
Understanding and Improving
Deep Learning Algorithms

Yoshua Bengio, U. Montreal

CMU, Pittsburgh

April 22nd, 2010

ML Google Distinguished Lecture

Thanks to: Aaron Courville, Xavier Glorot, Dumitru Erhan, Olivier Delalleau,
 Olivier Breuleux, Pascal Vincent, Guillaume Desjardins,

 James Bergstra, Pascal Lamblin

1

Deep Motivations
  Brains have a deep architecture

  Humans organize their ideas hierarchically, through
composition of simpler ideas

  Unsufficiently deep architectures can be exponentially
inefficient

 Distributed (possibly sparse) representations necessary to
achieve non-local generalization, exponentially more efficient
than 1-of-N enumeration of latent variable values

 Multiple levels of latent variables allow
combinatorial sharing of statistical strength

raw input x

task 1 task 3 task 2

shared
intermediate
representations

Deep Architecture in our Mind

  Humans organize their ideas and
concepts hierarchically

  Humans first learn simpler concepts and
then compose them to represent more
abstract ones

  Engineers break-up solutions into multiple
levels of abstraction and processing

 It would be nice to learn / discover these
concepts

 (knowledge engineering failed because
of poor introspection?)

Deep Architectures are More Expressive

Theoretical arguments:

…
1 2 3 2n

1 2 3
…

n

= universal approximator 2 layers of
Logic gates
Formal neurons
RBF units

Theorems for all 3:
(Hastad et al 86 & 91, Bengio et al 2007)

Functions compactly
represented with k layers
may require exponential
size with k-1 layers

Sharing Components in a Deep Architecture
Polynomial expressed with shared components: advantage of
depth may grow exponentially

Feature and Sub-Feature Sharing

 Different tasks can share the same high-
level feature

 Different high-level features can be built
from the same set of lower-level features

 More levels = up to exponential gain in
representational efficiency

…

…

…

…

…

task 1
output y1

Task N
output yN

High-level features

Low-level features

Local vs Distributed

RBM Hidden Units Carve Input Space

h1 h2 h3

x1 x2

Boltzman Machines and MRFs

  Boltzmann machines:
 (Hinton 84)

 Markov Random Fields:

 More interesting with latent variables!

Restricted Boltzman Machine

  The most popular
building block for deep
architectures

  Bipartite undirected
graphical model

  Inference is trivial:

P(h|x) & P(x|h) factorize

observed

hidden

Layer-Wise Unsupervised Pre-Training:
learn multiple levels of representation

Stacking Restricted Boltzmann Machines (RBM) Deep Belief Network (DBN)

or Stacking Denoising Auto-Encoders + supervised fine-tuning classifier

(Hinton et al 2006, Bengio et al 2007, Ranzato et al 2007)

Supervised fine-tuning of deep MLP

 DBN or stack of RBMs or stack of auto-encoders trained to
model P(X), initialize a deep Multi-Layer Perceptron (MLP)

  Best classification results with (long) final supervised phase

  Trained by stochastic gradient descent on log P(Y|X)

 Why does unsupervised pre-training help?

  Stanford’s alternative: only train a classifier (SVM) on top of
concatenation of all hidden layers (and possibly input).

Training RBMs
Contrastive Divergence:

(CD-k)
start negative Gibbs chain at
observed x, run k Gibbs steps (Hinton 99)

Persistent CD:
(PCD)

run negative Gibbs chain in
background while weights slowly
change (Tieleman 08)

Fast PCD: two sets of weights, one with large
learning rate only for negative phase,
quickly exploring modes (Tieleman et al 09)

Herding: PCD at 0-temperature, large learning
rate (Welling 09)

Tempered MCMC: use higher temperature to escape
modes (Salakhutdinov 10; Desjardins et al 09)

Problems with CD & Gibbs Sampling

In practice, Gibbs sampling does not always mix well… (Tieleman 08)

Chains from random state

Chains from real digits

RBM trained by CD on MNIST

Hypothesis to Explain Poor Mixing in
CD-Trained RBMs (G. Desjardins)

 CD-training creates wells (or valleys) at (or between) data
points and barriers around them

+

- -

+

failure of
Gibbs from
random init.

Success of
Gibbs from
data point

Spurious
modes

  Higher temperature = more noise = smoothed
energy landscape: can escape modes faster, mix
better

 Consider multiple chains at different temperatures
and reversible swaps between adjacent chains

 Model samples are from T=1

  Swap prob = [pk(xk+1) pk+1(xk)] / [pk(xk) pk+1(xk+1)]

 = exp((bk – bk+1)(E(xk) – E(xk+1)))

where bk = inv. temp., E(x) = energy of x.

  PCD learning with PTMCMC chain

Parallel Tempered MCMC
(Desjardins, Courville, Bengio, Vincent, Delalleau: AISTATS 2010)

T=1

T=5

swaps

noisy

model

Parallel Tempered MCMC

Sample Generation Procedure

Training Procedure TMCMC Gibbs (random start) Gibbs (test start)

TMCMC 208 211 210

FPCD 180 175 176

PCD 80 128 139

CD -1979 -854 37

TMCMC after
training.
Mixes well

TMCMC during
training.
Mixes well

PCD-Gibbs
after training.
Does not mix

PCD-Gibbs during
training.
Mixes well

Indirect Sampling Likelihood

Unlearning for Better Mixing
(with Breuleux, AISTATS breaking news)

  Fast Persistent CD (FPCD) and Herding exploit impressively
faster mixing achieved when parameters change quickly
(large learning rate) while sampling

  FPCD and Herding decrease probability of just-visited states,
but change other probabilities through RBM parametrization.
FPCD is more conservative by making those changes
temporary with exponentially fast decay.

Unlearning for Better Mixing
 All chains with the same leading eigenvector go to the same

distribution but may converge at very different rates!

 Consider an MCMC with transition probability matrix A with
asymptotic distribution p = A p.

 Want to spend less time in modes: reduce probability of staying
in same state by λ:

 Let Â = (A – λ I)/(1-λ)

  Proposition:

 Â p = p,

i.e. converge to the same distribution.

Rates-FPCD Sampler

  Estimate sufficient statistics (si sj) during training
(Rates idea from Welling’s Herding)

 During sampling, change weights to move away from current
state (FPCD idea)

  But update moves towards preserving sufficient statistic

Gibbs vs Rates-Herding vs Rates-FPCD

Rates-FPCD Rates-Herding

Gibbs

Very surprising:
Rates-herding =
deterministic
dynamical
system
 very good at
sampling from a
trained RBM!

Mixes very slowly!

Mixes very well!

Gibbs vs Rates-Herding vs Rates-FPCD

USPS.
.

MNIST.
Gibbs too poor to show.

Rates-FPCD converges
faster.

Why are Classifiers Obtained from
Pre-Trained Deep Nets Working so
Well?

 General principles?

 Would these principles work for other single-level algorithms?

 Why does it work?

Replacing RBMs by Other Layer-
Local Unsupervised Learning
 Auto-encoders (Bengio et al, NIPS’06)

  Sparse coding (Lee et al NIPS’06, Bradley & Bagnell NIPS’09)

  Sparse Predictive Decomposition (Ranzato et al, NIPS’06)

  Kernel PCA (Erhan 2008)

 Denoising auto-encoders (Vincent et al, ICML’08), simpler than
RBMs and matches or beats RBMs

  Unsupervised embedding (Weston et al, ICML’08)

  Slow features (Mohabi et al, ICML’09, Bergstra & Bengio
NIPS’09)

Denoising Auto-Encoder

  Stacked, unsupervised pre-training (Vincent et al, ICML’08)

 Corrupt the input (e.g. set 25% of randomly chosen inputs to 0)

  Reconstruct the uncorrupted input

  Use uncorrupted encoding as input to next level

KL(reconstruction | raw input)
Hidden code (representation)

Corrupted input Raw input reconstruction

Denoising Auto-Encoders vs RBMs

 DAE easier to grasp & teach than RBMs

 DAEs worked as well or better than RBMs as feature learners

 DAEs training criterion lower bounds log-lik of generative
models, but their generative ability has not been well studied
(for now I would still use RBMs to generate data, e.g. for
animations)

 DAEs more flexible (can choose any parametrization for
encoders and decoders)

Level-Local Learning is Important

  Initializing each layer of an unsupervised deep Boltzmann
machine as an RBM helps a lot (Salakhutdinov & Hinton 2009).

  Initializing each layer of a supervised neural network as an RBM
or denoising auto-encoder helps a lot

  Helps most the layers further away from the target

  Jointly training all the levels of a deep architecture is difficult:
initialization matters!

Why is Unsupervised Pre-Training
Working So Well?
(with Erhan, Courville, Manzagol, Vincent, Bengio: JMLR, 2010)

  Regularization hypothesis:
•  Unsupervised component forces model close to P(x)

•  Representations good for P(x) are good for P(y|x)

 Optimization hypothesis:
•  Unsupervised initialization near better local minimum of supervised

training error

•  Can reach lower local minimum otherwise not achievable by
random initialization

Learning Trajectories in Function Space
  Each point a model

in function space

 Color = epoch

  Top: trajectories
w/o pre-training

  Each trajectory
converges in
different local min.

 No overlap of
regions with and
w/o pre-training

Visualization in Function Space

  Using ISOMAP instead
of t-SNE, preserve
distances

  Pre-training: small
volume compared to
without.

Unsupervised Learning as Regularizer

 Adding extra regularization
(reducing # hidden units)
hurts more the pre-trained
models

  Pre-trained models have
less variance wrt training
sample

  Regularizer = infinite
penalty outside of region
compatible with
unsupervised pre-training

Unsupervised Disentangling of
Factors of Variation
  Explanatory theory:

•  Stacked RBMs & DAE disentangle factors
of variation in P(x) (Goodfellow et al, NIPS’09)

•  Most salient factors are unrelated to y, but
some factors are highly predictive of y

 RBMs with too few units learn features
worse at predicting y than randomly
initialized networks

 RBMs with many hidden units are much
more predictive of y

(Denoising Auto-Encoder)

Better Optimization of Online Error

  Both training and online error
are smaller with unsupervised
pre-training

 As # samples
training err. = online err. =
generalization err.

 Without unsup. pre-training:
can’t exploit capacity to
capture complexity in target
function from training data

Denoising auto-encoder

Initial Examples Matter More
(critical period?)

Vary 10% of the
training set at the
beginning, middle,
or end of the
online sequence.
Measure the effect
on learned
function.

Learning Dynamics of Deep Nets

Before fine-tuning After fine-tuning

0
 As weights become larger, get trapped in

basin of attraction (sign does not change)

 Critical period. Initialization matters.

The Credit Assignment Problem
  Even with the correct gradient, lower layers (far from the

prediction, close to input) are the most difficult to train

  Lower layers benefit most from unsupervised pre-training
•  Local unsupervised signal = extract / disentangle factors

 Credit assignment / error information not flowing easily?

  Related to difficulty of credit assignment through time?

Order & Selection of Examples Matters
(with Louradour, Collobert & Weston, ICML’2009)

 Curriculum learning
(Bengio et al, ICML’2009; Krueger & Dayan 2009)

  Start with easier examples

  Faster convergence to a better local
minimum in deep architectures

 Also acts like a regularizer with
optimization effect?

  Influencing learning dynamics can
make a big difference

Understanding the difficulty of
training deep feedforward neural
networks

Study the activations and gradients
•  wrt depth

•  as training progresses

•  for different initializations

•  for different activation non-linearities

Empirical Analyses of Gradient
Propagation (Glorot & Bengio, AISTATS 2010)

   Understood conditions under which top hidden layer with
sigmoids goes into initial saturation

   No saturation with softer (non-exp.) non-linearity,
e.g. softsign(x)=x/(1+|x|)

   Effect of initialization, too
small or too large, on
activations and gradients

   Want Jacobian around 1:
variance preserving

Unsupervised
pre-training:
Automatically
variance-
preserving!

Sigmoids Saturate and then UnSaturate!

  Top hidden layer quickly (50k updates) saturates, error stuck on
plateau, then slowly desaturates as lower layers learn
something more sensible.

Most initial hidden units almost uncorrelated with target: want to kill off output W’h

No Saturation with Softsign = x/(1+|x|)

Softsign often beats tanh & sigmoid

 Deep
supervised
dense nets

Initial layer-wise gradients vanish

  First observed by D. Bradley (CMU thesis, 2009)

 With 1/sqrt(fan_in) initialization, tanh units.

  But not weight gradients! Var(dC/dW) at level k ~ ak ad-k = ad

Effect of Small Jacobian

 Activations become smaller
going from input to output by
factor a

 Activation gradients become
smaller going from target
towards input by factor a

  Product dC/dWi = dC/dxi * xi-1
is constant in linear(ized) case,
proportional to adepth

input x0

x1

x2

x3

prediction

W1

W2

W3

W4

Normalized Initialization with
Variance-Preserving Jacobians

Shapeset
2x3 data

Unsupervised
pre-training:
Automatically
variance-
preserving!

Rectifier Neurons & Sparsity:
Motivations (Glorot & Bengio, Learning Workshop 2010)

  Biologically more plausible
activation function

  Leads to sparse outputs: real
neurons activation is sparse
~1% – 4%

 Motivations:

  Information disentangling

 Variable-size representation

  Easier separability

  Humans define concepts
sparsely (from few others)

  Regularizer

real neuron

operating zone: rectifier

epilepsy

Gradient flow in sparse nets

 Non-linearity = paths selection

  Linear given paths

  Exponential number of possible
paths / linear models

 Gradients flow well through
selected paths

 Does the hard non-linearity hurt
training? Apparently not!

Sparse Rectifier Nets: Results

  3 hidden layers, purely
supervised

  Beats soft rectifier & tanh

 Achieves 80%-95% sparsity

 With layer-wise normalization,
achieves best result ever
without convolution, pre-
training or deformations: 1.3%

 Also helps stacked denoising
auto-encoders

Deep Learning Research: AI is Back

  Biological inspiration – comp. neuro. (Cox, DiCarlo, Pinto @ MIT)

 Not just neural nets: machine learning towards AI
  Object grammars, parts models (McAllester @ TTI-C)

  Markov logic networks (Domingos @ U. Washington)

  Graphical models with many levels of latent var.

  Hierarchical / stacking sparse coding (Bach @ ENS)

 DARPA Deep Learning program (Ng + Koller, LeCun + Bengio +
Fergus + Collobert)

  See http://deeplearning.net

http://deeplearning.net

http://deeplearning.net/software/theano : numpy GPU

Conclusions
  Deep architectures: potential exponential gain in

representation thanks to composition of abstractions

  Unsupervised pre-training helps a lot: RBMs, auto-encoders,…

  CD and Gibbs for RBMs have weaknesses

  Improved training and sampling algorithms for RBMs

  Why does unsupervised pre-training work? Regularization and
optimization effects intertwined

  Why is it difficult to train deep neural nets? Principled ways to
initialize and changing the non-linearity can help quite a bit!

  A more biologically plausible non-linearity brings sparsity and
better faster training.

Thank you for your attention!
 Questions?

 Comments?

Learning Slow Features
   NIPS'2009 paper with James Bergstra

   Combine efficient computation of slowness with quadratic
(complex cell, sum of squared filters)

   Pretrained on video

Online Multi-Shape Detection

  3 shape categories

 All 9 combinations of 1
or 2 shapes in an image
= 9 target classes

  32x32 inputs

  1000 units/layer

  1 to 5 layers

 All hyper-parameters
separately optimized
for each case shown

Gradual Saturation with Tanh

Normalized Initialization with
Variance-Preserving Jacobians

ISL vs Analytic Likelihood
Analytic ISL

0/1 units

-1/1 units

Note CD discrepency
because sampler
does not reflect
model

