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Outline of the Tutorial

1. Representation Learning, motivations
2. Why does deep learning work so well?
3. Algorithms: backprop, convnets, RNNs
4. Unsupervised & generative learning

5. Attention mechanisms

Upcoming MIT Press book: “Deep Learning”
for draft chapters (in preparation)



Breakthrough

 Deep Learning: machine
learning algorithms based on
learning multiple levels of
representation / abstraction.

Amazing improvements in error rate in object recognition, object
detection, speech recognition, and more recently, in natural
language processing / understanding



Ongoing Progress: Combining Vision
and Natural Language Understanding

e Recurrent nets generating credible sentences, even better if
conditionally:

* Machine translation

Xu et al, ICML’2015
* Image 2 text

SR =L

A woman is throwing a frisbee in a park.

A stop sign is on a road with a
mountain in the background.

8 K B
e

A little girl sitting on a bed with A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.




Initial Brealkthrough in 20
Canadian initiative: CIFAR

06

* Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

* Unsupervised feature learners:
* RBMs

e  Auto-encoder variants

*  Sparse coding variants

# Le Cun
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2010-2012: Breakthrough i speech
recognition > in Androids by 2012
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Brealkthrough in computer vision:
RO12-2016
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e 1000 object categories,

chair -
e Facebook: millions of faces
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EXCLUSIVE

Facebook, Google in 'Deep Learning'
Arms Race

NEWS BULLETIN

Google Beat Facebook for Deelend

Google Acqmres Artificial Intelllgence Startup DeepMind
For More Than $500M

Catherine Shu




IT Companies are Racing into

Deep Learning
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Automating
Feabure bi.scove.rv
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Learning multiple levels g8
of TQFTESQ"\&Q&‘-OV\ (Lee, Largman, Pham & Ng, N009)

i (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
g Layer 3 linguistic representations

Parts combine
to form objects

A LA TN ALY VP
\\ \\ \ [ \,"‘ Layer 1

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




Google Image Search:

Different object types represented in the
same space
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DOLPHIN
— OBAMA
—EIFFEL TOWER

fGoogIe:

'S. Bengio, J.
Weston & N.
w Usunier

%7 (1JCAI 2011,
NIPS’2010,

JMLR 2010,
PR \VILJ 2010)

[ B

%

100-dim
embedding space

Learn ®(+) and ®,-) to optimize precision@k.



Machine Learning, Al
% No Free Lunch

e Three key ingredients for ML towards Al

1. Lots & lots of data
2. Very flexible models

3. Powerful priors that can defeat the curse of
dimensionality
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Oltimate Goals

o Al
* Needs knowledge
* Needs learning

* Needs generalization

e Needs ways to fight the curse of dimensionality

* Needs disentangling the underlying explanatory factors

15



ML 101, What We Are Fighting Against:
The Curse of Dimensionality

1 dimension:
10 positions

To generalize locally,
need representative
examples for all
relevant variations!

2 dimensions:
100 positions
(@]

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting good
features / kernel

» 3 dimensions:
1000 positions!



Nok ‘D;mehsmvmu&j so much as
Number of Variations ‘

(Bengio, Dellalleau & Le Roux 2007)
e Theorem: Gaussian kernel machines need at least k examples

to learn a function that has 2k zero-crossings along some line

A
//’\\/\/ \//X/x

e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(2¢)
examples




Why N-grams have poor generalization

18

For fixed N, the function P(next word [ last N-1 words) is learned
purely from the instances of the specific N-tuples associated
with each possible (N-1)-word context. No generalization to
other sequences of N words and no cross-generalization

between different N-tuples!

With back-off / smoothing models, there is some (limited)
generalization arising from shorter n-grams, for which there is
more data, at the price of less specific predictions.

the
No sharing, where lots cat/\do
would be possible e N /
sat is barks sat

e

on o000



Putting Probability Mass where
Structure is Plausible

e Empirical distribution: mass at
training examples

e Smoothness: spread mass around
e |nsufficient

e Guess some ‘structure’ and
generalize accordingly

19



Bypassing the curse of
dimensionality

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently

20



Nown-distributed representations

e (Clustering, n-grams, Nearest-
Neighbors, RBF SVMs, local
non-parametric density
estimation & prediction,
decision trees, etc.

Clustering

e Parameters for each
distinguishable region

o # of distinguishable regions
is linear in # of parameters

LOCAL PARTITION

- No non-trivial generalization to regions without examples

21



The need for distributed
repre.sev\&akiovxs

22

Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

Each parameter influences
many regions, not just local
neighbors

# of distinguishable regions

grows almost exponentially
with # of parameters

GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Multi-
Clustering

C1

artition 1

Cl=1
C2=0
C3=0

Cl=0
C2=1
C3=0

Sub—partition 3
\

Sub—partition 2
v Cl=1 5
\C2=0 ¢
\C3=1 ¢

\ C1=0
C2=1
\ C3=1

\

DISTRIBUTED PARTITION \

C2

input

C3

Non-mutually
exclusive features/
attributes create a
combinatorially large
set of distinguiable
configurations



Classical Symbolic Al vs
Represav\!:a lon Learning

e Two symbols are equally far from each other

e Concepts are not represented by symbols in our
brain, but by patterns of activation

(Connectionism, 1980’s)

Output units

Hidden units

Input person

units

cat

23
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Neural Language Models: fi}:)k&i‘.hg one

exponential bj awnother one’

. ’
¢ (Benglo et al NIPS 2000) i~th output = P(w(t) =i | context)
Output softmax
(eoo EE (XD (XX
7 N\
. /

Exponentlally Iarge set Of /, most| computation here \\

generalizations: semantically close Y

sequences ;) |
! ! tanh !
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!oo(li—up ------------------------ s -I;e;r-e-(-l-[;::l;ameters
mn across words

w1 w2 w3 Wy Ws We index for w(t-n+1) index for w(t=2)

C(w(t=n+1) C(w(t=2)) C(w(t-1

--------

index for w(t—1)

input sequence Exponentially large set of possible contexts
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Neural word embeddinags: visualizakion
directions = Learned Abkributbes

need help
come
go
take
give keep
make get
meet - continue
expect want become
think
say remain
are .
Is
be
wergas
being
been
haqmas
have

25



Analogical Representations for Free
(M:.katov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

v

()
Paris

Rome
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The Next Challenqge: Rich Semantic
Representations f?:r Word Sequences

* Impressive progress in
capturing word semantics
Easier learning: non-parametr
(table look-up)

e QOptimization challenge for
mapping sequences to rich &
complete representations

e Good test case: machine
translation with auto-encoder

framework

27



A Semantic Challenge:
end-to-End Machine Translation

e (lassical Machine Translation: several models separately trained
by max. likelihood, brought together with logistic regression on
top, based on n-grams

e Neural language models already shown to outperform n-gram
models in terms of generalization power

* Why not train a neural translation model end-to-end to estimate
P(target sentence | source sentence)?

28



Encoder-Decoder Framework

e |ntermediate representation of meaning
= ‘universal representation’
e Encoder: from word sequence to sentence representation
e Decoder: from representation to word sequence distribution

Decoder

English sentence English sentence

For bitext data
For unilingual data

X1

French sentence English sentence

Encoder

29



The Depth Prior can be Exponentially
Advantageous -

Theoretical arguments:

=

Logic gates

2 layers of | Formal neurons = universal approximator
RBF units

RBMs & auto-encoders = universal approximat
Theorems on advantage of depth:
(Hastad et al 86 & 91, Bengio et al 2007,
Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014, Montufar et al NIPS 2014) 1 2 3 2n

Some functions compactly

represented with k layers may
require exponential size with 2
layers 1 2 3 n



subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



N

bsubsub subsubsub?2

subsubsu //////////EEPS“bSUbs
subsub1 subsub?2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



Sharing Components in a Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(21709)(XoX3) + (r129) (2324) + ()r:2x;>,)2 + (x9x3)(7374)

Sum-product
network

Theorems in
(Bengio & Delalleau, ALT 2011;
Delalleau & Bengio NIPS 2011)



New theoretical result:
Expressiveness of deep hets with
riece.wisa-tiv\ear activakion fns

P

ascanu, Montufar, Cho & Bengio; ICLR 2014)
(Montufar, Pascanu, Cho & Bengio; NIPS 2014)

Deeper nets with rectifier/maxout units are exponentially more
expressive than shallow ones (1 hidden layer) because they can split
the input space in many more (not-independent) linear regions, with
constraints, e.g., with abs units, each unit creates mirror responses,
folding the input space:

34



Myth is Being Debuniced: Local
Ms.mma A Neural Nets

= Cov\vem&v s not needed

(Pascanu, Dauphin, Ganguli, Bengio, arXiv May 2014): On the
saddle point problem for non-convex optimization

e (Dauphin, Pascanu, Gulcehre, Cho, Ganguli, Bengio, NIPS’ 2014):
Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization

e (Choromanska, Henaff, Mathieu, Ben Arous & LeCun 2014): The
Loss Surface of Multilayer Nets

35



Wolfram Global Problem

Saddle Poinks

Local minima dominate in low-D, but'
saddle points dominate in high-D ;

Most local minima are close to the
bottom (global minimum error)

ae pUPe apumtec e ©

36
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Saddle Poinks During Training

e QOscillating between two behaviors:

37

Training error (MSE)

Slowly approaching a saddle point

Escaping it
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Low Index Critical Poinks

Choromanska et al & LeCun 2014, ‘The Loss Surface of Multilayer Nets’
Shows that deep rectifier nets are analogous to spherical spin-glass models

The low-index critical points of large models concentrate in a band just
above the global minimum

60 -

| nhidden

40 -

count

500

20 -

1 | I
0.08 0.09 0.10

loss
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Saddle-Free Optimization
(Pascanu, Dauphin, Ganguli, Bengio 2014)

e Saddle points are ATTRACTIVE for Newton’s method
e Replace eigenvalues A of Hessian by |A]
e Justified as a particular trust region method

1
107 ¢
Advantage increases
3 e, with dimensionality
1
t "'":ILIIL”I.”/.“I,I”,,”,”’.”"”’.”Z/I.IIIIHN////m///m////////uu
o e -’“-’“.”ﬁ".”’.’“.”ﬁ”.“'.Uw«wwww
- g, PN
Q0
o 10t
=
=
E e ® minibatch SGD
¢4 Damped Newton method
B8 Saddle-Free Newton method
101!

5 25 50
39 Number of hidden units



How do humans generalize
from very few examples?

* They transfer knowledge from previous learning:
* Representations

Explanatory factors

* Previous learning from: unlabeled data
+ labels for other tasks

* Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)

40



Multi-Task Learnhing

e Generalizing better to new tasks
(tens of thousands!) is crucial to
approach Al

e Deep architectures learn good
intermediate representations that
can be shared across tasks

(Collobert & Weston ICML 2008,
Bengio et al AISTATS 2011)

e Good representations that
disentangle underlying factors of
variation make sense for many tasks  E.g. dictionary, with intermediate

because each task concerns a concepts re-used across many definitions
subset of the factors

Prior: shared underlying explanatory factors between tasks
41



Sharing Statistical Stremgth by Semi-
Supervised Learning

e Hypothesis: P(x) shares structure with P(y|x)

purely semi-
supervised PY supervised

42



Algorithms



Sim Pte Chain Rule

44

Az = %Ay

Ay = =2 Ax

NG Ty
0z __ 0z 9y

Ox ~ Oy Ox



Mu,tkipl.e Paobths Chain Rule

Oz __ 0Oz Oy

Oz 0Y2

X Ox ~ Oy; Oz

45

Oys Ox



Muit:ipte. Pabths Chain Rule - Greneral

&

46



Chain Rule in Flow Gra Fk

<
/ & Flow graph: any directed acyclic graph
node = computation result

arc = computation dependency

{y1, Y2, ... yn}=successors of T

0z Oy,
Z oy; Ox

47



Back-?rop TN Mu,t&i-Lave.r Netb
NLL = —log P(Y = y|x)

48



error

Forward-
Pro

I 7Y

Lave.r

[

Mul
Nekt




error

Backprop in
Mui&itza\r;e.r
Neb:

How out Fu.&s
could change
ko moalee
error smaller
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error

Backprop in
Mui&it[a\ger
Neb:

How h, could
change to
malkee error
smaller

Y
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error

Backprop in
Muﬂ:iﬂ:a\ger
Neb:

How h, could
change to
malee error
smaller

Y
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error

Backprop in
Muikitzagar
Neb:

How W, could
change to
malkee error
smaller

Y
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Back-‘?rop n General Flow G'mpk

Single scalar output 2

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{yl, Y2, - yn} = successors of I

0z 0y,
Z oy; Ox

54



Back-Prop in Recurrent % Recursive
Netbs

* Replicate a & =5
parameterized function -9 Ne—— e
: : > @ 0 >l e
over different time .
t-1 X | Xtr1
steps or nodes of a DAG eoce| (ecce)| [(eoee
* Output state at one A small crowd
time-step / node is used s The istoric.
. aeees hurch
as input for another VP Semcanli:
fime-step / node Ne wp N P Representations
A small quiety 7 N P
crowd enters Det Adj.

é $
the E‘IIStOFIJ church
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Backpropagation Through Structure

* Inference > discrete choices
* (e.g., shortest path in HMM, best output configuration in CRF)

E.g. Max over configurations or sum weighted by posterior

The loss to be optimized depends on these choices

The inference operations are flow graph nodes

If continuous, can perform stochastic gradient descent

* Max(a,b) is continuous. o
0_____..

56



Automatic Differentiation

57

* The gradient computation can

\ : :

‘% 7. be automatically inferred from

the symbolic expression of the

fprop.

* Each node type needs to know
how to compute its output and
how to compute the gradient

wrt its inputs given the
gradient wrt its output.

* Easy and fast prototyping



Machine Learning 1ol

* Family of functions f@
e Tunable parameters 6
e Examples Z ~ unknown data generating distribution P(Z)
* Loss L mapsZand f9 to a scalar
e Regularizer R (typically on depends on 0 but possibly also on 2)
* Training criterion:
0(9) — averageZNdatasetL(f97 Z) T R(@, Z)
e Approximate minimization algorithm to search for good v,

e Supervised learning:

« z=(x,Y)and L = L(f9(X),Y)

58



Log-Likelihood for Neural Neks

e Estimating a conditional probability P(Y‘X)
« Parametrizeitby P(Y|X) = P(Y|w = fo(X))
e lLoss= — lOg P(Y‘X)
e E.g.GaussianV, w = (,u, (7)
typically only [f is the network output, depends on X
Equivalent to MSE criterion:
loss= —log P(Y|X) = logo + || fo(X) = Y||*/o”
e E.g. Multinoulli Y for classification,
W; — P(Y — Z|ZIZ) — fQ,Z(X) — Softmaxi(a(X))
Loss = — logwy = —log fo v (X)

59



Multiple Output Variables

e If they are conditionally independent (given X), the individual
prediction losses add up:

—log P(Y|X) = —log P(Y1,...Y3|X) = logHP Y| X) = ZlogP Y;| X)

* Likelihood if some Y/s are missing: just ignore those losses

e |f not conditionally independent, need to capture the
conditional joint distribution

* Example: output = image, sEn@ﬁc,e., tr.eXJAtX)
e Similar to unsupervised learning problem of capturing joint

* Exact likelihood may similarly be intractable, depending on

model
60



Deep Supervised Neural Nets, Rectifiers

* Now can train them even witho
unsupervised pre-training:

better initialization and non-
linearities (rectifiers, maxout),

(Glorot & Bengio AISTATS 2011;
Goodfellow et al ICML 2013)

generalize well with large labe
sets and regularizers (dropout]
e Unsupervised pre-training:

rare classes, transfer, smaller
labeled sets, or as extra
s1 regularizer.

/"

7

¥
\\\

O
O

O
O
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Recurrent Neural Nebtworles

e Selectively summarize an input sequence in a fixed-size state
vector via a recursive update

St = Fe(St—tht)

St+1

unfold Fo ’Cf £ (f Fo

Lt41
St — Gt(xta Lt—1yLt—2y 4L, xl)

62



Recurrent Neural Nebtworles

e Can produce an output at each time step: unfolding the graph
tells us how to back-prop through time.

% Ot—1 Ot Ot+1

W
S ' W St—1 St t+1
W W W
untold

63



Grenerative RNNs

e An RNN can represent a fully-connected directed generative

model: every variable predicted from all previous ones.
T

P(x) = P(x1,...27) = HP(a:t|:ct_1, Tt—9,...21)
t=1

Ly Ly Litq

— log P(mt|xt_1, Lt—24 « « :Bl)




Temporal & Spatial Inputs:
Convolutional # Recurrent Neks

e Local connectivity across time/space
e Sharing weights across time/space (translation equivariance)

e Pooling (translation invariance, cross-channel pooling for learned invariances)
Input layer (S1) 4 feature maps

(Cl) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

I convolution layer l sub-sampling layer l convolution layer l sub-sampling layer | fully connected MLP |
-\ _ P ><2§3 dense
A X1 Xt Xt+1

dense dense|

|l Recurrent nets (RNNs) can summarize
Hens =% wm information from the past

Bidirectional RNNs also summarize
65 information from the future



Convolution = sparse connectivitu +
parameter shartng g = @xw)t)= 3 zlault—adl

a=—00

66



Pooling Layers

* Aggregate to achieve local invariance

RoloIoIO R OIOIoION

Max-pooling Effect of translation

e Subsampling to reduce temporal/spatial scale and computation
() (1) (02) (o) (o) (o1

67



Mut&i.pte Convolutions: Feature Maps

68



Alternating convolutions & pooling

e Inspired by visual cortex, idea from Fukushima’s Neocognitron,
combined with back-prop and developped by LeCun since 1989

Input layer (S1) 4 feature maps

1

1 (Cl) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

convolution layer l sub-sampling layer | convolution layer l sub-sampling layer | fully connected MLP |

e |Increasing number of features, decreasing spatial resolution

* Top Iayers dre fu”y connected Krizhevsky, Sutskever & Hinton 2012

breakthrough in object recognition

pooling 204 2048

69




GoogleNet: 22 layers, intermediate targets

@ﬂ%ﬂﬁ%ﬂﬁééﬁégﬁﬁégﬁ“ 1A :

:§
g

Convolution
Pooling

Other



vasu.pervtsed or
Semi‘.-Supe.rvised ‘be.ep
Learning &
CGrenerative ‘Deep
Learning



The Next Challenge:
Unsupervised Learning

e Recent progress mostly in supervised DL

e Real technical challenges for unsupervised DL

e Potential benefits:
e Exploit tons of unlabeled data
* Answer new questions about the variables observed
e Regularizer — transfer learning — domain adaptation
* Easier optimization (local training signal)
e Structured outputs

72



Unsupervised and Transfer Learning
Challenge + Transfer Learning
Challenge: Deep Learning 1st Place

NIPS’2011
Transfer
Learning

Challenge
0 Paper:

1 e A ateessa | ’ ! Eoa e b vaining exarpien : ° I C M L, 2 O 1 2
ICM L,2011 o851 SYLVESTER VALID: ALC=0.9316

Raw data _+-

2 layers

workshop on T M . . . -
Unsup. & o
Transfer Learning:”| 3 layers o
: 4 layers
50.35- g 08
: g[}.?5
055 %
g 1 ot training examples) E e
n) )

Logz[N umber ot training examples)




Why Latent Factors . Unsupervised
Representation Learning? Because of

Causalééj.

e If Ys of interest are among the causal factors of X, then
P(X|Y)P(Y
P(X)
is tied to P(X) and P(X|Y), and P(X) is defined in terms of P(X]Y), i.e.

e The best possible model of X (unsupervised learning) MUST
involve Y as a latent factor, implicitly or explicitly.

e Representation learning SEEKS the latent variables H that
explain the variations of X, making it likely to also uncover.
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Invariance and Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality

75



Emergence of ‘Dcsev\&avxgtuvxg

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot etal. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects

(domain, sentiment)
WHY:

76



Manifold Learning =
Representation Learning

angext directions

tangent plane
X

Data on a curved manifold

77



Noh-Parametbric Manifold Learning:
hopeless without powerful enough priors

SETT T
@‘ \ Manifolds estimated out of the
*@ @ neighborhood graph:
@ - node = example
v“ 4 @ - arc = near neighbor

Al-related data manifolds have too many
twists and turns, not enough examples
to cover all the ups & downs & twists

78



Auto-Encoders Learn Salient
Variations, Like a non-Linear PCA

... .(

* Minimizing reconstruction error forces to

keep variations along manifold. »
* Regularizer wants to throw away all

variations. o
e With both: keep ONLY sensitivity to

variations ON the manifold.

79



Input Point Tangents

MNIST

80



Input Point Tangents

MNIST Tangents
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Learned Tangent ?ro{:
the Manifold Tangent Classifier

Class 1
manifold

Makes classifier f(x) insensitive to
variations on manifold at x

Tangent plane characterized by dh(x)/dx

manifold

(Rifai et al NIPS’2012)



Bypassing Normalization Constants
with Grenerative Blaclk Boxes

e Instead of parametrizing p(x),

. . . random
parametrize a machine which numbers
generates samples 7

generated

parameters
samples
®* (Goodfellow et al, NIPS 2014,
Generative adversarial nets) for the previous state
case of ancestral sampling in a deep random
generative net. Variational auto- numbers generated

encoders are closely related. sdmples

parameters
next state

e (Bengioetal, ICML 2014, Generative Z

Stochastic Networks), learning the
transition operator of a Markov chain
that generates the data.

generated
sadmples

generated
33 sdmples



Aubto-Encoders

P(x|h) reconstruction r
Decoder g e ae er e
Probabilistic criterion:
Reconstruction log-likelihood =
P(h)
code h -log P(x | h)
Q(h|x)
Denoising auto-encoder:
During training, input is corrupted
Encoder f :
stochastically, and auto-encoder must
learn to guess the distribution of the
input x missing information.
X

84



Denoising Auto-Encoder

e Learns a vector field pointing towards @

prior: examples

higher probability direction (Alain & Bengio 2013) concentrate near a
) 1ng(x) lower dimensional
reconstruction(z) —z — o 5 “manifold”
T i

e Some DAEs correspond to a kind of
Gaussian RBM with regularized Score
Matching (Vincent 2011)

[equivalent when noise—>0] Corrupted input




(Alain & Bengio ICLR 2013)
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Reqularized Auto-Encoders Learn a

Vector &~
Grodient Field
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Denoising Auto-Encoder Markov Chain

corrupt

C(X|X)
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Denoising Auto-Encoders Learn a
Markov Chain Transition Diskribution

(Bengio et al NIPS 2013)
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Space-Filling in Representation-Space
* Deeper representations = abstractions = disentangling

e Manifolds are expanded and flattened

4 Pixel space X Representation space

TP s mypifol q R . .
)/H(

Linear interpolation at layer 2
v

X-space

3’s manifold

9’s manifold -
9

Linear interpolation at layer 1 ®

3
—o——@

Linear interpolation in pixel space




Extracting Structure By Gradual
Disentangling and Manifold Unfolding

(Bengio 2014, arXiv 1407,7906) 3
am) 1= "

Each level transforms the D
data into a representation in T Tg
which it is easier to model, L L
unfolding it more,
cc.mtrac.tmg the noise | a1, lgz P(h,h.)
dimensions and mapping the
signal dimensions to a an) T
fafcto.rize'd (uniform-like) g, PixIhy)
distribution. Q(h,[x) P

min K L(Q(x,h)||P(x, h))

for each intermediate level h
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DRAW: the Latest variant of
Variational Auto-Encoder

(Gregor et al of Google DeepMind, arXiv 1502.04623, 2015)

e Even for a static input, the encoder and decoder are now
recurrent nets, which gradually add elements to the answer,
and use an attention mechanism to choose where to do so.
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DRAW Samples of SVHN Images: the
drawing process
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DRAW Samples of SVHN Images:
generated samples vs training v\eares&

v\e.s.gkbor
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Generative adversarial networks

* Don't write a formula for p(Xx), just learmn to sample
directly.

* No Markov Chain
 No variational bound

* How! By playing a game.



Adversarial nets framework

* A game between two players:

|. Discriminator D

2. Generator G

D tries to discriminate between:
- A sample from the data distribution.

- And a sample from the generator G.

* G tries to “trick” D by generating samples that are
hard for D to distinguish from data.



Adversarial nets framework

D tries to D tries to
output 1 output O

1 1
Differentiable Differentiable
function D function D
1 1
X sampled
from model

1

X sampled
from data

=
&

Differentiable
function G

1

( Input noise




Zero-sum game

. Minimax value function:

[log D(z)] = Ey.op, 2y log{l — D(G{2}))

minmax ViD ) = &,

-
" o'

."" “I ‘:'

s

Discriminator pushes

“P Discriminator’s ability to
recognize data as being real Discriminator's
ability to recognize generator
Generator pushes samples as being fake

down



Visualization of model samples
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Learned 2-D manifold of MNIST
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Visualization of model trajectories




Visualization of model trajectories

CIFAR-10
(convolutional) [ 5




Laplacian Pyramid

(Denton + Chintala, et al 2015)
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LAPGAN results

® 40% of samples mistaken by humans for real photos

(Denton + Chintala, et al 2015)



Attention-Rased Neural Machine
Trawnslation

Related to earlier Graves 2013 for generating handwriting

e (Bahdanau, Cho & Bengio, arXiv sept. 2014)
e (Jean, Cho, Memisevic & Bengio, arXiv dec. 2014)

f= (La, croissance, économique, s'est, ralentie, ces, dernic¢res, années, .)

Ssample
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e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Applying an attention mechanism to
= Trawnslation

- Speech

- Images

- Video

- Memory
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Encoder-Decoder Framework

e |ntermediate representation of meaning
= ‘universal representation’
e Encoder: from word sequence to sentence representation
e Decoder: from representation to word sequence distribution

Decoder

English sentence English sentence

For bitext data
For unilingual data

X1

French sentence English sentence

Encoder
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Encoder & Decoder RNN

e Need to use gated RNN such as LSTM or GRU

f = (La, croissance, ¢conomique, s'est, ralentie, ces, derni¢res, années, .)

=,
Su,
LN
2
. -,
= @
= O
=P (@I
E Q
=

O p—

S 2Z;

2 S

g

E ) .

g h, Vanilla

architecture

Continuous-space
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Bidirectional RNN for Input Side

e Following Alex Graves” work on handwriting

e = (Economic, growth, has, slowed, down, in, recent, years, .)
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Attention Mechanism for Deep Learning

e Consider an input (or intermediate) sequence or image

e Consider an upper level representation, which can choose
« where to look », by assigning a weight or probability to each
input position, as produced by an MLP, applied at each position

Q0000000000000 000

Higher-level

Softmax over lower
locations conditioned
on context at lower and
higher locations

Q0000000000000 0000

Lower-level
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Im prove.mevx&s over Pure AE Model

30 T T T ! !
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Sentence length

e RNNenc: encode whole sentence
e RNNsearch: predict alignment

e BLEU score on full test set (including UNK)
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standring(O.ZO)

Pavin
A&&vav\aov\ to

Selected Parts
of the Image

- . While Uttering

____ (0.18) . wards

(Xu et al, arXiv Jan. 2015, ICML 2015)

|/
il

tall(0.19)

A
bird

flying
over

14x14 Feature Map

a
body
of
water

1. Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word
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Speaking about what one sees

_ A(0.97) stop(0.36) sign(0.19)

LI_': n n
i b " - i

with(0.28) a(0.30)

mountain(0.44)

in(0.37)

the(0.21)

background(0.11)
o -
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Show, Atkend and Tell: Neural
Image Caption Greneration with
Visual Attention

Results from (Xu et al, arXiv Jan. 2015,
ICML 2015)

Table 1. BLEU-1,2,3,4/METEOR metrics compared to other methods, T indicates a different split, (—) indicates an unknown metric, o
indicates the authors kindly provided missing metrics by personal communication, 3. indicates an ensemble, a indicates using AlexNet

BLEU
Dataset Model B-1 | B-2 | B-3 | B-4 | METEOR
Google NIC(Vinyals et al., 2014)"* 63 41 27 — —
FlickrSk Log Bilinear (Kiros et al., 2014a)° 65.6 424 277 17.7 17.31
Soft-Attention 67 448 299 195 18.93
Hard-Attention 67 457 314 213 20.30
Google NICT°* 66.3 423 277 183 —
) Log Bilinear 60.0 38 254 17.1 16.88
Flickr30k Soft-Attention 667 434 288 19.1  18.49
Hard-Attention 669 439 296 199 18.46
CMU/MS Research (Chen & Zitnick, 2014)¢  — — — — 20.41
MS Research (Fang et al., 2014)te — — — — 20.71
BRNN (Karpathy & Li, 2014)° 64.2 45.1 304 20.3 —
COCO Google NICT°> 66.6 46.1 329 24.6 —
Log Bilinear® 70.8 489 344 243 20.03
Soft-Attention 70.7 49.2 344 243 23.90
Hard-Attention 71.8 504 35.7 25.0 23.04
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[0 S S s B R

A woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- B mountain in the background.

-ébt: o] 5
in a forest with

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing
a teddy bear. in the water. trees in the background.
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And the Bad

A man wearing a hat and
a hat on a skateboard.

NTT 1)
¢.ﬁgr:"‘b_“ Y
—— =

ag s

. e s 2

A person is standing on a beach A woman is sitting at a tabl A man is talking on his cell phone

with a surfboard. with a large pizza. while another man watches.
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Attention through time for video
caption generation

e (Yao et al arXiv 1502.08029, 2015) Video Description Generation
Incorporating Spatio-Temporal Features and a Soft-Attention
Mechanism

I

)

——————

e Attention can be focused FFes

bO T =

. . 02! ' /
temporally, i.e., selecting LA BN p
: f —> [y € h - g
Input frames 1
v v /
- alv' | me | R
; ! h == man
'
C-aption

Features-Extraction Soft-Attention Generation
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Attention through time for video
caption generation (Yao et al 2015)

e Attention is focused at I I
appropriate frames man o OB o o - - m
depending on which I I I I

word is generated.

cutting I I
paper = . I I
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Attention through time for video
caption generation (Yao et al 2015)

e Soft-attention worked best in this setting

Bleu Meteor | Perplexity
Model Feature | ) 3 4 mb
honattention GNet 320 92 34 12103 4.43 88.28
GNet+3DConvpop-att | 33.6 104 43 1.8 | 0.7 5.73 84.41
soft-attention GNet 310 77 3.0 12103 4.05 66.63
GNet+3DConv, 282 82 3.1 13|07 5.6 65.44

Generated
captions
Corpus: Corpus: Corpus:
She rushes out. SOMEONE sits with his arm around SOMEONE. SOMEONE shuts the door.
Test_sample: He nuzzles her cheek, then kisses tenderly. Test_sample:
The woman turns away. Test_sample: as he turns on his way to the door , SOMEONE

SOMEONE sits beside SOMEONE. turns away.



Attention Mechanisms for Memory
Access

e Neural Turing Machines (Graves et al 2014)
e and Memory Networks (Weston et al 2014)

e Use a form of attention mechanism to
control the read and write access into a
memory

e The attention mechanism outputs a softmax
over memory locations

e For efficiency, the softmax should be sparse
(mostly O’s), e.g. maybe using a hash-table
formulation.

119



Sparse Access Memory for Long-Term
Dependencies

e Whereas LSTM memories always decay exponentially (even if
slowly), a mental state stored in an external memory can stay
for arbitrarily long durations, until evoked for read or write.

e Need to replace the soft gater or softmax attention by hard one
that is 0 most of the time, and yet for which training works
(again, may use noisy decisions and/or REINFORCE).

e Different « threads » can run in parallel if we view the memory
as an associative one.
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‘Daef Learning Challenges

(Benglo, arxiv 1305,04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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Learning Multiple Levels of
Abstraction

* The big payoff of deep learning is to allow learning
higher levels of abstraction

 Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and

transfer

Organizational Maturity
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Conclusions

Distributed representations:
e prior that can buy exponential gain in generalization
Deep composition of non-linearities:
 prior that can buy exponential gain in generalization
Both yield non-local generalization
Strong evidence that local minima are not an issue, saddle points
Auto-encoders capture the data generating distribution
* Gradient of the energy
* Markov chain generating an estimator of the dgd
e Can be generalized to deep generative models
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MILA: Montreal Institute for Learning Algorithms
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