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OLkimate Goals

o Al

e Needs knowledge

* Needs learning

 Needs generalizing where probability mass concentrates
 Needs to fight the curse of dimensionality

 Needs disentangling the underlying explanatory factors
(“making sense of the data”)




Easy Learning

learned function: prediction = f(x)




Local Swmookthwess Prior: Local.l.y
Capture the Variaktions

x=x = f(x)=f(x')

* = training example
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What We Are Fighting Against:
The Curse ofDimensionality

1 dimension:
10 positions
[ ]

To generalize locally,
need representative ;-‘ofg;;'%';fig';y
examples for all
relevant variations!

» 3 dimensions:
1000 positions!



Manifold Learning

Prior: examples concentrate near lower dimensional manifold

[shrinking
transformation

o
raw input vector space




Not bime:nsionati&v so much as
Number of Variations ‘

e Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

M
//’\\/\/ \//X/x

e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(2¢)
examples




Putting Probability Mass where
Structure is Plausible

e Empirical distribution: mass at
training examples

e Smoothness: spread mass around
e Insufficient

e Guess ‘structure’ and generalize
accordingly



Representation Learning

e Good input features essential for successful ML
(feature engineering = 90% of effort in industrial ML)

 Handcrafting features vs learning them

e Representation learning: guesses
the features / factors / causes =
good representation.




Deep Representation Learning

Deep learning algorithms attempt to learn multiple levels of
representation of increasing complexity/abstraction

When the number of levels can be data-
selected, this is Deep Learning
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A Good 0Ld ‘Deap Architecture

Optional Output layer

Here predicting a supervised target

Hidden layers

These learn more abstrac
representations as you head up

Input layer —

This has raw sensory inputs (roughly)
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Generalizing Locally

e (lustering, Nearest-
Neighbors, RBF SVMs, local
non-parametric density
estimation & prediction,
decision trees, etc.

Clustering

e Parameters for each
distinguishable region

LOCAL PARTITION

e # distinguishable regions
linear in # parameters
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The need for distributed

repre.se.u&a!:iov\s _
Multi-
CIUStering SUb_\pilr_tlltlo‘_l.]SSb—partition 2
e Factor models, PCA, RBMs, R
Neural Nets, Sparse Coding, oo
Deep Learning, etc. Sub—partition 1

e Each parameter influences
many regions, not just local
neighbors Voo
* #distinguishable regions " owTRmUTED PARTITON
grows almost exponentially
with # parameters

e GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Cl=0
Ca=l ' C1=0

C1 C2 C3

input
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The need for distributed

repre.se.u&al:mvxs
Clusterin ——
. —partiti 3
& Cluste rng Sub \\p::tms_l.]Sub—partition 2
i ;\ g;:(l) ‘\f{-z‘:('] i‘!:!
> | C3=0 \}_;‘ﬁ
e Sub—partition 1 S o
y :
X

Cl1=0

C2=1 \ C1=0
C3=0 \ C2=1
\ C3=1

DISTRIBUTED PARTITION
LOCAL PARTITION

Learning a set of features that are not mutually exclusive
can be exponentially more statistically efficient than
nearest-neighbor-like or clustering-like models
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Google Image Search:

Different object types represented in the
same space

DDDDDDD

DOLPHIN
— OBAMA
—EIFFEL TOWER

"?Google:

'S. Bengio, J.
Weston & N.
»_ Usunier

Se¢ (1JCAI 2011,
NIPS’2010,
JMLR 2010,
MLJ 2010)

[

4

100-dim
embedding space

Learn ®(+) and 9,-) to optimize precision@k.



How do humans generalize
from very few examples?

* Brains may be born with ‘generic’ priors. Which ones?

* Humans transfer knowledge from previous learning:
Representations

* Explanatory factors

* Previous learning from: unlabeled data

+ labels for other tasks
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Sharing Statistical Strength by Semi-
Supervised Learhing

prior: P(input=x) shares structure with P(target=y|input=x)

purely semi-
supervised P supervised
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Learning multiple levels of
representation

Theoretical evidence for multiple levels of representation

Exponential gain for some families of functions

Biologically inspired learning
Brain has a deep architecture

Cortex seems to have a
generic learning algorithm

Humans first learn simpler
concepts and then compose
them to more complex ones
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Learning multiple Levels of oF
TQPTQSQV\&QROV\ (Lee, Largman, Pham & Ng, NPS 2009)

) (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
Layer 3 linguistic representations

Parts combine
to form objects

A AN TN ALV VP
b SIS U SPIA L A b Laverd

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



N

bsubsub] subsubsub?

subsubsu //////////fBbS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



Sharing Components in a Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(r179)(XoX3) + (r129) (23224) + (X2X3)2 + (x9x3)(7374)

(X2X3) 9X3) + (r374)
Sum-product
network
X9X3 Ty
2 3

Theorems in
(Bengio & Delalleau, ALT 2011;
T W €Ty
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Delalleau & Bengio NIPS 2011)



Deep Nebworks for Speech Recognition:
results from Google, IBM, MSR

Hours of Deep net+HMM | GMM+HMM GMM+HMM
training data same data more data
09 16.1 23.6

Switchboard 3 17.1 (2k hours)

English 50 17.5 18.8

Broadcast news

Bing voice 24 30.4 36.2

search

Google voice 5870 12.3 16.0 (lots more)
input

Youtube 1400 47.6 52.3

73 (numbers taken from Geoff Hinton’s June 22, 2012 Google talk)



* Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

* Unsupervised feature learners:
* RBMs
Auto-encoder variants
 Sparse coding variants

Empirical successes since |
then: 2 competitions, Google,

. “1#" New York
A;\th.crosof&, IBM...




Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on

Unsup. &

Transfer Learning:™”|
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Stacking Single-Layer Learners

e One of the big ideas from Hinton et al. 2006: layer-wise

unsupervised feature learning

P e— — — — — — — —
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Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)
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Denoising Auto-Encoder

(Vincent et al 2008)

e Corrupt the input
e Try to reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)

(OO0

-V W

-
-
-~
-

-
-

RORO Ole— (00000 (OO000)

Corrupted input Raw input reconstruction

e Models the input density (through a form of score matching)



Regularized Auto-Ewncoders Learn
Salient Variations, Like non-Linear
PCA with shared parameters

..0 .(

* Minimizing reconstruction error forces to

keep variations along manifold. ®
* Regularizer wants to throw away all

variations. 9
e With both: keep ONLY sensitivity to

variations ON the manifold.

28



Sampling from o

Reqularized Auto-Encoder
(Rifai et al ICML 2012)




Sampling from o

Reqularized Auto-Encoder
(Rifai ek al ICML 2012)
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Sampling from o

Reqularized Auto-Encoder
(Rifai ek al ICML 2012)
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Sampling from a

Reqularized Auto-Encoder
(Rifai ek al ICML 2012)

In practice: some thickness around tangent plane..
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Samples from a 2-level DAE

» TFD.
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Invariance and Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality
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Emergence of 'Dusenkangtmg

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot et al. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)
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Sparse Represah&auov\s

e Ask learned representation to be as sparse as possible
e Sparse = dense representations: entangles factors
e Easier to predict from

e Locally low-dimensional representation = local chart
e Hi-dim. sparse = efficient variable size representation
= data structure
Few bits of information Many bits of information

H B .

Prior: only few concepts and attributes relevant per example
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Deep Sparse Rectifier Neural Networlks
(

Glorot,Bordes and Bengio AISTATS 2011), following up on (Nair & Hinton 2010)

Neuroscience motivations Machine learning motivations

Leaky integrate-and-fire model

mm) Sparse representations

mm) Sparse gradients

Rectifier mite container ship motor scooter leopard
f(X) =ma X(O ,X) mite container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

Output

Outstanding results by Krizhevsky et al 2012
killing the state-of-the-art on ImageNet 1000:

Hidden layer 2
e 2"d best 27% err
i Previous SOTA  45% err 26% err
Krizhevsky etal 37% err 17% err




Stochastic Neurowns as Reqularizer:
Improving neural networks by preventing co-adaptation of

feature detectors (Hinkon et al 2012, arXiv)

e Dropouts trick: during training multiply neuron output by
random bit (p=0.5), during test by 0.5

e Similar to denoising auto-encoder, but corrupting every layer

e Equivalent to averaging over exponentially many architectures
* Used by Krizhevsky et al to break through ImageNet SOTA
* Also improves SOTA on CIFAR-10 (18—2>16% err)
* Knowledge-free MNIST with DBMs (.95->.79% err)
e TIMIT phoneme classification (22.72>19.7% err)
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Restricted Boltzmann Machine
(RBM)

P(l’, h) — %ebTh-i-cTa:-l—hTWx _ %62"' bihi‘*‘zj cjxj+zi,j h'i,Wli,jxj

A popular building
block for deep . () n hidden

architectures

Needs to sample
examples generated
by the model during
training

x Observed



Problems with Gibbs Sampling in RBMs

In practice, Gibbs sampling does not always mix well...
RBM trained by CD on MNIST
DDODEDDDDEOERER
n n n n n n n n n n Chains from random state
HDNNNDEEEENEN

Chains from real digits
UG ErAvAvAY o

(Desjardins et al 2010)



For gradient & inference:
More difficult ko mix with better
trained models

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?

o A\ UL



Poor Mixing: Depth to the Rescue

e Deeper representations can yield some disentangling
e Hypotheses:

* more abstract/disentangled representations unfold manifolds
and fill more the space

e can be exploited for better mixing between modes

e E.g. reverse video bit, class bits in learned object
representations: easy to Gibbs sample between modes at
Layer abstract level

o EEEEEEEE
q99999999
299999999 3 3

Points on the interpolating line between two classes, at dlfferent levels of representation
42




Poor Mixing: Depth to the Rescue

e Sampling from DBNs and stacked Contrastive Auto-Encoders:
1. MCMC sample from top-level singler-layer model

2. Propagate top-level representations to input-level repr.

e Visits modes (classes) faster Toronto Eace Database

=
o S '
= = =
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Learning Multiple Levels of
Abstrackion

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and
transfer oGS

e

 More abstract representations

—Successful transfer (domains,

gt 1 B i =

languages), 2 international

competitions won
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The End
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