Part 3

Practice, Issues, Questions

166




Deep Learning Tricks of the Trade

* Y.Bengio (2012), “Practical Recommendations for Gradient-
Based Training of Deep Architectures”

* Unsupervised pre-training -
* Stochastic gradient descent and setting learning rates

* Main hyper-parameters
e Learning rate schedule
e Early stopping
* Minibatches
e Parameter initialization
e Number of hidden units
e L1 and L2 weight decay
e Sparsity regularization

* Debugging

How to efficiently search for hyper-parameter configurations
167



Stochastic Gradient Descent (SGD)

e Gradient descent uses total gradient over all examples per
update, SGD updates after only 1 or few examples:

8L(Zt, 0)
00

* L=loss function, z,= current example, © = parameter vector, and
g, = learning rate.

H(t) < H(t_l) — €4

e Ordinary gradient descent is a batch method, very slow, should
never be used. 2" order batch method are being explored as an

alternative but SGD with selected learning schedule remains the
method to beat.

168



Learining Rates

e Simplest recipe: keep it fixed and use the same for all
parameters.

e Collobert scales them by the inverse of square root of the fan-in
of each neuron

e Better results can generally be obtained by allowing learning

rates to decrease, typically in O(1/t) because of theoretical
convergence guarantees, e.g.,

€E0T

T max(t, 7)

with hyper-parameters g, and t.
169



Early Stopping

170

Beautiful FREE LUNCH (no need to launch many different
training runs for each value of hyper-parameter for #iterations)

Monitor validation error during training (after visiting #
examples a multiple of validation set size)

Keep track of parameters with best validation error and report
them at the end

If error does not improve enough (with some patience), stop.



Long-Term Dependencies i

* Invery deep networks such as recurrent networks (or possibly
recursive ones), the gradient is a product of Jacobian matrices,
each associated with a step in the forward computation. This
can become very small or very large quickly [Bengio et al 1994],
and the locality assumption of gradient descent breaks down.

L= L(sr(s7—1(---8t+1(8¢,-...))))
8_L B 0L Ost 0St11
Os;  OsT Osp—_1 ~ Osy

e Two kinds of problems:
* sing. values of Jacobians > 1 - gradients explode

 or sing. values < 1 = gradients shrink & vanish

171



Long-Term Dependencies
and Clipping Trick

L I
@E') Xt1 X; Xt+1
Trick first introduced by Mikolov is to clip gradients

to a maximum NORM value.

Makes a big difference in Recurrent Nets. Allows SGD to compete
with HF optimization on difficult long-term dependencies tasks.
Helped to beat SOTA in text compression, language modeling,
speech recognition.

172



Normalized Initialization ko Achieve
Uniby-Like Jacobian
Assuming f'(act=0)=1

To keep information flowing in both direction we would like to have the
following properties.

e Forward-propagation:
V(i,4'), Var[z'] = Var[z"] & Vi,n;Var[Wi = 1
e Back-propagation:
v(i,4'), Var[a§;8t] Var [6C°St] & Viyni Var[WY =1
Possible compromise:

Vi, Var[W? = - +2n (4)
3 1+1

This gives rise to proposed normalized initialization procedure:

Wi Ul V6 V6 )
Vi T 1 /Ty T g




test error %

Normalized Initialization with Variance-
Preserving Jacobians

T
AN WA, v —

(S

gofl | — Sigmoid depth 5 ||
| ‘ ‘ | — Sigmoid depth 4
| — Tanh
— Softsign
Tanh N
Softsign N
— Pre-training

- - A4 0 ) -, \
£ ) y s, 1
‘ : 1] DA A /. A
DO M el Y
v ;,\‘\‘1",, I
Yaeloy

H -~ A\, . y A
N \ ',’v‘i\lc-l - A ¥
‘ ‘ z : NN AR A /

0.0 0.5 1.0 1.5 2.0 2.t
# exemples seen le7




Parameter Initializakion

175

Initialize hidden layer biases to 0 and output (or reconstruction)
biases to optimal value if weights were 0 (e.g. mean target or
inverse sigmoid of mean target).

Initialize weights ~ Uniform(-r,r), r inversely proportional to fan-
in (previous layer size) and fan-out (next layer size):

\/6/(fan-in + fan-out)

for tanh units (and 4x bigger for sigmoid units)
(Glorot & Bengio AISTATS 2010)

Ao




Handling Large Output Spaces

e Auto-encoders and RBMs reconstruct the input, which is sparse and high-
dimensional; Language models have huge output space.

code= latent features

C0000
I JoRdt 00® O
sparse input dense output probabilities

e (Dauphin et al, ICML 2011) Reconstruct the non-zeros in
the input, and reconstruct as many randomly chosen
zeros, + importance weights "N

categories

* Decompose output probabilities hierarchically (Mo
& Bengio 2005; Blitzer et al 2005; Mnih & Hinton words within each category

2007,2009; Mikolov et al 2011) ﬂn. n
176 3 Vi &




Automatic Differentiation

* The gradient computation can be
automatically inferred from the symbolic
expression of the fprop.

* Makes it easier to quickly and safely try
new models.

e Each node type needs to know how to
compute its output and how to compute
the gradient wrt its inputs given the
gradient wrt its output.

* Theano Library (python) does it
symbolically. Other neural network

packages (Torch, Lush) can compute
gradients for any given run-time value.
(Bergstra et al SciPy’2010)

177



Random Sampling of Hyperparameters
(Bergstra & Bengio 2012) &
e Common approach: manual + grid search b
e Grid search over hyperparameters: simple & wasteful
e Random search: simple & efficient
* Independently sample each HP, e.g. l.rate~exp(U[log(.1),log(.0001)])
e Each training trial is iid
e IfaHPisirrelevant grid search is wasteful
* More convenient: ok to early-stop, continue further, etc.

Grid Layout Random Layout

Unimportant parameter
O
O
O
Unimportant parameter
(@)
O

“O O O

178 Important parameter Important parameter



Issues and Questions

179



Why is Unsupervised Pre-Training
Working So Well?

e Regularization hypothesis:
* Unsupervised component forces model close to P(x)
* Representations good for P(x) are good for P(y|x)

e Optimization hypothesis:
e Unsupervised initialization near better local minimum of P(y|x)

e Can reach lower local minimum otherwise not achievable by random initialization
* Easier to train each layer using a layer-local criterion

(Erhan et al IMLR 2010)




Leariing Tra jectories in
Function Space

e Each point a model in
function space

e Color = epoch e,

e Top: trajectories w/o “ |
pre-training ¢ B ae.

e Each trajectory “ s ! ° o
converges in diﬁerenw@i@, 2 DA T

local min. i,

 No overlap of regions
with and w/o pre-
training



Leariing Tra jectories in
Function Space

e Each trajectory I
converges in different e — ........ ............ out pre tralnmg ............ ............ .............
local min. Fan, S

* With ISOMAP, try to
preserve geometry:
pretrained nets =
converge near each ' B Tk N R
other (less variance) 1000 a .......... ............. ............. ............. ............. .............

1500 —oevennnns PRI PR e e RERUR s PR :

- be o . WitE re-tréinin
500 ‘Y'AHAH.?% o0 e éuA“A.“AuéuAHA“A“A;APA“A“AJ AAAAAAA gAué

-500

e Good answers =
worse than a needle
in a haystack
(learning dynamics)

-1500 I I i i i 1 I i
-4000 -3000 -2000 -1000 0 1000 2000 3000 4000




Inference Challenges

e Many latent variables involved in understanding
language (sense ambiguity, parsing, semantic role)

 Almost any inference mechanism can be combined
with deep learning

e See [Bottou, Bengio, LeCun 97], [Graves 2012]

“l

e Complex inference can be hard (exponentially) and

needs to be approximate = learn to perform inference
183



Dealing with Inference

e P(h|x)in general intractable (e.g. non-RBM Boltzmann machine)
e But explaining away is nice
* Approximations
e Variational approximations, e.g. see Goodfellow et al ICML 2012
(assume a unimodal posterior)
e MCMC, but certainly not to convergence

e We would like a model where approximate inference is going to be a good
approximation

* Predictive Sparse Decomposition does that
* Learning approx. sparse decoding (Gregor & LeCun ICML’2010)

e Estimating E[h]|x] in a Boltzmann with a separate network (Salakhutdinov &
Larochelle AISTATS 2010)

184



Dealing with a Partition Function

o 7= ZX ) e-energy(x,h)
e |ntractable for most interesting models
e MCMC estimators of its gradient

e Noisy gradient, can’t reliably cover (spurious) modes

e Alternatives:

e Score matching (Hyvarinen 2005)

* Noise-contrastive estimation (Gutmann & Hyvarinen 2010)
Pseudo-likelihood

Ranking criteria (wsabie) to sample negative examples (Weston et al.
2010)

Auto-encoders?

185



SCQT’Q MQ&C"\LMS (Hyvarinen 2005)

e Score of model p: dlog p(x)/dx does not contain partition fn Z

e Matching score of p to target score: ?
. 1||9logp(x) dlogq(x)]”
(x) | 5 ox ox
e Hyvarinen shows it equals
1 ||0log p(x) ||” 02 log p(x)
Eq(x) B H x + Z P + const

2 1
e and proposes to minimize corresponding empirical mean

e Shown to be asymptotically unbiased to estimate parameters

* Note: for GRBM, 1t term is squared reconstruction error and 2" term

looks like contractive penalty Zij h,(1-h;) W;?



Denoising Auto-Encoders doing
Score Matching on Graussion RBMs

e cleaninput - corrupted input = direction of increasing log-likelihood 0 log qa(i|x)
X — X 0x
\
* reconstruction —input = direction of increasing log-likelihood \ 8p(x;@)
7«(5() _ 5{ according to auto-encoder \
\
N L
VX

corrupted input in low-density region \

s~ TAX %
[ ) \\\

oxiginal inpdit ~ \\
< X/

data near high-density manifold

= Denoisingerror= || (7(X) — fé) — (x — i)”z = [[r(x) — XH2




Denoising Auto-Encoders doing
Score Matching o Gaussian RBMs

Gaussian DAE reconstruction:

r(x) = WHA(x) + ¢ = Wl sigm(Wx +b) +c
e Corresponds to gradient of free energy of Gaussian RBM

e Any (free) energy function with x? term gives rise to score function that can be written as
proportional to r(x)-x (=residual). Recent research shows this is true for any energy fn

* Not all DAEs have reconstruction residual = a derivative (most previous DAEs
with binomial KL divergence reconstruction error)

e See also (Swersky 2010), thesis on link between ordinary auto-encoder
reconstuction error & Score Matching



Contrastive Sampling of
Negative Examples

189

(Collobert & Weston ICML 2008) energy
(Bordes et al AAAI 2011, AISTATS 2012) function
Similar to wsabie (Weston et al, MLJ 2010)

Z Z max (fi(a:) — £(z)+1,0)

€D T~Q(Z|x) pull p?sh up
Negative down
example

In those cases, the negative example Z is obtained by uniformly
sampling one of the elements of 2 and keeping the rest fixed.



For gradient & inference:
More difficult ko mix with better
trained models

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?

190 A\WUAN



Poor Mixing: Depth to the Rescue

e Deeper representations can yield some disentangling
e Hypotheses:

* more abstract/disentangled representations unfold manifolds
and fill more the space

e can be exploited for better mixing between modes

e E.g. reverse video bit, class bits in learned object
representations: easy to Gibbs sample between modes at
Layer abstract level

o EEEEEEEE
q99999999
299999999 3 3

Points on the interpolating line between two classes, at dlfferent levels of representation
191




Poor Mixing: Depth to the Rescue

e Sampling from DBNs and stacked Contrastive Auto-Encoders:
1. MCMC sample from top-level singler-layer model

2. Propagate top-level representations to input-level repr.

e Visits modes (classes) faster Toronto Eace Database

=
o S '
= = =

192




Reqularized AE: MCMC Miracles?

e Virtually no burn-in waste with Denoising AE, trained to map
random configurations to plausible ones in 1 step (very few
necessary in practice)

e Tempering-like effect by controlling step size ¢ (in manifold
directions) trades off mixing speed with accuracy (more math
needed herel)

e Fast mode mixing if sampling at higher levels

193



Other reasohs why reqularized auto-
encoders are intéresting alternatives

e Easy “inference” (can have iterative inference with lateral
connections, but not considered as an approximation to the
right thing)

 No partition function (and associated approximations)

 No negative feedback loop between sampling and
learning

— do we actually need an explicit probabilistic model?

194



More Ope.vx Questions

e What is a good representation? Disentangling factors? Can we
design better training criteria / setups?

e Can we safely assume P(h|x) to be unimodal or few-modal?If
not, is there any alternative to explicit latent variables?

e Should we have explicit explaining away or just learn to produce
good representations? (possibly iteratively)

e Should learned representations be low-dimensional or sparse/
saturated and high-dimensional?

 Why is it more difficult to optimize deeper (or recurrent/
recursive) architectures? Does it necessarily get more difficult as
training progresses? Can we do better?

195



