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Outline of the Tutorial

1. Representation Learning, motivations
2. Algorithms

* Feedforward deep networks
e Convolutional nets

* Recurrent and recursive nets
* @Generative nets

3. Practical Considerations and Applications
4. Challenges

Upcoming book: “Deep Learning” for draft
chapters of the book and for slides



OLkimate Goals

* Al

Needs knowledge
Needs learning

Needs generalization

Needs ways to fight the curse of dimensionality

Needs disentangling the underlying explanatory factors



Breakthrough

» Deep Learning: machine
learning algorithms inspired
by brains, based on learning
multiple levels of
representation / abstraction.



Im Pac&

Deep learning has revolutionized
* Speech recognition
* Object recognition

More coming, including other
areas of computer vision, NLP,
dialogue, reinforcement learning..



Part 1

Motivations for
Representation Learhing
and Deep Learhing



Representation Learning

e Good features essential for successful ML: 90% of effort

raw represented MACHINE
input > by téreserd ml | | EARNING
data features

 Handcrafting features vs learning them

e Good representation?

* guesses
the features / factors / causes




Automating
Feature Discovery
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Google Image Search:

Different object types represented in the
same space
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DOLPHIN
— OBAMA
—EIFFEL TOWER

"?Google:

'S. Bengio, J.
Weston & N.
»_ Usunier

Se¢ (1JCAI 2011,
NIPS’2010,
JMLR 2010,
MLJ 2010)

[
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100-dim
embedding space

Learn ®(+) and 9,-) to optimize precision@k.



Following up ol (Bengio et al NIPS2000)
Neural wor émbedqus - visualizakion

need help
come
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expect want become
think
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Analogical Representations for Free
(Mc.kotov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome
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Learning multiple Levels of
representaktion

There is theoretical and empirical evidence in favor of
multiple levels of representation

Exponential gain for some families of functions

Biologically inspired learning
Brain has a deep architecture

Cortex seems to have a
generic learning algorithm

Humans first learn simpler
concepts and compose them

It works! Speech + vision breakthroughs N

12



Deep Architecture in our Mind

very high level representation:

 Humans organize their ideas and ol [STTG] -
concepts hierarchically A
 Humans first learn simpler concepts . efc ...
and then compose them to represent A
more a b St ra Ct ones slightly higher level representation
* Engineers break-up solutions into raw input vector representation:
multiple levels of abstraction and w=[23[19[20] 18

al’/l"._ ﬂ‘é S

processing

It would be good to automatically
learn / discover these concepts

(knowledge engineering failed
because of superficial introspection?)



Learning mut&ipte levels BN
0{ TQPTQSQV\EQ&I:OV\ (Lee, Largman, Pham & Ng, NS 209)

) (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
g Layer 3 linguistic representations

Parts combine
to form objects

A AN TN ALV VP
b SIS U SPIA L A b Laverd

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



N

bsubsub] subsubsub?

subsubsu //////////fBbS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



Sharing Components in a Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(r179)(XoX3) + (r129) (23224) + (X2X3)2 + (x9x3)(7374)

(X2X3) 9X3) + (r374)
Sum-product
network
X9X3 Ty
2 3

Theorems in
(Bengio & Delalleau, ALT 2011;
T W €Ty
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Delalleau & Bengio NIPS 2011)



'Dee.p Architectures are Mo»re
Expre.sswe.

Theoretical arguments:

Logic gates

2 layers of = Formal neurons = universal opproximo‘ror
RBF units

RBMs & ou’ro encoders = universal approximat;

Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007,

Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014, Montufar et al 2014) 1

Some functions compactly
represented with k layers may

require exponential size with 2
layers




Breakthrough in 2006

e Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

* Unsupervised feature learners:
* RBMs

e  Auto-encoder variants
Sparse coding variants

19
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Stacking Single-Layer Learners

e One of the big ideas from 2006: layer-wise unsupervised feature

learning : OOOOO00) by,

! RBM '

(©O00000) h:! :y@ @oooooo) thn

I e o i o .
Coo0o00 M 10005000 ! 0003600 »
| RBM : -

©000000 * ! GO0 x OO00000) x

RBM for x RBM for hy RBM for y and hy

Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)

Stacking regularized auto-encoders - deep neural nets

20



‘Dee.p Supervi.se.d Neural Nets

e Now can train them even without
unsupervised pre-training:
better initialization and non-
linearities (rectifiers, maxout),
generalize well with large labeled
sets and regularizers (dropout)

 Unsupervised pre-training:
rare classes, transfer, smaller

labeled sets, or as extra
regularizer.

21



Deep Learning in the News

Che New Pork Cin

: m I m E m Monday, June 25,2012  Last Update: 11:50 PMET
Researcher Dreams Up Machines
That Learn Without Humans

06.27.13 ING i DIRECT Folow Us [ :

Che New ork Eimes

Scientists See Promise 1n

Deep-Learning Programs
John Markoff
November 23%2012

THE GLOBE AND MAIL

CANADA'S NATIONAL NEWSPAPER e FOUNDED 1844

Google taps U
of T professor

Yoshua Bengio. /Image: C

to teach
context to
computers ™ The Man Behind the Google Brain: Andrew Ng o JOMNATKOFE 12 s s
03.11.13 A Google research team, led by Andrew Y. Ng, above, and Jeff
and he Ql]eS OI' he NeW Al Dean, created a neural network of 16,000 processors that
22 reflected human obsession with Internet felines.

BY DANIELA HERNANDEZ (50713 6:30AM



S 10 BREAKTHROUGH
= TECHNOLOGIES 2013

DeeplLearning Temporary Social Prenatal DNA Adc
Media Sequencing Mai
With massive Reading the DNA of
amounts of ; fetuses will be the
comﬁptatlonal power, Messages that quickly next frontier of the Ske
machines can now self-destruct could genomic revolution. prin
recogrnlze objects and enhance the privacy But do you really want wor
translate speech in of online to know about the mar
real time. Artificial communications and genetic problems or the
intelligence is finally make people freer to musical aptitude of tect
getting smart. be spontaneous. - your unborn child? - jetg
Memoryimplants Smart Watches Ultra-Efficient Solar Big
Power Phc
A maverick
neuroscientist Coll
believes he has Doubling the ana
deciphered the code efficiency of a solar fron
o whircrh the hrain ~rall vwirnild camnlaetahs nhn



Baclk to ML Basics



ML 1ol, What We Are Fighting Against:
The Curse of ‘mmehsiovml,i!:v

To generalize locally,
need representative
examples for all
relevant variations!

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting good
features / kernel

1 dimension:
10 positions

2 dimensions:
100 positions
Q

» 3 dimensions:
1000 positions!



Easy Learning

learned function: prediction = f(x)




Local Swmookthwess Prior: Local.l.j
Capture the Variaktions

* = training example

YA

true functjgn: unknbwn

prediction

.-~""learnt = interpolat
f X I , .’ .
(x) oy




For AI Tasks: Manifold skructure

e examples concentrate near a lower dimensional “manifold

e Evidence: most input configurations are unlikely

. [shrinking
transformation

4 J'n
a

raw input vector space




Not bime:nsionati&v so much as
Number of Variations ‘

e Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

M
//’\\/\/ \//X/x

e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(2¢)
examples




Greomelbrical view on machine Learning

e Generalization: guessing where probability mass concentrates

e Challenge: the curse of dimensionality (exponentially many
configurations of the variables to consider)

30



Putting Probability Mass where
Structure is Plausible

e Empirical distribution: mass at
training examples

e Smoothness: spread mass around
e |nsufficient

e Guess some ‘structure’ and
generalize accordingly

31



Is there any ho pe to
generalize v\ov\%ocattv?

Yes! Need gqood pri.ors!



Bypassing the curse

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently

33



Now-distributed representations

e (lustering, Nearest-
Neighbors, RBF SVMs, local
non-parametric density
estimation & prediction,
decision trees, etc.

Clustering

e Parameters for each
distinguishable region

LOCAL PARTITION

e # of distinguishable regions
is linear in # of parameters

- No non-trivial generalization to regions without examples

34



The need for distributed
represe.vx&a!:iov\s

35

Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

Each parameter influences
many regions, not just local
neighbors

# of distinguishable regions

grows almost exponentially
with # of parameters

GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Multi-
Clustering

C1

artition 1

Cl=1
C2=0
C3=0

Cl1=0
C2=1
C3=0

Sub—partition 3
\

oL, Sub—partition 2
\ Cl= s

\ CjZ:(] .,:‘
\( .‘:I!~

\ C1=0
C2=1
\ C3=1

\

DISTRIBUTED PARTITION \

C2

input

C3

Non-mutually
exclusive features/
attributes create a
combinatorially large
set of distinguiable
configurations



The need for distributed

[ J
representations
Clustering Multi-
. Sub—partition 3
CIUSte”ng ! \\l Cllzll l(:_l.Sub—partition 2
% \ t ; :(l) \ . E%z? !:_/\../
A C3=0 \‘/‘\,‘.
// g Sub—partition 1 . e
y ‘
X

C1=0
C2=1 \ C1=0
C3=0 \ Co=1

\ C3=1

DISTRIBUTED PARTITION
LOCAL PARTITION

Learning a set of features that are not mutually exclusive
can be exponentially more statistically efficient than
having nearest-neighbor-like or clustering-like models

36



Unsupervised feature learning

Today, most practical ML applications require (lots of)
labeled training data

But almost all data is unlabeled, e.g. text, images on the web
Labels cannot possibly provide enough information

Most information acquired in an unsupervised fashion

37



How do humans generalize
from very few examples?

* They transfer knowledge from previous learning:
* Representations

*  Explanatory factors

* Previous learning from: unlabeled data
+ labels for other tasks

* Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)

38



Sharing Statistical Strength by Semi-
Supervised Learhing

e Hypothesis: P(x) shares structure with P(y|x)

purely semi-
supervised P supervised

39



Why Semi-Supervised Learning Worlks

Without unlabeled examples

e The labeled examples (circles) help ,

to identify the class of each cluster
of unlabeled examples.

e The unlabeled examples (colored
dots) help to identify the shape of

each cluster.

0 3 7'?g ;1": A gie N : r gr:’l
few labeled § o i b i h fifla Lt al,,: %3

examples Jels 8 4 ¢ el Qairlig s iplie i - g4

A\ . "
happiness many unlabeled examples



Multi-Task Learning

e Generalizing better to new tasks
(tens of thousands!) is crucial to
approach Al

e Deep architectures learn good
intermediate representations that
can be shared across tasks

(Collobert & Weston ICML 2008,
Bengio et al AISTATS 2011)

e Good representations that
disentangle underlying factors of
variation make sense for many tasks  E.g. dictionary, with intermediate
because each task concerns a concepts re-used across many definitions
subset of the factors

Prior: shared underlying explanatory factors between tasks
41



Better Representations

> Belter Transfer
> Betlter Domain Adap&a&i.ov\

e Whatis a good representation?

e Separate the « noise » from the « signal »
e Disentangle the underlying causal factors from each other

42



Handling the compositionality of
human language and thought

Z, zZ +
e Human languages, ideas, and t t '
artifacts are composed from I ’i > D"

simpler components I

Xt X, X1
e Recursion:the same
operator (same parameters) is
applied repeatedly on
different states/components
of the computation

e Result after unfolding = deep l(Bottou 2011, Socher et al 2011)
5

“ computation / representation



Combining Multiple Sources of Evidence
with Shared Representations

peron || wert
hi
e Relational learning: multiple sources, ol Jwords | history |

different tuples of variables
e Share representations of same types N
across data sources
e Shared learned representations help event ur' person

propagate information among data
sources: e.g., WordNet, XWN,
Wikipedia, FreeBase, ImageNet...

(Bordes et al AISTATS 2012, MLJ 2013)
* FACTS = DATA P(person,url,event)
e Deduction = Generalization ®%%

P(url,words,history)

e Traditional ML: data = matrix

history words urI

44



Invariance and Disentangling

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality

45



Emergence of 'Dusenkangtmg

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot et al. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)

46



Hints to Help Disentangling

e (Rifaietal, ECCV 2012, Disentangling factors Y, Y,
of variation for facial expression recognition)

e (Kingma & Welling, NIPS 2014, Semi-
Supervised Learning with Deep Generative
hl h2 h3

Models) GO00000D0000
e Some hidden units predict some of

the factors, others are free to be used W

to reconstruct the input. Different QOO00000OD

groups of hidden units assigned to

different factors. Orthogonality or

penalty or independence prior

between hidden units of different
groups

OQOO00000OD
X

47



Part 2

Representation Learhing
Algorithms



A neural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs

But we don’t have to decide
ahead of time what variables

these logistic regressions are
trying to predict!

49



A neural network = running several
Logistic regressions at the same time

... which we can feed into another logistic regression function

and it is the training
criterion that will
decide what those
intermediate binary
target variables should
be, so as to make a
good job of predicting
the targets for the next
layer, etc.

50



A neural network = running several
Logistic regressions at the same time

e Before we know it, we have a multilayer neural network....

51



Bac:k-—?rap

e Compute gradient of example-wise loss wrt
parameters

* Simply applying the derivative chain rule wisely
_ _ Oz __ Oz Oy
e=fly) y=9) 5 =573

* |f computing the loss(example, parameters) is O(n)
computation, then so is computing the gradient

52



Simn Fte. Chain Rule

53

Az = %Ay

Ay = =2 Ax

Az = g; ngx
9z _ 9z dy

Ox ~ Oy Ox



Mutl:i;pte. Palbths Chain Rule

Oz __ Oz Oy

Oz OYo

X Ox ~ Oy; Ox

54

Oys Ox



Mutf:ipte. Pabhs Chain Rule - General

&

55



Chain Rule in Flow G-'mpk
2

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

{y1, Y2, ... yn}=successors of T

0z 0vy;
Z 0y; Ox

56



Back—-‘?ralo TN Mutti—Laye.r Net
NLL = —log P(Y = y|x)

57



error

Forward-
Prop i

EE.:E& yer

Mul

Net




error

Backprop A
Mul.!:i-»Laver
Net:

How ou,!:pu&s
could change
to malee

error smaller
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error

Backprop A
Mul.!:i-»LaLje.r
Net:

How h, could
change to
malee error
smaller

Y

60



error

Backprop A
Mul.!:i-»l.aver
Net:

How h, could
change to
malee error
smaller

Y

61



error

Backprop A
Mut!:£~La3€r
Net:

How W, could
change to
malee error
smaller

Y

62



Bmck'-?rrpp in Greneral Flow G*mpk

Single scalar output 2

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{yl, Y2, « .. yn} = successors of I

63



Back-Prop in Recurrent & Recursive

Nets

* Replicate a
parameterized function
over different time
steps or nodes of a DAG

* Qutput state at one
time-step / node is used
as input for another
time-step / node

64

Zt—l Zt zt+1
o () o
- ® >® 0L
o () > )
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Xi-1 Xe | Xt+1
0000 0000 0000
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VP S
"""" emantic
NP VP ,,,,,,, P Representations
A small quietly N P
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Backpropagation Through Structure

* Inference - discrete choices
* (e.g., shortest path in HMM, best output configuration in CRF)

E.g. Max over configurations or sum weighted by posterior

The loss to be optimized depends on these choices

The inference operations are flow graph nodes

If continuous, can perform stochastic gradient descent

* Max(a,b) is continuous. o
O______.

65



Automatic Differentiation

* The gradient computation can

\ : .

'ﬁ ﬂ. be automatically inferred from
the symbolic expression of the

fprop.

* Each node type needs to know
how to compute its output and
how to compute the gradient
wrt its inputs given the
gradient wrt its output.

\
""Q‘L’ e Easy and fast prototyping

- theano

66



Machine Learning 1ol

* Family of functions f@
e Tunable parameters 6
e Examples Z ~ unknown data generating distribution P(Z)
* Loss L mapsZand f@ to a scalar
e Regularizer R (typically on depends on 0 but possibly also on 2)
* Training criterion:
0(9) — averagedeatasetL(f97 Z) T R(Q, Z)
e Approximate minimization algorithm to search for good v,

e Supervised learning:

» z=(x,Y)and L = L(fg(X),Y)

67



Log-Likelihood for Neural Nets

e Estimating a conditional probability P(Y‘X)
« Parametrizeitby P(Y|X) = P(Y|w = fo(X))
e lLoss= — lOg P(Y|X)
e E.g.GaussianY, w = (,LL, (7)
typically only [i is the network output, depends on X
Equivalent to MSE criterion:
loss= —log P(Y|X) = logo + || fo(X) — Y[|*/o”
e E.g. Multinoulli Y for classification,
W; — P(Y — Z|CIZ') — fg’z(X) — Softmaxi(a(X))
Loss = — logwy = —log fo v (X)

68



Multiple Output Variables

e If they are conditionally independent (given X), the individual
prediction losses add up:

—log P(Y|X) = —log P(Y1,...Y3| X) = logHP = - log P(Y;|X

* Likelihood if some Y/s are missing: just ignore those losses

e |f not conditionally independent, need to capture the
conditional joint distribution

* Example: output = image, sEr@ﬁqe, tregkétX)
e Similar to unsupervised learning problem of capturing joint

* Exact likelihood may similarly be intractable, depending on

model
69



Recurrent Neural Nebworles

e Selectively summarize an input sequence in a fixed-size state
vector via a recursive update

St = FO(St—laxt)

St+1

unfold Fo ’cf Fo .(T) Fo

Lt41
St — Gt(xta Lt—1yLt—2y 4L, 5131)

70



Recurrent Neural Nebtworles

e Can produce an output at each time step: unfolding the graph
tells us how to back-prop through time.

2 Ot—1 Ot Ot +1

W
S ' W St—1 St t+1
W W W
untold

71



Crenerative RNNs

e An RNN can represent a fully-connected directed generative
model: every variable predicted from all previous ones.

T
P(x) = P(z1,...27) = H P(xt¢|ri—1,2t—2,...21)
t=1

Li_1 Ly Litq

Lt = — lOg P($t|xt—17$t—2a c. 5(31)




Stochastic Neurowns as Regularizer:
Improving neural networks by preventing co-adaptation of

feature detectors (Hinkown ek al 2012, arXiv)

e Dropouts trick: during training multiply neuron output by
random bit (p=0.5), during test by 0.5

e Used in deep supervised networks
e Similar to denoising auto-encoder, but corrupting every layer

e Works better with some non-linearities (rectifiers, maxout)
(Goodfellow et al. ICML 2013)

e Equivalent to averaging over exponentially many architectures
* Used by Krizhevsky et al to break through ImageNet SOTA
e Also improves SOTA on CIFAR-10 (18—2>16% err)
* Knowledge-free MNIST with DBMs (.952.79% err)
o TIMIT phoneme classification (22.7219.7% err)

73






Temporal & Spatial Inputs:
Convolutional & Recurrent Nets

e Local connectivity across time/space
e Sharing weights across time/space (translation equivariance)

e Pooling (translation invariance, cross-channel pooling for learned invariances)
Input layer (S1) 4 feature maps

(Cl) 4 feature maps (S2) 6 feature maps

(C2) 6 feature maps

l sub-sampling layer l convolution layer l sub-sampling layer | fully connected MLP |

><1048 dense ‘ ‘ ‘
Xt Xt Xt

dense|

Il Recurrent nets (RNNs) can summarize
information from the past

Bidirectional RNNs also summarize
75 information from the future



Cownvolution = sparse connectivitu +
parame&er sharing s =@ w)t)= 3 slajuft—

a=—00
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Pooling Layers

e Aggregate to achieve local invariance

NoloIoIO R OIOIoION

Max-pooling Effect of translation

e Subsampling to reduce temporal/spatial scale and computation
() (1) (02) (o) (o0) (01

77



Mutl:sipte. Convolutions: Feature Maps

78



Alternating convolutions & pooling

e |nspired by visual cortex, idea from Fukushima’s Neocognitron,
combined with back-prop and developped by LeCun since 1989

Input layer (S1) 4 feature maps

1 1 (CI) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

convolution layer l sub-sampling layer | convolution layer l sub-sampling layer | fully connected MLP |

e |ncreasing number of features, decreasing spatial resolution

° Top Iayers are fu”y connected Krizhevsky, Sutskever & Hinton 2012
breakthrough in object recognition

128 ><2_4><zm; dense

dense dense)

128 Max

pooling 204 2048
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Distributed Representations
& Neural Nets:

How ko do uv\supervised

training?

80



Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on

Unsup. &

Transfer Learning:™”|

095

085

curve (AUC)
o

o
< 065

3 layers

Cha%ﬁvxgez ‘De.e,gwg‘.aamm

2 layers

3 4
N umber ot tiaining e xamples)

SYLVESTER VALID: ALC=09316

q 1lst Place

NIPS’2011
Transfer
Learning

Challenge
Paper:
ICML’2012

& 9 & &
4 layers

LogziN umber ot training examples)




Why Unsupervised Learning?

e Recent progress mostly in supervised DL

e 1 real challenges for unsupervised DL

e Potential benefits:
* Exploit tons of unlabeled data
* Answer new questions about the variables observed
* Regularizer — transfer learning — domain adaptation
e Easier optimization (local training signal)
 Structured outputs
e Simulate future for RL and planning

82



th Dnsupervised Representation
Learning? Because o Causatikj.

e |fYs of interest are among the causal factors of X, then
P(X|Y)P(Y
pvix) - PP
P(X)
is tied to P(X) and P(X|Y), and P(X) is defined in terms of P(X]|Y), i.e.

e The best possible model of X (unsupervised learning) MUST
involve Y as a latent factor, implicitly or explicitly.

e Representation learning SEEKS the latent variables H that
explain the variations of X, making it likely to also uncover Y.

e We need 3 pieces:
 |latent variable model P(H),
e generative decoder P(X|H), and

e approximate inference encoder Q(H | X).
83



i CA code= latent features h

C0000

= Linear Manifold / \
= Linear Auto-Encoder
=L

ear Gaussian Factors 000 @ @0 - O

input reconstruction
Input x, 0-mean Linear manifold
features=code=h(x)=W x
reconstruction(x)=W" h(x) = W™ W x x x

W = principal eigen-basis of Cov(X)

Probabilistic interpretations:

1. Gaussian with full
covariance W' W+Al

2. Latent marginally iid
Gaussian factors h with
x = WT h + noise

84




Directed Factor Models:

85

‘P(x,k).-‘?(k)‘?(xlh)

factors prior  likelihood
P(h) factorizes into P(h,) P(h.,)...
Different priors: 1 2 2’) 2N D s
* PCA: P(h,) is Gaussian
* ICA: P(h,) is non-parametric
* Sparse coding: P(h,) is concentrated near O
Likelihood is typically Gaussian x [ h

with mean given by W' h
procedures (predicting h, given x) differ

Sparse h: x is explained by the weighted addition of selected filters h,
X hl h3 W3 h5 W5

ZA<=.9x / +.8x +.7x \




Sparse autoencoder illustration for
images

Natural Images

Learned bases: }

Test example

[h,, ... hg) = 10,0, ..,0,0.8,0,.,0,0.3,0,..,0,0.5,0]
s (feature representation)




Stacking Single-Layer Learners

e PCAis great but can’t be stacked into deeper more abstract

representations (linear x linear = linear)
e One of the big ideas from Hinton et al. 2006: layer-wise

unsupervised feature learning

P e— — — — — — — —

10OCOO0O) h!

RBM |

..... >
'©oooooo) by

'(OOOOOOO) bl
!
!

©000000 !

| RBM

Cooo'ooo@ x

RBM for hy

RBM for x

" T ©0O00000) hy

' RBM '
| |

(O @OOOOOO) hal

(OOOOOOO) X

RBM for ¥ and hy

Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)
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Effective deep Learning first became

Possibi.e. with unsup

test classification error (perc)
+H

number of layers

88

ervised pre-training
S )

(with RBMs and Denoising Auto-Encoders)

With unsupervised pre-training

number of layers




Optimizing Deep Non-Linear
ComPosi.l:iov\ of Functions Seems Hard

89

Failure of training deep supervised nets before 2006

Regularization effect + optimization effect of
unsupervised pre-training

Is optimization difficulty due to
* ill-conditioning?

* local minima?

* something else?

The jury is still out, but we now have many successes training
deep supervised nets without unsupervised pre-training



Order & Selection of Examples Ma!:&ars

(Bengio, Louradour, Collobert & Weston, ICML’2009)

e Curriculum learning

e (Bengio et al 2009, Krueger & Dayan 2009) Ik ok VN

e Start with easier examples

—curriculum

e Faster convergence to a better local = = no-curriculum
minimum in deep architectures
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Continuation Methods

Final solution

Track local minima

asy to find minimum



Layer-wise Uhsupervised Learning

Input 000 .. O
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Layer-Wise Unsupervised Pre-training

features O00©® ... @
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Layer-Wise Unsupervised Pre-training

features O 0®@®

_ ?
reconstruptlon 00 ..0 = 000 O input
of input '\
.\
Input %
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Layer-Wise Unsupervised Pre-training

features O00©® ... @
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Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..
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Layer-wise Unsupervised Learning

reconstruction '
Q0O 09 .. ©

"
of features O »\ T l

More abstract

features ;'

features O0® ... @
input %@y
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Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..
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Layer-wise Uhsupervised Learning

Even more abstract
features O

® ..
More abstract I/;><
features V o 'ﬁ

features 00©® ... @

Input o0 ..
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Supervi.se.d Fine-Tuning

Output - Target
f(X) six _Y
@
Even more abstract / / \
features O

.. @
More abstract I/;><T
features V 'ﬁ

features WV
iInput o0 ..

e Additional hypothesis: features good for P(x) good for P(y|x)
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Greedy Layerwise Su,pervisad Training

s

U
h2©OQ§)OOO> hz@OOCADOOO)
W» U, W,
nQOOOO00D hi@OOSDOOO) y m@OOCBOOO)
W, Uy W1 Wi
x s xQO0O00 x ©O0000)

Generally worse than unsupervised pre-training but better than ordinary
training of a deep neural network (Bengio et al. NIPS’2006). Has been used
successfully on large labeled datasets, where unsupervised pre-training did
not make as much of an impact.



Understanding the difficully of
training deep feedforward
supervised heural networks

(Glorot & Bengio, AISTATS 2010)

Study the activations and gradients
* wrt depth
* as training progresses
 for different initializations = big difference
 for different non-linearities = big difference

First demonstration that deep supervised nets can be successfully
trained almost as well as with unsupervised pre-training, by
setting up the optimization problem appropriately...



Reskricted Bolkzmann Machines



Undirected Models:

the Restricted

[Hinton et al 2006]

, Boltzmann Machine

Probabilistic model of the joint distribution of
the observed variables (inputs alone or inputs
and targets) x

hy hy hy

Latent (hidden) variables h model high-order
dependencies

Inference is easy, P(h|x) factorizes into product
of P(h; | x)

X1 X

See Bengio (2009) detailed monograph/review: ﬂ
“Learning Deep Architectures for Al”.

See Hinton (2010)
“A practical guide to training Restricted Boltzmann Machines”



Bolkzmann Machines & MRFs

e Boltzmann machines:

- 1 1 1 S oo —
(Hinton 84) P(CE) _ Ze—Energy(m) _ ZecTzz:-{—a:TWm _ Eezz 'L-'L'z'*‘zz.’j z;Wijxj

e Markov Random Fields:
Undirected

graphical

1 i o models
P(x) = Eezi ’Lfi.(\)

Soft constraint / probabilistic statement

® More interesting with latent variables!



Restricted Boltzmann Machine
(RBM)

P(m h) — lebTh-i-cT:L’-i-hTWm — lezz bihi+2j Cjil}j-i-zi,j hiW;;x;
) 7 7
e A popular building
block for deep
architectures

O - ¢ n hidden

e Bipartite undirected
graphical model

x Observed



RBM with (imaqe, Label) visible uniks

hidden

OCOOO OO0

A
@XXX) 00000

label

Y

(Larochelle & Bengio 2008)



RBMs are Universal Approximators

(Le Roux & Bengio 2008)

e Adding one hidden unit (with proper choice of parameters)
guarantees increasing likelihood

e With enough hidden units, can perfectly model any discrete
distribution

e RBMs with variable # of hidden units = non-parametric



Bolkzmann Machine Gradient

P(.T) =~ Zh e—Energy(m h) _

e Gradient has two components:

0log P(x)

o6

[“posiﬂve phose”]

—FreeEnergy(:c)

[“negaﬂve phase” ]

Vs

| OFreeE ~ 6FreeEnergy(5:)\
(b My, P02
OE h OE h
— 3 P(h|z) negriat) Zg{;ﬁp( h) S=Re (L. )
o J

® |n RBMs, easy to sample or sum over h|x
m Difficult part: sampling from P(x), typically with a Markov chain




Positive & Negative Samples

 Observed (+) examples push the energy down

e Generated / dream / fantasy (-) samples / particles push
the energy up

X- Equilibrium: E[gradient] =0



Training RBMs

Contrastive Divergence: start negative Gibbs chain at observed x, run k
(CD-k) Gibbs steps

SML/Persistent CD: run negative Gibbs chain in background while
(PCD) weights slowly change

Fast PCD: two sets of weights, one with a large learning rate

only used for negative phase, quickly exploring
modes

Herding: Deterministic near-chaos dynamical system defines
both learning and sampling

Tempered MCMC: use higher temperature to escape modes



Obstacle: Vicious Circle Bebtween
Learhing and MCMC Sampling

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?

Training updates

Gicious circl§

Mixing

112 A\WUAN



Sowme RBM Variawks

e Different energy functions and allowed
values for the hidden and visible units:

* Hinton et al 2006: binary-binary RBMs
Welling NIPS’2004: exponential family units )

Ranzato & Hinton CVPR’2010: Gaussian RBM weaknesses (no
conditional covariance), propose mcRBM

e Ranzato et al NIPS’2010: mPoT, similar energy function
Courville et al ICML’2011: spike-and-slab RBM
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Convolubionally Trained
Spilke & Slab RBMs Samples




Auto-Encoders & Variawks:
Learning a computational graph



Compu&a&iov\ai. Grapks

e Operations for particular task

 Neural nets’ structure = computational graph for P(y|x)
e Graphical model’s structure # computational graph for inference

e Recurrent nets & graphical models

= family of computational graphs sharing parameters

e Could we have a parametrized family of computational graphs
defining “the model”?
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Sim pl.e. Aubto-Encoders

117

code= latent features h

MLP whose target output = input CO0000

encoder
Reconstruction= decoder(encoder(mput / Wr
mput X

e.g. O
h = tanh(b + Wx
reconstruction = tanh(c+ W7h)
Loss L(z,reconstruction) = ||reconstruction — z||?

With bottleneck, code = new coordinate system
Encoder and decoder can have 1 or more layers
Training deep auto-encoders notoriously difficult

Ce0 - O

reconstruction

r(x)



I finally understand what
auto-encoders do!

e Tryto carve holes in ||r(x)-x||*> or -log P(x | h(x)) at examples

vy

e Vector r(x)-x points in direction of increasing prob., i.e. estimate
score = d log p(x) / dx: learn score vector field = local mean

e Generalize (valleys) in between above holes to form manifolds

e drlx)/dx estimates the local covariance and is linked to the
Hessian d?log p(x) / dx?

e A Markov Chain associated with AEs estimates the data-
generating distribution (Bengio et al, NIPS’2013)
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Stacking Auto-Encoders

r

U
hz@OOQOOO) hz@OOQOOO)
W, w;' W,
llelelelelelel0) h;@OOOOO>OOOOOOO)HI nOOOO000)
W, Wy W;A W:A
x ©O000CO000D x©OO0O x ©O000)

Auto-encoders can be stacked successfully (Bengio et al NIPS’2006) to form !
highly non-linear representations, which with fine-tuning overperformed i
purely supervised MLPs
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(Auto-Encoder) Reconskruction Loss

e Discrete inputs: cross-entropy for binary inputs
* -2 x log r(x) + (1-x.) log(1-r,(x)) (with 0<r,(x)<1)

or log-likelihood reconstruction criterion, e.g., for a
multinomial (one-hot) input

* -2 x logri(x) (where 2.r(x)=1, summing over subset of inputs
associated with this multinomial variable)

e |In general: consider what are appropriate loss functions to
predict each of the input variables,

typically, reconstruction neg. log-likelihood —log P(x | h(x))
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Denoising Auto-Encoder B

(Vincent et al 2008)

e Corrupt the input during training only
e Train to reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)

(OO0

-V W

-
-
-~
-

-
-

RORO Ole— (00000 (OO000)

Corrupted input Raw input reconstruction

e Encoder & decoder: any parametrization
e As good or better than RBMs for unsupervised pre-training



Denoising Auto-Encoder
e Learns a vector field pointing towards

higher probability direction (Alain & Bengio 2013) concentrate near a
r(x)-x o< dlogp(x)/dx lower dimensional
“manifold”

e Some DAEs correspond toa kmd of

Matching (Vincent 2011)
[equivalent when noise—>0]
* Compared to RBM: Corrupted input
No partition function issue, -~ —g_
+ can measure training

. \ 1
criterion .« _ 7

prior: examples



Auto-Encoders Learn Salienk
Variakions, Like a non-Linear PCA

..0 .(

* Minimizing reconstruction error forces to

keep variations along manifold. ®
* Regularizer wants to throw away all

variations. 9
e With both: keep ONLY sensitivity to

variations ON the manifold.
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Manifold Learning =
Representation Learning

angext directions

tangent plane
X

Data on a curved manifold
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Non-Paramelric Manifold Learhing:
hopeless without powerful enough priors

Manifolds estimated out of the
neighborhood graph:

- node = example

- arc = near neighbor

Al-related data manifolds have too many
twists and turns, not enough examples
to cover all the ups & downs & twists

12.



ularized Auto-Encoders Learn a

9
Vector Field or a Markov Chain

Transition Diskribution

e (Bengio, Vincent & Courville, TPAMI 2013) review paper
(Alain & Bengio ICLR 2013; Bengio et al, arxiv 2013)

Ke

g
‘g o 4 N N~ VM.AA.A « ¥
> Ne i 7
TR A, /V/Y/YI"‘VeAId
A S E S SAINN gl
LJ
>y . 4 \\ . % % v
Xy \\\\\ - % % v >
A AT, ‘\\\ N ~ % % % - >
AA T T . , »4.:. ~ % % w > -
AT A A , ,‘,,..,,«4.///« - -
R VI - $P v v XX %y -
VR I A RVEVE . © °° ol GG N U U U Y - wr
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- PO P A A A B B N N N S S U O U O S Y N
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i 1
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Input Point Tangents

MNIST

127



Input Point Tangents

MNIST Tangents
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Learhed Tangent Pro &F:
the Manifold Tangent Classifier

Class 1
manifold

Makes classifier f(x) insensitive to
variations on manifold at x

Tangent plane characterized by dh(x)/dx

manifold

(Rifai et al NIPS’2012)



Deep Varianks



Level-Local Learning is Important

e |nitializing each layer of an unsupervised deep Boltzmann
machine helps a lot

e |nitializing each layer of a supervised neural network as an RBM,
auto-encoder, denoising auto-encoder, etc can help a lot

e Helps most the layers further away from the target
* Not just an effect of the unsupervised prior

e Jointly training all the levels of a deep architecture is difficult
because of the increased non-linearity / non-smoothness

e |nitializing using a level-local learning algorithm is a useful trick

e Providing intermediate-level targets can help tremendously
(Gulcehre & Bengio ICLR 2013)



Stack of RBMs / AEs
> Deep MLY

 Encoder or P(h|v) becomes MLP layer
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Staclk of RBMs / AEs
= De.e.r Auto-Encoder

(Hinton & Salakhdtdinov 2006)

e Stack encoders / P(h|x) into deep encoder
e Stack decoders / P(x|h) into deep decoder

o
"
j—
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Stack of RBMs / AEs

> 'De.e.p Recurrent Auto-Encoder
(Savard 2011) REl (Bengio & Laufer, arxiv 2013). R,

e Each hidden layer receives input from below and above h

2
e Deterministic (mean-field) recurrent computation (Savard 2011) $W2
e Stochastic (injecting noise) recurrent computation: Deep

Generative Stochastic Networks (GSNs) h,
(Bengio & Laufer arxiv 2013) §W1

h; e——
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9 DQQF BQLE"Q{ NQ& (Hinon e\aI2006)

e Stack lower levels RBMs’ P(x| h) along with top-level RBM
° P(X/ h1/ h2/ h3) = P(h2/ h3) P(hllhz) P(X | hl)
e Sample: Gibbs on top RBM, propagate down

135

hs

h,

X




Stack of RBMs ll

> De.eﬁ Bolbtzmann Machine

(Salakhutdinov &*™Hinton AISTATS 2009)

e Halve the RBM weights because each layer now has inputs from
below and from above

e Positive phase: (mean-field) variational inference = recurrent AE

e Negative phase: Gibbs sampling (stochastic units)
e train by SML/PCD

h;mees e y E— T—
Ya 3 2
h, —— Ms
2 2 2
h, ? A
T

!
2 2VV5

. S s

x‘wzl —ZT 2%

:
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Stack of Auto-Encoders
> Deep Greherative Auto-Encoder

(Rifai et al ICML 2012)

e MCMC on top-level auto-encoder
* h,,; = encode(decode(h,))+o noise
where noise is Normal(0, d/dh encode(decode(h,)))
e Then deterministically propagate down with decoders
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Grenerative Stochastic Networks (GSN)

(Bengio, Yao, Alain & Vincent, arxiv 2013; Bengio & Laufer, arxiv 2013)

e Recurrent parametrized stochastic computational graph that
defines a transition operator for a Markov chain whose
asymptotic distribution is implicitly estimated by the model

 Noise injected in input and hidden layers
e Trained to max. reconstruction prob. of example at each step
e Example structure inspired from the DBM Gibbs chain:

h, noise

h Wi\wg\)/wz/’

sample x;

sample x, sample x;

3 to 5 steps
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Denoising Auto-Encoder Marikov Chain

* P(X): true data-generating distribution
« C(X|X): corruption process

e Py, (X|X)i denoising auto-encoder trained with n examples X, X
from C(X|X)P(X) , probabilistically “inverts” corruption

o I : Markov chain over X alternating X ~ C(X|X), X ~Py, (X|X)

corrupt

C(X|X)

<2

t+2

Xt X t+1 X t+2
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New Theoretical Results
(Bengio et al NIPS 2013)

* Denoising AE are consistent estimators of the data-generating
distribution through their Markov chain, so long as they
consistently estimate the conditional denoising distribution and

the Markov chain converges.

~

Making Py (X|X) match P(X|X) makes 7, (X) match P(X)

/1

truth stationary distr. truth

denoising distr.
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Grenerative Sktochastic Nebtworlkes

Bengio et al, ICML 2014
e Generalizes the denoising auto-encoder training scheme
* Introduce latent variables in the Markov chain (over X,H)

* |Instead of a fixed corruption process, have a deterministic
function with parameters 6, and a noise source Z as input

Ht—l—l — f91 (Xt7 Zt: Ht)

H, > H, > H,
NSNS
Hipi ~ Py (H|H;, X))
Xit1 ~ Py, (X|Hipa)
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A Proper Grenerative Model for
De ev\de.wcv Nebtworks, MP-DBMs, and
e fﬁcien& deep NADE sampling

* Dependency nets (Heckerman et al 2000) estimate Pg (X, | X)
not guaranteed to be conditionals of a unique joint

e Heckerman et al’s sampling iterates over i: not ergodic?

e Randomly choosing i: proper GSN

e Defines a unique joint distribution = stationary distr. of chain
(which averages out over resampling orders)

e Generalized to estimators of P(subset(X) | X \ subset(X)) and
justify efficient sampling schemes for MP-DBMs and deep NADE.

(S
=
9.
6
4
}
i
!
2
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Appticalziov\s



Al Taskes

* Perception
* Vision
* Speech
* Multiple modalities
* Natural language understanding

* Reinforcement learning & control

COMPLEX HIGHLY-STRUCTURED DISTRIBUTION
LOTS OF DATA (maybe mostly unlabeled)
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2012: Industrial-scale success in
speech recognition

e Google uses DL in their android speech recognizer (both server-
side and on some phones with enough memory)

e Microsoft uses DL in their speech recognizer
e Error reductions on the order of 30%, a major progress

/\l \

o They are In fact qute  few arvcie

'8 much work 1o be done In this rea. .
i vary
- And w hm‘ Be able 10 brask down the
, —{ v

S
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The dramatic impact of Deep Learning
ol Speech Recognition
Eaccordihg to Microsoft)

100%a

Using DL

10%

Word error rate on Switchboard

4%

2%

1%

v

1990 2000 2010



Deep Nebworks for Speech Recognition:
results from Google, IBM, Microsoft

Hours of Deep net+HMM | GMM+HMM GMM+HMM
training data same data more data
09 16.1 23.6

Switchboard 3 17.1 (2k hours)

English 50 17.5 18.8

Broadcast news

Bing voice 24 30.4 36.2

search

Google voice 5870 12.3 16.0 (lots more)
input

Youtube 1400 47.6 52.3

147 (numbers taken from Geoff Hinton’s June 22, 2012 Google talk)



ImageNet Classification 2012

* Krizhevsky et al. -- 16.4% error (top-5)

e Next best (non-convnet) — 26.2% error

Slide from Rob Fergus, NIPS tutorial, 2012




Object Recognition Worlks

e Try it at http://deeplearning.cs.toronto.edu

Possible tags: Possible tags:
v X chimpanzee, chir _ 4¢  S G man shepherd,
« x “gorilla, Gorilla gorilla « x dingo, warrigal, warragal
« x “ram, tup v x PSEM Norwich terrier

1 49 « x mhippopotamus, hippo, river horse « x Lk 3 Airedale, Airedale terrier
v x B mask




Mowntreal Deep Nebks Win Emotion
Recognition in the Wild Challenge

Predict emotional expression from video (using images + audio)

Dec. 9, 2013
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Some Applications of DL

Language Modeling (Speech Recognition, Machine Translation)
Acoustic Modeling (speech recognition, music modeling)

NLP syntactic/semantic tagging (Part-Of-Speech, chunking,
Named Entity Recognition, Semantic Role Labeling, Parsing)

NLP applications: sentiment analysis, paraphrasing, question-
answering, Word-Sense Disambiguation

Object recognition in images: photo search and image search:
handwriting recognition, document analysis, handwriting
synthesis, superhuman traffic sign classification, street view
house numbers, emotion detection from faaal images roads
from satellites. ] '




e (Kirosetal., 2014; Mao et al.,
2014; Donahue et al., 2014;
Vinyals et al., 2014; Fang et
al., 2014; Chen and Zitnick,
2014; Karpathy and Li, 2014;
Venugopalan et al., 2014).

Vision Language A grou.p of people
Deep CNN Generating shopping at an
RNN | loutdoor market.

_)
O
~ @ There are many

vegetables at the
fruit stand.

e Convolutional net 2

generative RNN

L3 PP
A close up of a child holding a stuffed animal

Two pizzas sitting on top of a stove top oven.

] (GT: A young girl asleep on the sofa cuddling a stuffed bear.)
(GT: Three different types of pizza on top of a stove.)



Breakthroughs in Machine Translation

e (Cho et al, EMNLP 2014) Learning Phrase Representations using
RNN Encoder—Decoder for Statistical Machine Translation

e (Sutskever et al, NIPS 2014) Sequence to sequence learning with
neural networks, 3 BLEU points improvement for English-French

e (Devlin et al, ACL 2014) Fast and Robust Neural Network Joint
Models for Statistical Machine Translation

Best paper award, 6 BLEU points improvement for Arabic-English

Decoder

English sentence English sentence yl«— g\
o T ........................
- = / .......
- ©
2 c o |\ T\
ks = \decoder | o
4+ >
x o0
Q c
= =
! I=
=  French > ? ]
=~ encoder 2 .
1
French sentence English sentence
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More Successful Applications

154

Microsoft uses DL for speech rec. service (audio video indexing), based on
Hinton/Toronto’s DBNs (Mohamed et al 2012)

Google uses DL in its Google Goggles service, using Ng/Stanford DL systems,
and in its Google+ photo search service, using deep convolutional nets

NYT talks about these: http://www.nytimes.com/2012/06/26/technology/in-a-
big-network-of-computers-evidence-of-machine-learning.html?_r=1

Substantially beating SOTA in language modeling (perplexity from 140 to 102
on Broadcast News) for speech recognition (WSJ WER from 16.9% to 14.4%)
(Mikolov et al 2011) and translation (+1.8 BLEU) (Schwenk 2012)

SENNA: Unsup. pre-training + multi-task DL reaches SOTA on POS, NER, SRL,
chunking, parsing, with >10x better speed & memory (Collobert et al 2011)

Recursive nets surpass SOTA in paraphrasing (Socher et al 2011)
Denoising AEs substantially beat SOTA in sentiment analysis (Glorot et al 2011)
Contractive AEs SOTA in knowledge-free MNIST (.8% err) (Rifai et al NIPS 2011)

Le Cun/NYU'’s stacked PSDs most accurate & fastest in pedestrian detection
and DL in top 2 winning entries of German road sign recognition competition



Already Many NLP Applications of DL

e Language Modeling (Speech Recognition, Machine Translation)
e Acoustic Modeling

e Part-Of-Speech Tagging

e Chunking

e Named Entity Recognition
 Semantic Role Labeling

e Parsing

* Sentiment Analysis

e Paraphrasing

* (Question-Answering

e Word-Sense Disambiguation
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Neural Language Model

 Bengio et al NIPS’2000
and JMLR 2003 “A

Neural Probabilistic
Language Model”

* Each word represented by
a distributed continuous-
valued code vector =
embedding

* Generalizes to sequences
of words that are
semantically similar to
training sequences
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i-th output = P(w; = i | context)

normalized exponential

(e o [ ]

000 )

most| computation here

W

tanh
( 00 ..)

----------------------

shared parameters
across words

Wt—n+1 Wt—2 Wi—1



Neural Language Models

e Meanings and their combination all ‘learned’ together.
Minimal structure imposed.

representation
x1 x2 x3 x4 x5 ...

l A guess

PARAMETERS

(

Poutine IS a curious
al bl cl dl
aZ b2 c2 d2
a3 b3 a3 43 | MORE

a4 b4 cd d4 | PARAMETERS




Neural word embeddings -
visualization

need help
come
go
take
give keep
make  get
meet cee continue
expect want become
think
say remain
are .
is
be
wergas
being
been

hadnaS

158 have



Analogical Representations for Free
(Mc.kc;tov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome
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Proctical Considerations
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Deep Learning Tricks of the Trade

* Y.Bengio (2013), “Practical Recommendations for Gradient-
Based Training of Deep Architectures”

* Unsupervised pre-training -
* Stochastic gradient descent and setting learning rates

* Main hyper-parameters
e Learning rate schedule
e Early stopping
* Minibatches
e Parameter initialization
e Number of hidden units
e L1 and L2 weight decay
e Sparsity regularization

* Debugging

How to efficiently search for hyper-parameter configurations
161



Stochastic Gradient Descent (SGD)

e Gradient descent uses total gradient over all examples per
update, SGD updates after only 1 or few examples:

8L(Zt, 0)
00

* L=loss function, z,= current example, © = parameter vector, and
g, = learning rate.

H(t) < H(t_l) — €4

e Ordinary gradient descent is a batch method, very slow, should
never be used. 2" order batch method are being explored as an

alternative but SGD with selected learning schedule remains the
method to beat.
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Saddle Poinks, not Local Minima

e Traditional thinking is that major obstacle for training deep nets is
local minima

e Theoretical and empirical evidence suggest instead that saddle

points are exponentially more prevalent critical points, and local
minima tend to be of cost near that of global minimum

e (Dauphin et al NIPS’2014, Choromanska et al arxiv 2014)

0 o pyme smment o ©

0700 0.05 0.10 0.15 0.20 0.25
Index of critical point



Learning Rates

e Simplest recipe: keep it fixed and use the same for all
parameters.

e Collobert scales them by the inverse of square root of the fan-in
of each neuron

e Better results can generally be obtained by allowing learning
rates to decrease, typically in O(1/t) because of theoretical

convergence guara ntees, e.g.,
€EQT

T max(t, 7)

with hyper-parameters g, and t.

e New papers on adaptive learning rates procedures (Schaul 2012,
2013), Adagrad (Duchi et al 2011 ), ADADELTA (Zeiler 2012)
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Early Stopping

» Beautiful FREE LUNCH (no need to launch many different
training runs for each value of hyper-parameter for #iterations)

e Monitor validation error during training (after visiting # of
training examples = a multiple of validation set size)

e Keep track of parameters with best validation error and report
them at the end

e If error does not improve enough (with some patience), stop.
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Long-Term Dependencies i

* Invery deep networks such as recurrent networks (or possibly
recursive ones), the gradient is a product of Jacobian matrices,
each associated with a step in the forward computation. This
can become very small or very large quickly [Bengio et al 1994],
and the locality assumption of gradient descent breaks down.

L= L(sr(s7—1(---8t+1(8¢,-...))))
8_L B 0L Ost 0St11
Os;  OsT Osp—_1 ~ Osy

e Two kinds of problems:
* sing. values of Jacobians > 1 - gradients explode

 or sing. values < 1 = gradients shrink & vanish
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The Optimization Challenge in
Deep / Recurrent Nets

e Higher-level abstractions require highly non-linear
transformations to be learned

e Sharp non-linearities are difficult to learn by gradient

e Composition of many non-linearities = sharp non-linearity

e Exploding or vanishing gradients

i1 & Eir1
l &1 l 9& l O&t11
Oxt-1 O OXpq1
N Xi-1 - > Xt - > Xty pa—




NN Triclkes

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2" order)

e |nitialization (start in right ballpark avoids exploding/vanishing)

e Sparse Gradients (symmetry breaking)
e Gradient propagation regularizer (avoid vanishing gradient)
e LSTM: gated self-loops (avoid vanishing gradient)

\

ml | 0.35
0.30
0.25 .

o
0.20 £

Q
0.15
0.10
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eIrror
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Long-Term Dependencies
and Clipping Trick

L I
@E') Xt1 X; Xt+1
Trick first introduced by Mikolov is to clip gradients

to a maximum NORM value.

Makes a big difference in Recurrent Nets (Pascanu et al ICML 2013)

Allows SGD to compete with HF optimization on difficult long-term
dependencies tasks. Helped to beat SOTA in text compression,
language modeling, speech recognition.
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Gradient Norm Clipping

8error

g <
if Hg” > threshold then

threshold A
L —
g g S

end if




Orthogonal Initialization Works Even
Better

e Auto-encoder pre-training tends to yield orthogonal W

e (Saxe, McClelland & Ganguli ICLR 2014) showed that very deep nets

initialized with random orthogonal weights are much easier to
train

N
o
o

e Allsingular values =1

— Glorot
| — Pretrained
| — Orthogonal

-
o
o

)
o

o

Epochs to reach error threshold
—
o
o

o

50 100
Depth
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Handling Large Output Spaces

e Auto-encoders and RBMs reconstruct the input, which is sparse and high-
dimensional; Language models have a huge output space (1 unit per word).

code= latent features

C0000
Y JORA | 00® ~ O
sparse input dense output probabilities /

e (Dauphin et al, ICML 2011) Reconstruct the non-zeros in
the input, and reconstruct as many randomly chosen
zeros, + importance weights 1N

categories

* Decompose output probabilities hierarchically (Mo
& Bengio 2005; Blitzer et al 2005; Mnih & Hinton words within each category

2007,2009; Mikolov et al 2011) ﬂﬂ. n
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Automatic Differentiation

* Makes it easier to quickly and
safely try new models.

* Theano Library (python) does it
symbolically. Other neural
network packages (Torch,
Lush) can compute gradients
for any given run-time value.

(Bergstra et al SciPy’2010)

~ theano
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Random Sampling of Hyperparameters
(Bergstra & Bengio 2012) &
e Common approach: manual + grid search b
e Grid search over hyperparameters: simple & wasteful
e Random search: simple & efficient
* Independently sample each HP, e.g. l.rate~exp(U[log(.1),log(.0001)])
e Each training trial is iid
e IfaHPisirrelevant grid search is wasteful
* More convenient: ok to early-stop, continue further, etc.

Grid Layout Random Layout

Unimportant parameter
O
O
O
Unimportant parameter
(@)
O

“O O O
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Sequehﬁai. Model-Rased Op&imiz.a!:iov\
of Hyper-Parameters

o
30

25r

20F

(Hutter et al JAIR 2009; Bergstra et al NIPS 2011; Thornton et al

arXiv 2012; Snoek et al NIPS 2012)
Iterate

Estimate P(valid. err | hyper-params config x, D)

choose optimistic x, e.g. max, P(valid. err < current min. err | x)

train with config x, observe valid. err. v, D < D U {(x,v)}

— GP mean||

o o data

0 u.1v
0.08
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Part 4

Challenges & Questions
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Deea Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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bee.ﬁ Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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Challenge: Computational Scaling

e Recent breakthroughs in speech, object recognition and NLP
hinged on faster computing, GPUs, and large datasets

e In speech, vision and NLP applications we tend to find that

as llya Sutskever would say

BIGGER IS BETTER

Because deep learning is
EASY TO REGULARIZE while
it is MORE DIFFICULT TO AVOID UNDERFITTING
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Challenge: Compu&a&mnat Scaling

e Recent breakthroughs in speech, object recognition and NLP
hinged on faster computing, GPUs, and large datasets

e A 100-fold speedup is possible without waiting another 10 yrs?

e Challenge of distributed training
* Challenge of conditional computation
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Conditional Computation: only visit a
small fraction o{F parameters ; example

EEEm
e Hard mixtures of experts (Collobert, Bengio & Bengioms

2002) - .

e Conditional computation for deep nets: sparse =
distributed gaters selecting combinatorial - -
subsets of a deep net

e Deep nets vs decision trees

Output softmax

* Challenges: /., \
. I ici d units (ex
* Credit assignment for hard decisions Cated units (experts

Gater path

e Gated architectures exploration

Gating units= @

e Noisy rectifiers work well

noise T

~a
gater net——> + —>—/—> X
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Distributed Training

e Minibatches
e Large minibatches + 2"9 order & natural gradient methods
e Asynchronous SGD (Bengio et al 2003, Le et al ICML 2012, Dean et al NIPS 2012)

* Bottleneck: sharing weights/updates among nodes, to avoid
node-models to move too far from each other

e |deas forward:
* Low-resolution sharing only where needed

 Specialized conditional computation (each computer
specializes in updates to some cluster of gated experts, and
prefers examples which trigger these experts)
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beeﬁ Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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Optimization & Underfitting

e On large datasets, major obstacle is underfitting

Marginal utility of wider MLPs decreases quickly below
memorization baseline

e Current limitations: local minima, ill-conditioning or else?
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Guided Training, Intermediate
Cos«cep&s

 In (Gulcehre & Bengio ICLR’2013) we set up a task that seems
almost impossible to learn by shallow nets, deep nets, SVMs,
trees, boosting etc

e Breaking the problem in two sub-problems and pre-training
each module separately, then fine-tuning, nails it

e Need prior knowledge to decompose the task

e Guided pre-training allows to find much better solutions, escape
effective local minima
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Dee.ﬁ Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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Basic Challenge with Probabilistic
Models: marginalization

e Joint and marginal likelihoods involve intractable sums over
configurations of random variables (inputs x, latent h, outputs y)

e.g.

P(x) = 2, P(x,h)

P(X,h) = @-energy(x,h) /Z

7 = zx ) @-energy(x,h)

e MCMC methods can be used for these sums, by sampling from a
chain of x’s (or of (x,h) pairs) approximately from P(x,h)
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Two Fundamental Problems
with Probabilistic Models
with Many Random Variables

1. MCMC mixing between modes

(manifold hypothesis) “«
5555555500000 0

0 0y R o o o £ £ ) 5 N e 1

2. Many non-negligeable modes
(both in posterior & joint distributions)
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For gradient & inference:
More difficult ko mix with better
trained models

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?

Training updates

Gicious circl§

Mixing
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Many Modes Challenge: Instead of
Lleariiing P(x) directly, learn Markov
chain operator P(x, | ;)

e P(x) may have many modes, making the normalization constant
intractable, and MCMC approximations poor

e Partition fn of P(x, | x,;) much simpler because most of the time
a local move, might even be well approximated by unimodal

0.30

\

0.25F

0.20

probability
o
o

0.10

0.05F

0.00
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Bypassing Normalization Constants
with Grenerative Black Boxes
e Instead of parametrizing p(x),

parametrize a machine which
generates samples

random
numbers

generated

parameters
samples
®* (Goodfellow et al, NIPS 2014,
Generative adversarial nets) for the previous state
case of ancestral sampling in a deep random
generative net. Variational auto- numbers generated

encoders are closely related. sdmples

parameters
next state

e (Bengio etal, ICML 2014, Generative
Z generated

Stochastic Networks), learning the samples

transition operator of a Markov chain

that generates the data.
generated
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Poor Mixing: Depth to the Rescue

(Bengio et al ICML 2013)

e Sampling from DBNs and stacked Contractive Auto-Encoders:
1. MCMC sampling from top layer model
2. Propagate top-level representations to input-level repr.
e Deeper nets visit more modes (classes) faster
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Space-Filling in Representation-Space
* Deeper representations = abstractions = disentangling
e Manifolds are expanded and flattened

- X-space
4 Pixel space A Representation space
" 3 il q symantol e htod X
Lmenr interpolation at Iayer 2 3’s manifold
. 3
o} ®
9’s mahifold B -
Pe_Linear interpolation at layer 1 ®

1 E

Linear mterpolatlon in pixel space
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beeﬁ Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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Disentangling the Underlying Factors

e How could a learner disentangle the unknown
underlying factors of variation?

e Statistical structure present in the data
* Hints = priors

e Good disentangling =2 ,
avoid the curse of dimensionality {81 %#
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Extracting Structure By Gradual
Disentangling and Manifold Unfolding
(Bengio 2014, arXiv 1407,7906) 3

ahy) 1=
Each level transforms the o
data into a representation in T ’ T
which it is easier to model, B
unfolding it more,
contracting the noise ath,h,) Tz lgz P(h,/h,)
dimensions and mapping the
sighal dimensions to a ath,) ’/'\-J P(
factorized (uniform-like) . P(x/h.)
distribution. Q(h;[x) Tl l 1
min K L(Q(z, h)||P(z, h))

Q(x)

for each intermediate level h
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®

Variational Auto-Encoder

Random Sampti‘.vxg ok Top Level

e Models trained with the KL(Q]| | P) or VAE training objective

Randomly sample from 2-D top-level h (Gaussian), project down:

(from Kingma & Welling ICLR 2014)
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‘Dee.p Directed Gewnerakive AEs

(Ozair & Bengio 2014, arXiv 1410.0630)

e log P(x) >=log P(x| h=f(x)) + log P(h=f(x))
= bound that is maximized and becomes tight as training
progresses

e Stacking such auto-encoders yields representations that
become sparser and with less correlation between features

Samples Entropy | Avg # active bits | ||Corr — diag(Corr)||r
Data (X) 297.6 102.1 63.5
Output of 1°¢ encoder (f1 (X)) 56.9 20.1 11.2
Output of 274 encoder (f2(f1(X))) | 47.6 17.4 9.4
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Broad Priors as Hinks to Disentangle
the Factors of Variation

e Multiple factors: distributed representations

e Multiple levels of abstraction: depth

e Semi-supervised learning: Y is one of the factors explaining X
e Multi-task learning: different tasks share some factors

e Manifold hypothesis: probability mass concentration

e Natural clustering: class = manifold, well-separated manifolds
e Temporal and spatial coherence

e Sparsity: most factors irrelevant for particular X

e Simplicity of factor dependencies (in the right representation)
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Conclusion: Learning Multiple Levels
of Abstraction

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and

transfer

Organizational Maturity
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Cownclusions

e Deep Learning has matured
e Int. Conf. on Learning Representation 2013 & 2014 a huge success!

e Industrial applications (Google, Microsoft, Baidu, Facebook, ...)

e Room for improvement:
e Scaling computation
* Optimization
e Bypass intractable marginalizations
* More disentangled abstractions
* Reason from incrementally added facts
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Additional poi.v\&ers
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Relaked Tutorials

e Deep Learning (MIT Press book in preparation):

e Deep Learning tutorials (python):

e Stanford deep learning tutorials with simple programming
assignments and reading list

 |PAM 2012 Summer school on Deep Learning

e More reading: references in my upcoming Deep Learning book
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Software

* Theano (Python CPU/GPU) mathematical and deep learning
library
* Can do automatic, symbolic differentiation
* Ontop of Theano: Pylearn2

e Torch ML Library (C++ + Lua)

* Senna: for NLP tasks
* by Collobert et al.
* State-of-the-art performance on many tasks
* 3500 lines of C, extremely fast and using very little memory
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