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Breakthrough

 Deep Learning: machine
learning algorithms based on
learning multiple levels of
representation / abstraction.

Amazing improvements in error rate in object recognition, object
detection, speech recognition, and more recently, in natural
language processing / understanding
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Machine Learning, Al
% No Free Lunch

 Three key ingredients for ML towards Al
1. Lots & lots of data
2. Very flexible models

3. Powerful priors that can defeat the curse of
dimensionality



Goal Riero«rc:hj

* Al

Needs knowledge
Needs learning

Needs generalization

Needs ways to fight the curse of dimensionality

Needs disentangling the underlying explanatory factors
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ML 101, What We Are Fighting Against:
The Curse of Dimensionality

1 dimension:
10 positions

To generalize locally,
need representative
examples for all
relevant variations!

2 dimensions:
100 positions
(@]

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting good
features / kernel

» 3 dimensions:
1000 positions!



Nok mme.hsmvmtc.&j so much as
Number of Variations ‘

(Bengio, Dellalleau & Le Roux 2007)
e Theorem: Gaussian kernel machines need at least k examples

to learn a function that has 2k zero-crossings along some line

A
//’\\/\/ \//X/x

e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(2¢)
examples




Putting Probability Mass where
Structure is Plausible

e Empirical distribution: mass at
training examples

e Smoothness: spread mass around
e |nsufficient

e Guess some ‘structure’ and
generalize accordingly
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Bypassing the curse of
d?&ehsmhau&v

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
(1) Distributed representations / embeddings: feature learning

(2) Deep architecture: multiple levels of feature learning

Additional prior: compositionality is useful to
describe the world around us efficiently

11



Learning multiple levels g8
of TQFTQSQV\&Q&LQV\ (Lee, Largman, Pham & Ng, N009)

i (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
g Layer 3 linguistic representations

Parts combine
to form objects

A LA TN ALY VP
\\ \\ \ [ \,"‘ Layer 1

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




The Power of
Diskributed
Represeu&a&iov\s



Nown-distributed representations

e (Clustering, n-grams, Nearest-
Neighbors, RBF SVMs, local
non-parametric density
estimation & prediction,
decision trees, etc.

Clustering

e Parameters for each
distinguishable region

o # of distinguishable regions
is linear in # of parameters

LOCAL PARTITION

- No non-trivial generalization to regions without examples
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The need for distributed
represeu&a&iovxs
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Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

Each parameter influences
many regions, not just local
neighbors

# of distinguishable regions

grows almost exponentially
with # of parameters

GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Multi-
Clustering
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DISTRIBUTED PARTITION \

C2

input

C3

Non-mutually
exclusive features/
attributes create a
combinatorially large
set of distinguiable
configurations



Classical Symbolic AI vs
Representation Learning

e Two symbols are equally far from each other

e Concepts are not represented by symbols in our
brain, but by patterns of activation

(Connectionism, 1980’s)

Output units

Hidden units

David Rumelhart

Input person

units

cat
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Neural Language Models: fiﬂk&iﬂg one

exponential bj awother one’

. ’
¢ (Benglo et al NIPS 2000) i~th output = P(w(t) =i | context)
Output softmax
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Neural word embeddinags: visualization
directions = Learned Abtribukes

need help
come
go
take
give keep
make get
meet - continue
expect want become
think
say remain
are .
Is
be
wergas
being
been
haqmas
have
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Analogical Representations for Free
(Mt.katov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

v

()
Paris

Rome
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The Next Challenge: Rich Semawntic
Representations fzr Word Sequences

* Impressive progress in
capturing word semantics
Easier learning: non-parametr
(table look-up)

e QOptimization challenge for
mapping sequences to rich &
complete representations

e Good test case: machine
translation with auto-encoder

framework
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The Power of
Dee

Repre.sevx ations




The Depth Prior can be Exponentially
Advantageous -

Theoretical arguments:

=

Logic gates

2 layers of | Formal neurons = universal approximator
RBF units

RBMs & auto-encoders = universal approximat
Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007,
Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014, Montufar et al NIPS 2014) 1 2 3 2n

Some functions compactly

represented with k layers may
require exponential size with 2
layers 1 2 3 n



subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



N

bsubsub subsubsub?2

subsubsu //////////EEPS“bSUbs
subsub1 subsub?2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



Sharing Components in a Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(21709)(XoX3) + (r129) (2324) + ()r:2x;>,)2 + (x9x3)(7374)

Sum-product
network

Theorems in
(Bengio & Delalleau, ALT 2011;
Delalleau & Bengio NIPS 2011)



New theoretical resulkt:
Expressiveness of deep hets with
riece.wi.se—-uv\ear activation fns
Pascanu, Montufar, Cho & Bengio; ICLR 2014)

(Montufar, Pascanu, Cho & Bengio; NIPS 2014)

Deeper nets with rectifier/maxout units are exponentially more
expressive than shallow ones (1 hidden layer) because they can split
the input space in many more (not-independent) linear regions, with
constraints, e.g., with abs units, each unit creates mirror responses,
folding the input space:
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The Mirage of
Cavwexikv



Myth is Being Debuniced: Local
Mt.mma A Neural Nets

= Corvwexc.&v s not needed

(Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the
saddle point problem for non-convex optimization

e (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS’ 2014):
Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization

e (Choromanska, Henaff, Mathieu, Ben Arous & LeCun 2014): The
Loss Surface of Multilayer Nets

28



Wolfram Global Problem

Saddle Poinks

Local minima dominate in low-D, but'
saddle points dominate in high-D ;

Most local minima are close to the
bottom (global minimum error)

ae pUPe apumtec e ©
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Saddle Poinks During Training

e QOscillating between two behaviors:

30

Training error (MSE)

Slowly approaching a saddle point

Escaping it
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Low Index Critical Poinks

Choromanska et al & LeCun 2014, ‘The Loss Surface of Multilayer Nets’
Shows that deep rectifier nets are analogous to spherical spin-glass models

The low-index critical points of large models concentrate in a band just
above the global minimum
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Saddle-Free Optimization
(Pascanu, Dauphin, Ganguli, Bengio 2014)

e Saddle points are ATTRACTIVE for Newton’s method
e Replace eigenvalues A of Hessian by |A]
e Justified as a particular trust region method

1
107 ¢
Advantage increases
3 e, with dimensionality
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Other Priors That
Worlke with Dee
Diskributed

P

Represeu&a&iov\s



How do humans generalize
from very few examples?

* They transfer knowledge from previous learning:
* Representations

Explanatory factors

* Previous learning from: unlabeled data
+ labels for other tasks

* Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)
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Sharing Statistical Strength by Semi-
Supervised Learning

e Hypothesis: P(x) shares structure with P(y|x)

purely semi-
supervised PY supervised

35



Multi-Task Learning

e Generalizing better to new tasks
(tens of thousands!) is crucial to
approach Al

e Deep architectures learn good
intermediate representations that
can be shared across tasks

(Collobert & Weston ICML 2008,
Bengio et al AISTATS 2011)

e Good representations that
disentangle underlying factors of
variation make sense for many tasks  E.g. dictionary, with intermediate

because each task concerns a concepts re-used across many definitions
subset of the factors

Prior: shared underlying explanatory factors between tasks
36



Google Image Search:

Different object types represented in the
same space

DDDDDDD

DOLPHIN
— OBAMA
—EIFFEL TOWER

fGoogIe:

'S. Bengio, J.
Weston & N.
w Usunier

%7 (1JCAI 2011,
NIPS’2010,

JMLR 2010,
PR \VILJ 2010)

[ B

%

100-dim
embedding space

Learn ®(+) and ®,-) to optimize precision@k.



Maps Between Representations

X and Y represent
different modalities,
e.g., image, text,
sound...
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Multi-Task Learning with Different

vapu!:s for Different Tasks y

E.g. speaker adaptation, QOOO000OD

multi-modal input... @

QOO0O000O0O00OD

selection switch
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Why Latent Factors . Unsupervised
Representation Learning? Because of

Causalééj.

e If Ys of interest are among the causal factors of X, then
P(X|Y)P(Y
P(X)
is tied to P(X) and P(X|Y), and P(X) is defined in terms of P(X]Y), i.e.

e The best possible model of X (unsupervised learning) MUST
involve Y as a latent factor, implicitly or explicitly.

e Representation learning SEEKS the latent variables H that
explain the variations of X, making it likely to also uncover.
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Invariance and Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality
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Emergence of ‘Dcsev\&avxgtung

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot etal. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects

(domain, sentiment)
WHY:
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Learning Multiple Levels of
Abstraction

* The big payoff of deep learning is to allow learning
higher levels of abstraction

 Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and

transfer

Organizational Maturity
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Conclusions

44

Distributed representations:

e prior that can buy exponential gain in generalization

Deep composition of non-linearities:

 prior that can buy exponential gain in generalization

Both yield non-local generalization
Strong evidence that local minima are not an issue, saddle points

Sharing factors = sharing statistical strengths: semi-supervised
learning, multi-task learning, multi-modal learning
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MILA: Montreal Institute for Learning Algorithms
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