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Curriculum Learning

Guided learning helps training humans and animals

Start from simpler examples / easier tasks (Piaget 1952, Skinner 1958)



The Dogma Iin question

It is best to learn from a training set of examples sampled from the
same distribution as the test set. Reallye



Question

Can machine learning algorithms benefit from a curriculum strategye

Cognition journal:
(Elman 1993) vs (Rohde & Plaut 1999),
(Krueger & Dayan 2009)



Convex vs Non-Convex Criteria

m Convex criteria: the order of presentation of examples
should not matter to the convergence point, but could
influence convergence speed

® Non-convex criteria: the order and selection of examples
could yield to a better local minimum



Deep Architectures

m Theoretical arguments: deep architectures can be
exponentially more compact than shallow ones representing
the same function

m Cognitive and neuroscience arguments
= Many local minima

® Guiding the optimization by unsupervised pre-training yields
much better local minima o/w not reachable

m Good candidate for testing curriculum ideas



Deep Training Trajectories

(Erhan et al. AISTATS 09)

Random initialization
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Unsupervised guidance




Starting from Easy Examples

e Easiest
1. Lower level
abstractions
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« Most difficult examples
» Higher level abstractions




Continuation Methods

oA Final solution

Track local minima

Easy to find
mMinimum



Curriculum Learning as Continuation

m Seguence of
training distributions

- Easiest m |nifially peaking on

1 . Lower level . .
abstractions easier / simpler ones

= Gradually give more
weight fo more

« Most difficult examples difficult ones until

o Higherlevel abstractions reach 'I'Orge'l'

distribution

3




How to order examplese

® The right order is not known

m 3 series of experiments:
1. Toy experiments with simple order
m Larger margin first
® | ess noisy inputs first
2. Simpler shapes first, more varied ones later
3. Smaller vocabulary first



Larger Margin First: Faster Convergence
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Cleaner First: Faster Convergence

Average test error
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Shape Recognition

First: easier, basic shapes

Second = target: more varied geometric shapes
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Shape Recognition Experiment

® 3-hidden layers deep net known to involve local minima
(unsupervised pre-training finds much better solutions)

® 10 000 training / 5 000 validation / 5 000 test examples

® Procedure:
1. Train for k epochs on the easier shapes
2. Switch to target training set (more variations)



Shape Recognition Results
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Language Modeling Experiment

m Objective: compute the
score of the next word
given the previous ones
(ranking criterion)

m Architecture of the deep
neural network

(Bengio et al. 2001,
Collobert & Weston 2008)
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Language Modeling Results

log(rank next word)

3.5

w
)
v

w

2.75

==curriculum

= = no-curriculum

500

1000

1500

million
updates

O Gradually increase
the vocabulary
size (dips)

O Train on Wikipedia
with sentences
containing only
words in
vocabulary



Conclusion

Yes, machine learning algorithms can benefit from a curriculum
strategy.



Whye

= Faster convergence to a minimum
m Wasting less time with noisy or harder to predict examples

= Convergence to better local minima

Curriculum = partficular continuation method

« Finds better local minima of a non-convex training criterion
« Like aregularizer, with main effect on test set



Perspectives

® How could we define better curriculum strategiese

» We should try to understand general principles that make
some curricula work better than others

m Emphasizing harder examples and riding on the frontier



THANK YOU!

m Questions?

m Comments?e



Training Criterion: Ranking Words
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with S a word sequence

C score of the next word given the previous one
w a word of the vocabulary
D

the considered word vocabulary



Curriculum = Continuation Method?

» Examples 7 from P(Z) are weighted by 0 < W/l(z) <1

= Sequence of disfributions () (z)«<W ,(z) P (z) called a
curriculum if:

« the entropy of these distributions increases (larger domain)

H(Q;)<H(Q;.) Ve>0
o W/I(Z) monotonically increasing in A:

Wadz)2Waz) Vz,Ve>0



