Recursive Neural Networks
Building on Word Vector Space Models

By mapping them into the same vector space!

the country of my birth
the place where I was born

But how can we represent the meaning of longer phrases?

By mapping them into the same vector space!
How should we map phrases into a vector space?

Use principle of compositionality

The meaning (vector) of a sentence is determined by
(1) the meanings of its words and
(2) the rules that combine them.

Recursive Neural Nets can jointly learn compositional vector representations and parse trees.
Sentence Parsing: What we want

The cat sat on the mat.
Learn Structure and Representation

The cat sat on the mat.
Recursive Neural Networks for Structure Prediction

Inputs: two candidate children’s representations

Outputs:
1. The semantic representation if the two nodes are merged.
2. Score of how plausible the new node would be.
Recursive Neural Network Definition

score = \[\mathbf{U}^T \mathbf{p} \]

Same \(W \) parameters at all nodes of the tree

\[p = \tanh \left(\mathbf{W} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + b \right) \]
Related Work to Socher et al. (ICML 2011)

• Pollack (1990): Recursive auto-associative memories

• Previous Recursive Neural Networks work by Goller & Küchler (1996), Costa et al. (2003) assumed fixed tree structure and used one hot vectors.

• Hinton (1990) and Bottou (2011): Related ideas about recursive models and recursive operators as smooth versions of logic operations
Recursive Application of Relational Operators

Parsing a sentence with an RNN

The cat sat on the mat.
The cat sat on the mat.
Parsing a sentence

The cat sat on the mat.
The cat sat on the mat.
Max-Margin Framework - Details

• The score of a tree is computed by the sum of the parsing decision scores at each node.

• Similar to max-margin parsing (Taskar et al. 2004), a supervised max-margin objective

\[J = \sum_{i} s(x_i, y_i) - \max_{y \in A(x_i)} (s(x_i, y) + \Delta(y, y_i)) \]

• The loss \(\Delta(y, y_i) \) penalizes all incorrect decisions
Labeling in Recursive Neural Networks

• We can use each node’s representation as features for a softmax classifier:

\[p(c|p) = softmax(Sp) \]
Experiments: Parsing Short Sentences

- Standard *WSJ* train/test
- Good results on short sentences
- More work is needed for longer sentences

<table>
<thead>
<tr>
<th>Model</th>
<th>L15 Dev</th>
<th>L15 Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recursive Neural Network</td>
<td>92.1</td>
<td>90.3</td>
</tr>
<tr>
<td>Sigmoid NN (Titov & Henderson 2007)</td>
<td>89.5</td>
<td>89.3</td>
</tr>
<tr>
<td>Berkeley Parser (Petrov & Klein 2006)</td>
<td>92.1</td>
<td>91.6</td>
</tr>
</tbody>
</table>

All the figures are adjusted for seasonal variations
1. All the numbers are adjusted for seasonal fluctuations
2. All the figures are adjusted to remove usual seasonal patterns

Knight-Ridder wouldn’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal wouldn’t disclose the terms

Sales grew almost 7% to $UNK m. from $UNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b.
Short Paraphrase Detection

- Goal is to say which of candidate phrases are a good paraphrase of a given phrase
 - Motivated by Machine Translation
 - Re-use system trained on parsing the WSJ

![Diagram of a tree structure]

F1 of Paraphrase Detection

<table>
<thead>
<tr>
<th></th>
<th>BC 2005</th>
<th>CB 2008</th>
<th>RNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Paraphrase detection task, CCB data

<table>
<thead>
<tr>
<th>Target</th>
<th>Candidates with human goodness label (1–5) ordered by recursive net</th>
</tr>
</thead>
<tbody>
<tr>
<td>the united states</td>
<td>the usa (5) the us (5) united states (5) north america (4) united (1)</td>
</tr>
<tr>
<td></td>
<td>the (1) of the united states (3) america (5) nations (2) we (3)</td>
</tr>
<tr>
<td>around the world</td>
<td>around the globe (5) throughout the world (5) across the world (5)</td>
</tr>
<tr>
<td></td>
<td>over the world (2) in the world (5) of the budget (2) of the world (5)</td>
</tr>
<tr>
<td>it would be</td>
<td>it would represent (5) there will be (2) that would be (3) it would be</td>
</tr>
<tr>
<td></td>
<td>ideal (2) it would be appropriate (2) it is (3) it would (2)</td>
</tr>
<tr>
<td>of capital punishment</td>
<td>of the death penalty (5) to death (2) the death penalty (2) of (1)</td>
</tr>
<tr>
<td>in the long run</td>
<td>in the long term (5) in the short term (2) for the longer term (5)</td>
</tr>
<tr>
<td></td>
<td>in the future (5) in the end (3) in the long-term (5) in time (5) of the (1)</td>
</tr>
</tbody>
</table>
Scene Parsing

Similar principle of compositionality.

- The meaning of a scene image is also a function of smaller regions,
- how they combine as parts to form larger objects,
- and how the objects interact.
Algorithm for Parsing Images

Same Recursive Neural Network as for natural language parsing!
(Socher et al. ICML 2011)

Parsing Natural Scene Images

Grass

People Building

Tree

Semantic Representations
Features
Segments
Multi-class segmentation

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel CRF (Gould et al., ICCV 2009)</td>
<td>74.3</td>
</tr>
<tr>
<td>Classifier on superpixel features</td>
<td>75.9</td>
</tr>
<tr>
<td>Region-based energy (Gould et al., ICCV 2009)</td>
<td>76.4</td>
</tr>
<tr>
<td>Local labelling (Tighe & Lazebnik, ECCV 2010)</td>
<td>76.9</td>
</tr>
<tr>
<td>Superpixel MRF (Tighe & Lazebnik, ECCV 2010)</td>
<td>77.5</td>
</tr>
<tr>
<td>Simultaneous MRF (Tighe & Lazebnik, ECCV 2010)</td>
<td>77.5</td>
</tr>
<tr>
<td>Recursive Neural Network</td>
<td>78.1</td>
</tr>
</tbody>
</table>

Stanford Background Dataset (Gould et al. 2009)
Recursive Autoencoders

- Similar to Recursive Neural Net but instead of a supervised score we compute a reconstruction error at each node.

\[E_{rec}([c_1; c_2]) = \frac{1}{2} \left\| [c_1; c_2] - [c'_1; c'_2] \right\|^2 \]

\[
\begin{align*}
 y_2 &= f(W[x_1; y_1] + b) \\
 y_1 &= f(W[x_2; x_3] + b)
\end{align*}
\]
Semi-supervised Recursive Autoencoder

- To capture sentiment and solve antonym problem, add a softmax classifier
- Error is a weighted combination of reconstruction error and cross-entropy
- Socher et al. (EMNLP 2011)
Comparing the meaning of two sentences: Paraphrase Detection

- Unsupervised Unfolding RAE and a pair-wise sentence comparison of nodes in parsed trees
- Socher et al. (NIPS 2011)
Recursive Autoencoders for Full Sentence Paraphrase Detection

- Experiments on Microsoft Research Paraphrase Corpus

 (Dolan et al. 2004)

<table>
<thead>
<tr>
<th>Method</th>
<th>Acc.</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rus et al.(2008)</td>
<td>70.6</td>
<td>80.5</td>
</tr>
<tr>
<td>Mihalcea et al.(2006)</td>
<td>70.3</td>
<td>81.3</td>
</tr>
<tr>
<td>Islam et al.(2007)</td>
<td>72.6</td>
<td>81.3</td>
</tr>
<tr>
<td>Qiu et al.(2006)</td>
<td>72.0</td>
<td>81.6</td>
</tr>
<tr>
<td>Fernando et al.(2008)</td>
<td>74.1</td>
<td>82.4</td>
</tr>
<tr>
<td>Wan et al.(2006)</td>
<td>75.6</td>
<td>83.0</td>
</tr>
<tr>
<td>Das and Smith (2009)</td>
<td>73.9</td>
<td>82.3</td>
</tr>
<tr>
<td>Das and Smith (2009) + 18 Surface Features</td>
<td>76.1</td>
<td>82.7</td>
</tr>
<tr>
<td>F. Bu et al. (ACL 2012): String Re-writing Kernel</td>
<td>76.3</td>
<td>--</td>
</tr>
<tr>
<td>Unfolding Recursive Autoencoder (NIPS 2011)</td>
<td>76.8</td>
<td>83.6</td>
</tr>
</tbody>
</table>
Compositionality Through Recursive Matrix-Vector Recursive Neural Networks

\[p = \tanh \left(W \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + b \right) \]

\[p = \tanh \left(W \begin{bmatrix} C_2 c_1 \\ C_1 c_2 \end{bmatrix} + b \right) \]
Predicting Sentiment Distributions

fairly annoying
- MV-RNN
- RNN

fairly awesome
- MV-RNN
- RNN

fairly sad
- MV-RNN
- RNN

not annoying
- MV-RNN
- RNN

not awesome
- MV-RNN
- RNN

not sad
- MV-RNN
- RNN
- Ground Truth

unbelievably annoying
- MV-RNN
- RNN

unbelievably awesome
- MV-RNN
- RNN

unbelievably sad
- MV-RNN
- RNN
Discussion
Concerns

• Many algorithms and variants (burgeoning field)

• Hyper-parameters (layer size, regularization, possibly learning rate)

 • Use multi-core machines, clusters and random sampling for cross-validation (Bergstra & Bengio 2012)

 • Pretty common for powerful methods, e.g. BM25
Concerns

- Slower to train than linear models
 - Only by a small constant factor, and much more compact than non-parametric (e.g. n-gram models)
 - Very fast during inference/test time (feed-forward pass is just a few matrix multiplies)
- Need more training data?
 - Can *handle and benefit from* more training data (esp. unlabeled), suitable for age of Big Data (Google trains neural nets with a billion connections, [Le et al, ICML 2012])
 - Need less *labeled* data
Concern: non-convex optimization

• Can initialize system with convex learner
 • Convex SVM
 • Fixed feature space

• Then optimize non-convex variant (add and tune learned features), can’t be worse than convex learner
Transfer Learning

• Application of deep learning could be in areas where there are not enough labeled data but a transfer is possible

• Domain adaptation already showed that effect, thanks to unsupervised feature learning

• **Two transfer learning competitions won in 2011**

• Transfer to resource-poor languages would be a great application [Gouws, PhD proposal 2012]
Learning Multiple Levels of Abstraction

• The big payoff of deep learning is to allow learning higher levels of abstraction

• Higher-level abstractions disentangle the factors of variation, which allows much easier generalization and transfer

• More abstract representations

→ Successful transfer (domains, languages)