Part 3

Practice, Issues, Questions
Deep Learning Tricks of the Trade

 - Unsupervised pre-training
 - Stochastic gradient descent and setting learning rates
 - Main hyper-parameters
 - Learning rate schedule
 - Early stopping
 - Minibatches
 - Parameter initialization
 - Number of hidden units
 - L1 and L2 weight decay
 - Sparsity regularization
 - Debugging
 - How to efficiently search for hyper-parameter configurations
Stochastic Gradient Descent (SGD)

- Gradient descent uses total gradient over all examples per update, SGD updates after only 1 or few examples:

$$\theta(t) \leftarrow \theta(t-1) - \varepsilon_t \frac{\partial L(z_t, \theta)}{\partial \theta}$$

- L = loss function, z_t = current example, θ = parameter vector, and ε_t = learning rate.
- Ordinary gradient descent is a batch method, very slow, should never be used. 2nd order batch method are being explored as an alternative but SGD with selected learning schedule remains the method to beat.
Learning Rates

- Simplest recipe: keep it fixed and use the same for all parameters.
- Collobert scales them by the inverse of square root of the fan-in of each neuron.
- Better results can generally be obtained by allowing learning rates to decrease, typically in $O(1/t)$ because of theoretical convergence guarantees, e.g.,

$$\epsilon_t = \frac{\epsilon_0 \tau}{\max(t, \tau)}$$

with hyper-parameters ϵ_0 and τ.
Early Stopping

• Beautiful FREE LUNCH (no need to launch many different training runs for each value of hyper-parameter for #iterations)

• Monitor validation error during training (after visiting # examples a multiple of validation set size)

• Keep track of parameters with best validation error and report them at the end

• If error does not improve enough (with some patience), stop.
Long-Term Dependencies

- In very deep networks such as recurrent networks (or possibly recursive ones), the gradient is a product of Jacobian matrices, each associated with a step in the forward computation. This can become very small or very large quickly [Bengio et al 1994], and the locality assumption of gradient descent breaks down.

\[
L = L(s_T(s_{T-1}(\ldots s_{t+1}(s_t, \ldots))))
\]

\[
\frac{\partial L}{\partial s_t} = \frac{\partial L}{\partial s_T} \frac{\partial s_T}{\partial s_{T-1}} \ldots \frac{\partial s_{t+1}}{\partial s_t}
\]

- Two kinds of problems:
 - sing. values of Jacobians > 1 \(\rightarrow\) gradients explode
 - or sing. values < 1 \(\rightarrow\) gradients shrink & vanish
Long-Term Dependencies and Clipping Trick

Trick first introduced by Mikolov is to clip gradients to a maximum NORM value.

Normalized Initialization to Achieve Unity-Like Jacobian

Assuming $f'(act=0)=1$

To keep information flowing in both direction we would like to have the following properties.

- **Forward-propagation:**
 \[
 \forall (i, i'), \text{Var}[z^i] = \text{Var}[z^{i'}] \iff \forall i, n_i \text{Var}[W^i] = 1
 \]

- **Back-propagation:**
 \[
 \forall (i, i'), \text{Var}\left[\frac{\partial \text{Cost}}{\partial s^i}\right] = \text{Var}\left[\frac{\partial \text{Cost}}{\partial s^{i'}}\right] \iff \forall i, n_{i+1} \text{Var}[W^i] = 1
 \]

Possible compromise:

\[
\forall i, \text{Var}[W^i] = \frac{2}{n_i + n_{i+1}} \quad (4)
\]

This gives rise to proposed normalized initialization procedure:

\[
W^i \sim U\left[-\frac{\sqrt{6}}{\sqrt{n_i + n_{i+1}}}, \frac{\sqrt{6}}{\sqrt{n_i + n_{i+1}}}\right] \quad (5)
\]
Normalized Initialization with Variance-Preserving Jacobians

![Graph showing test error percentage against number of examples seen for different activation functions and depths. Legend includes: Sigmoid depth 5, Sigmoid depth 4, Tanh, Softsign, Tanh N, Softsign N, Pre-training.](image)
Parameter Initialization

• Initialize hidden layer biases to 0 and output (or reconstruction) biases to optimal value if weights were 0 (e.g. mean target or inverse sigmoid of mean target).

• Initialize weights $\sim \text{Uniform}(-r,r)$, r inversely proportional to fan-in (previous layer size) and fan-out (next layer size):

$$\sqrt{6/(\text{fan-in} + \text{fan-out})}$$

for tanh units (and 4x bigger for sigmoid units)

(Glorot & Bengio AISTATS 2010)
Handling Large Output Spaces

- Auto-encoders and RBMs reconstruct the input, which is sparse and high-dimensional; Language models have huge output space.

- (Dauphin et al, ICML 2011) Reconstruct the non-zeros in the input, and reconstruct as many randomly chosen zeros, + importance weights

- (Collobert & Weston, ICML 2008) sample a ranking loss

- Decompose output probabilities hierarchically (Morin & Bengio 2005; Blitzer et al 2005; Mnih & Hinton 2007,2009; Mikolov et al 2011)
Automatic Differentiation

- The gradient computation can be automatically inferred from the symbolic expression of the fprop.
- Makes it easier to quickly and safely try new models.
- Each node type needs to know how to compute its output and how to compute the gradient wrt its inputs given the gradient wrt its output.
- Theano Library (python) does it symbolically. Other neural network packages (Torch, Lush) can compute gradients for any given run-time value.

(Bergstra et al SciPy’2010)
Random Sampling of Hyperparameters
(Bergstra & Bengio 2012)

- Common approach: manual + grid search
- Grid search over hyperparameters: simple & wasteful
- Random search: simple & efficient
 - Independently sample each HP, e.g. l.rate~exp(U[log(.1),log(.0001)])
 - Each training trial is iid
 - If a HP is irrelevant grid search is wasteful
 - More convenient: ok to early-stop, continue further, etc.
Issues and Questions
Why is Unsupervised Pre-Training Working So Well?

• Regularization hypothesis:
 • Unsupervised component forces model close to $P(x)$
 • Representations good for $P(x)$ are good for $P(y|x)$

• Optimization hypothesis:
 • Unsupervised initialization near better local minimum of $P(y|x)$
 • Can reach lower local minimum otherwise not achievable by random initialization
 • Easier to train each layer using a layer-local criterion

(Erhan et al JMLR 2010)
Learning Trajectories in Function Space

- Each point a model in function space
- Color = epoch
- Top: trajectories w/o pre-training
- Each trajectory converges in different local min.
- No overlap of regions with and w/o pre-training
Learning Trajectories in Function Space

- Each trajectory converges in different local min.
- With ISOMAP, try to preserve geometry: pretrained nets converge near each other (less variance)
- Good answers = worse than a needle in a haystack (learning dynamics)
Inference Challenges

• Many latent variables involved in understanding language (sense ambiguity, parsing, semantic role)

• Almost any inference mechanism can be combined with deep learning

• See [Bottou, Bengio, LeCun 97], [Graves 2012]

• Complex inference can be hard (exponentially) and needs to be approximate \(\Rightarrow\) learn to perform inference
Dealing with Inference

- $P(h|x)$ in general intractable (e.g. non-RBM Boltzmann machine)
- But explaining away is nice
- Approximations
 - Variational approximations, e.g. see Goodfellow et al ICML 2012 (assume a unimodal posterior)
 - MCMC, but certainly not to convergence
- We would like a model where approximate inference is going to be a good approximation
 - Predictive Sparse Decomposition does that
 - Learning approx. sparse decoding (Gregor & LeCun ICML’2010)
 - Estimating $E[h|x]$ in a Boltzmann with a separate network (Salakhutdinov & Larochelle AISTATS 2010)
Dealing with a Partition Function

- \(Z = \sum_{x,h} e^{-\text{energy}(x,h)} \)
- Intractable for most interesting models
- MCMC estimators of its gradient
- Noisy gradient, can’t reliably cover (spurious) modes
- Alternatives:
 - Score matching (Hyvarinen 2005)
 - Noise-contrastive estimation (Gutmann & Hyvarinen 2010)
 - Pseudo-likelihood
 - Ranking criteria (wsabie) to sample negative examples (Weston et al. 2010)
 - Auto-encoders?
Score Matching (Hyvarinen 2005)

- Score of model p: $d \log p(x)/dx$ does not contain partition fn Z

- Matching score of p to target score:
 $$\mathbb{E}_q(x) \left[\frac{1}{2} \left\| \frac{\partial \log p(x)}{\partial x} - \frac{\partial \log q(x)}{\partial x} \right\|^2 \right]$$

- Hyvarinen shows it equals
 $$\mathbb{E}_q(x) \left[\frac{1}{2} \left\| \frac{\partial \log p(x)}{\partial x} \right\|^2 + \sum_i \frac{\partial^2 \log p(x)}{\partial x_i^2} \right] + \text{const}$$

- and proposes to minimize corresponding empirical mean

- Shown to be asymptotically unbiased to estimate parameters

- Note: for GRBM, 1st term is squared reconstruction error and 2nd term looks like contractive penalty $\sum_{ij} h_i(1-h_i) W_{ij}^2$
Denoising Auto-Encoders doing Score Matching on Gaussian RBMs

- clean input - corrupted input = direction of increasing log-likelihood
 \[\mathbf{x} - \tilde{\mathbf{x}} \]

- reconstruction – input = direction of increasing log-likelihood according to auto-encoder
 \[r(\tilde{\mathbf{x}}) - \tilde{\mathbf{x}} \]

\[\frac{\partial \log q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})}{\partial \tilde{\mathbf{x}}} \]

\[\frac{\partial p(\mathbf{x};\theta)}{\partial \mathbf{x}} \]

Denoising error
\[\| (r(\tilde{\mathbf{x}}) - \tilde{\mathbf{x}}) - (\mathbf{x} - \tilde{\mathbf{x}}) \|^2 = \| r(\tilde{\mathbf{x}}) - \mathbf{x} \|^2 \]
Denoising Auto-Encoders doing Score Matching on Gaussian RBMs

• Gaussian DAE reconstruction:

\[r(\tilde{x}) = W^T h(\tilde{x}) + c = W^T \text{sigm}(W \tilde{x} + b) + c \]

• Corresponds to gradient of free energy of Gaussian RBM

• Any (free) energy function with \(x^2 \) term gives rise to score function that can be written as proportional to \(r(x) - x \) (=residual). **Recent research shows this is true for any energy fn**

• Not all DAEs have reconstruction residual = a derivative (most previous DAEs with binomial KL divergence reconstruction error)

• See also (Swersky 2010), thesis on link between ordinary auto-encoder reconstruction error & Score Matching
Contrastive Sampling of Negative Examples

- (Collobert & Weston ICML 2008)
- (Bordes et al AAAI 2011, AISTATS 2012)
- Similar to wsabie (Weston et al, MLJ 2010)

$$\sum_{x \in \mathcal{D}} \sum_{\tilde{x} \sim Q(\tilde{x}|x)} \max (E(x) - E(\tilde{x}) + 1, 0)$$

- In those cases, the negative example \tilde{x} is obtained by uniformly sampling one of the elements of \tilde{x} and keeping the rest fixed.
For gradient & inference: More difficult to mix with better trained models

- Early during training, density smeared out, mode bumps overlap
- Later on, hard to cross empty voids between modes

Are we doomed if we rely on MCMC during training? Will we be able to train really large & complex models?
Poor Mixing: Depth to the Rescue

• Deeper representations can yield some disentangling

• Hypotheses:
 • more abstract/disentangled representations unfold manifolds and fill more the space
 • can be exploited for better mixing between modes
 • E.g. reverse video bit, class bits in learned object representations: easy to Gibbs sample between modes at abstract level

Points on the interpolating line between two classes, at different levels of representation
Poor Mixing: Depth to the Rescue

- Sampling from DBNs and stacked Contrastive Auto-Encoders:
 1. MCMC sample from top-level single-layer model
 2. Propagate top-level representations to input-level repr.
- Visits modes (classes) faster

Toronto Face Database

h_3
h_2
h_1
x

192
Regularized AE: MCMC Miracles?

- Virtually no burn-in waste with Denoising AE, trained to map random configurations to plausible ones in 1 step (very few necessary in practice)

- Tempering-like effect by controlling step size σ (in manifold directions) trades off mixing speed with accuracy (more math needed here!)

- Fast mode mixing if sampling at higher levels
Other reasons why regularized auto-encoders are interesting alternatives

• Easy “inference” (can have iterative inference with lateral connections, but not considered as an approximation to the right thing)

• No partition function (and associated approximations)

• No negative feedback loop between sampling and learning

→ do we actually need an explicit probabilistic model?
More Open Questions

• What is a good representation? Disentangling factors? Can we design better training criteria / setups?
• Can we safely assume $P(h|x)$ to be unimodal or few-modal? If not, is there any alternative to explicit latent variables?
• Should we have explicit explaining away or just learn to produce good representations? (possibly iteratively)
• Should learned representations be low-dimensional or sparse/saturated and high-dimensional?
• Why is it more difficult to optimize deeper (or recurrent/recursive) architectures? Does it necessarily get more difficult as training progresses? Can we do better?