohabi et al, ICML’09, Bergstra & Bengio 
NIPS’09) 



Denoising Auto-Encoder 

  Stacked, unsupervised pre-training (Vincent et al, ICML’08) 

 Corrupt the input (e.g. set 25% of randomly chosen inputs to 0) 

  Reconstruct the uncorrupted input 

  Use uncorrupted encoding as input to next level 

KL(reconstruction | raw input) 
Hidden code (representation) 

Corrupted input Raw input reconstruction 



Denoising Auto-Encoders vs RBMs 

 DAE easier to grasp & teach than RBMs 

 DAEs worked as well or better than RBMs as feature learners 

 DAEs training criterion lower bounds log-lik of generative 
models, but their generative ability has not been well studied 
(for now I would still use RBMs to generate data, e.g. for 
animations) 

 DAEs more flexible (can choose any parametrization for 
encoders and decoders) 



Level-Local Learning is Important 

  Initializing each layer of an unsupervised deep Boltzmann 
machine as an RBM helps a lot (Salakhutdinov & Hinton 2009).  

  Initializing each layer of a supervised neural network as an RBM 
or denoising auto-encoder helps a lot 

  Helps most the layers further away from the target 

  Jointly training all the levels of a deep architecture is difficult: 
initialization matters! 



Why is Unsupervised Pre-Training 
Working So Well? 
(with Erhan, Courville, Manzagol, Vincent, Bengio: JMLR, 2010) 

  Regularization hypothesis:  
•  Unsupervised component forces model close to P(x) 

•  Representations good for P(x) are good for P(y|x)  

 Optimization hypothesis: 
•  Unsupervised initialization near better local minimum of supervised 

training error 

•  Can reach lower local minimum otherwise not achievable by 
random initialization 



Learning Trajectories in Function Space 
  Each point a model 

in function space 

 Color = epoch 

  Top: trajectories      
w/o pre-training 

  Each trajectory 
converges in 
different local min. 

 No overlap of 
regions with and     
w/o pre-training 



Visualization in Function Space 

  Using ISOMAP instead 
of t-SNE, preserve 
distances 

  Pre-training: small 
volume compared to 
without. 



Unsupervised Learning as Regularizer 

 Adding extra regularization 
(reducing # hidden units) 
hurts more the pre-trained 
models 

  Pre-trained models have 
less variance wrt training 
sample 

  Regularizer = infinite 
penalty outside of region 
compatible with 
unsupervised pre-training 



Unsupervised Disentangling of 
Factors of Variation 
  Explanatory theory: 

•  Stacked RBMs & DAE disentangle factors 
of variation in P(x) (Goodfellow et al, NIPS’09) 

•  Most salient factors are unrelated to y, but 
some factors are highly predictive of y 

 RBMs with too few units learn features 
worse at predicting y than randomly 
initialized networks 

 RBMs with many hidden units are much 
more predictive of y 

(Denoising Auto-Encoder) 



Better Optimization of Online Error 

  Both training and online error 
are smaller with unsupervised 
pre-training 

 As # samples             
training err. = online err. = 
generalization err. 

 Without unsup. pre-training: 
can’t exploit capacity to 
capture complexity in target 
function from training data 

Denoising auto-encoder 



Initial Examples Matter More 
(critical period?) 

Vary 10% of the 
training set at the 
beginning, middle, 
or end of the 
online sequence. 
Measure the effect 
on learned 
function.  



Learning Dynamics of Deep Nets 

Before fine-tuning After fine-tuning 

0 
 As weights become larger, get trapped in 

basin of attraction (sign does not change) 

 Critical period. Initialization matters. 



The Credit Assignment Problem 
  Even with the correct gradient, lower layers (far from the 

prediction, close to input) are the most difficult to train 

  Lower layers benefit most from unsupervised pre-training 
•  Local unsupervised signal = extract / disentangle factors 

 Credit assignment / error information not flowing easily? 

  Related to difficulty of credit assignment through time?  



Order & Selection of Examples Matters 
(with Louradour, Collobert & Weston, ICML’2009) 

 Curriculum learning  
(Bengio et al, ICML’2009; Krueger & Dayan 2009)   

  Start with easier examples 

  Faster convergence to a better local 
minimum in deep architectures 

 Also acts like a regularizer with 
optimization effect? 

  Influencing learning dynamics can 
make a big difference 



Understanding the difficulty of 
training deep feedforward neural 
networks 

Study the activations and gradients 
•  wrt depth 

•  as training progresses 

•  for different initializations 

•  for different activation non-linearities 



Empirical Analyses of Gradient 
Propagation (Glorot & Bengio, AISTATS 2010) 


   Understood conditions under which top hidden layer with 
sigmoids  goes into initial saturation 


   No saturation with softer (non-exp.) non-linearity,                   
e.g. softsign(x)=x/(1+|x|) 


   Effect of initialization, too                                                          
small or too large, on                                                       
activations and gradients 


   Want Jacobian around 1:                                                 
variance preserving 

Unsupervised 
pre-training: 
Automatically 
variance-
preserving! 



Sigmoids Saturate and then UnSaturate! 

  Top hidden layer quickly (50k updates) saturates, error stuck on 
plateau, then slowly desaturates as lower layers learn 
something more sensible. 

Most initial hidden units almost uncorrelated with target: want to kill off output W’h 



No Saturation with Softsign = x/(1+|x|) 



Softsign often beats tanh & sigmoid 

 Deep 
supervised 
dense nets 



Initial layer-wise gradients vanish 

  First observed  by D. Bradley (CMU thesis, 2009) 

 With 1/sqrt(fan_in) initialization, tanh units. 

  But not weight gradients! Var(dC/dW) at level k ~ ak ad-k = ad 



Effect of Small Jacobian 

 Activations become smaller 
going from input to output by 
factor a 

 Activation gradients become 
smaller going from target 
towards input by factor a 

  Product dC/dWi = dC/dxi * xi-1 
is constant in linear(ized) case,  
proportional to adepth 

input x0 

x1 

x2 

x3 

prediction  

W1 

W2 

W3 

W4 



Normalized Initialization with 
Variance-Preserving Jacobians 

Shapeset 
2x3 data 

Unsupervised 
pre-training: 
Automatically 
variance-
preserving! 



Rectifier Neurons & Sparsity: 
Motivations (Glorot & Bengio, Learning Workshop 2010) 

  Biologically more plausible 
activation function 

  Leads to sparse outputs: real 
neurons activation is sparse  
~1% – 4% 

 Motivations: 

  Information disentangling 

 Variable-size representation 

  Easier separability 

  Humans define concepts 
sparsely (from few others) 

  Regularizer 

real neuron 

operating zone: rectifier 

epilepsy 



Gradient flow in sparse nets 

 Non-linearity = paths selection 

  Linear given paths 

  Exponential number of possible 
paths / linear models 

 Gradients flow well through 
selected paths 

 Does the hard non-linearity hurt 
training? Apparently not!  



Sparse Rectifier Nets: Results 

  3 hidden layers, purely 
supervised 

  Beats soft rectifier & tanh 

 Achieves 80%-95% sparsity 

 With layer-wise normalization, 
achieves best result ever 
without convolution, pre-
training or deformations: 1.3% 

 Also helps stacked denoising 
auto-encoders 



Deep Learning Research: AI is Back 

  Biological inspiration – comp. neuro. (Cox, DiCarlo, Pinto @ MIT) 

 Not just neural nets: machine learning towards AI 
  Object grammars, parts models (McAllester @ TTI-C) 

  Markov logic networks (Domingos @ U. Washington) 

  Graphical models with many levels of latent var. 

  Hierarchical / stacking sparse coding (Bach @ ENS) 

 DARPA Deep Learning program (Ng + Koller, LeCun + Bengio + 
Fergus + Collobert) 

  See http://deeplearning.net  




http://deeplearning.net 

http://deeplearning.net/software/theano : numpy  GPU 



Conclusions 
  Deep architectures: potential exponential gain in 

representation thanks to composition of abstractions 

  Unsupervised pre-training helps a lot: RBMs, auto-encoders,… 

  CD and Gibbs for RBMs have weaknesses 

  Improved training and sampling algorithms for RBMs 

  Why does unsupervised pre-training work? Regularization and 
optimization effects intertwined 

  Why is it difficult to train deep neural nets? Principled ways to 
initialize and changing the non-linearity can help quite a bit! 

  A more biologically plausible non-linearity brings sparsity and 
better faster training. 



Thank you for your attention! 
 Questions? 

 Comments? 



Learning Slow Features 

   NIPS'2009 paper with James Bergstra 


   Combine efficient computation of slowness with quadratic 
(complex cell, sum of squared filters) 


   Pretrained on video 



Online Multi-Shape Detection 

  3 shape categories 

 All 9 combinations of 1 
or 2 shapes in an image 
= 9 target classes 

  32x32 inputs 

  1000 units/layer 

  1 to 5 layers 

 All hyper-parameters 
separately optimized 
for each case shown 



Gradual Saturation with Tanh 



Normalized Initialization with 
Variance-Preserving Jacobians 



ISL vs Analytic Likelihood 
Analytic ISL 

0/1 units 

-1/1 units 

Note CD discrepency 
because sampler 
does not reflect 
model 


