Learning Algorithms for Deep Architectures

Yoshua Bengio December 12th, 2008

NIPS'2008 WORKSHOPS

Département d'informatique et de recherche opérationnelle

Local vs Distributed Representation

Debate since early 80's (connectionist models)

Local representations:
still common in neurosc.
kernel machines, graphical models
easier to interpret

Distributed representations:
≈ 1% active neurons in brains
exponentially more efficient
difficult optimization

What is Learning?

Learn underlying and previously unknown structure, from examples

CAPTURE THE

VARIATIONS

Locally capture the variations

y *= training example
true function: unknown
prediction
f(x)

test point x

Х

Easy when there are only a few variations

Curse of dimensionnality

To generalize locally, need examples representative of each possible variation.

Theoretical results

Theorem: Gaussian kernel machines need at least k examples to learn a function that has 2k zero-crossings along some line

 Theorem: For a Gaussian kernel machine to learn some maximally varying functions over d inputs require O(2^d) examples

Distributed Representations

Many neurons active simultaneously. Input represented by the activation of a set of features that are not mutually exclusive. Can be exponentially more efficient than local representations

Neurally Inspired Language Models

- Classical statistical models of word sequences: local representations
- Input = sequence of symbols, each element of sequence = 1 of N possible words
- Distributed representations: learn to embed the words in a continuous-valued low-dimensional semantic space

Neural Probabilistic Language Models Successes of

 $P(w[t]=i | context) = exp(-E(i,w[t-1],...,w[t-n])) / sum_j exp(-E(j,w[t-1],...,w[t-n]))$ = softmax(-E(.,w[t-1],...,w[t-n])) E(i,w[t-1],...,w[t-n])C(w[t-n])C(i) C(w[t-1])C(w[t-2]). . . . 🔴 shared parameters across words w[t-1]i in {1...|V|} w[t-2]

this architecture and its descendents: beats localist state-of-the-art in NLP in most tasks (language model, chunking, semantic role labeling, POS)

Embedding Symbols

Nearby Words in Semantic Space

France	Jesus	XBOX	Reddish	Scratched	
Spain	Christ	Playstation	Yellowish	Smashed	
Italy	God	Dreamcast	Greenish	Ripped	
Russia	Resurrection	PS###	Brownish	Brushed	
Poland	Prayer	SNES	Bluish	Hurled	
England	Yahweh	WH	Creamy	Grabbed	
Denmark	Josephus	NES	Whitish	Tossed	
Germany	Moses	Nintendo	Blackish	Squeezed	
Portugal	Sin	Gamecube	Silvery	Blasted	
Sweden	Heaven	PSP	Greyish Tangled		
Austria	Salvation	Amiga	Paler	Slashed	

Collobert & Weston, ICML'2008

Deep Architecture in the Brain

Area V4

Higher level visual abstractions

Area V2

Primitive shape detectors

Area V1

Edge detectors

Retina

pixels

Visual System

Architecture Depth

Computation performed by learned function can be decomposed into a graph of simpler operations

Insufficient Depth

Insufficient depth = May require exponentialsize architecture

Sufficient depth = Compact representation

Ό(n)

n

Good News, Bad News

2 layers of Formal neurons RBF units

= universal approximator

Theorems for all 3: (Hastad et al 86 & 91, Bengio et al 2007) Functions representable compactly with k layers may require exponential size with k-1 layers

Neuro-cognitive inspiration

- Brains use a distributed representation
- Brains use a deep architecture
- Brains heavily use unsupervised learning
- Brains learn simpler tasks first
- Human brains developed with society / culture / education

Breakthrough!

Before 2006 Failure of deep architectures

After 2006

Train one level after the other, unsupervised, extracting abstractions of gradually higher level Deep Belief Networks (Hinton et al 2006)

Success of deep distributed neural networks

Since 2006

- Records broken on MNIST handwritten character recognition benchmark
- State-of-the-art beaten in language modeling (Collobert & Weston 2008)⁺
- NSF et DARPA are interested...
- Similarities between V1 & V2 neurons and representations learned with deep nets
 (Raina et al 2008)

Unsupervised greedy layer-wise pre-training

Image Data Sets

Basic	10k-example subset of MNIST	
Rot	Rotated digits	3926
Bg-rand	Digits on top of white noise background	
Bg-img	Digits on top of image patch background	397
Rot-bg-img	Rotated digits on image background	9 6 CN
Rect	Distinguish tall vs wide rectangles	
Rect-img	Rectangles on image background	
Convex	Is the polygon convex?	
Ser - S		A CONTRACTOR

Problem	\mathbf{SVM}_{rbf}	DBN-1	DBN-3	SAA-3	SdA-3 (ν)	$\mathbf{SVM}_{rbf}(u)$
basic	3.03±0.15	$3.94{\scriptstyle \pm 0.17}$	$3.11{\scriptstyle \pm 0.15}$	3.46 ± 0.16	2.80±0.14 (10%)	3.07 (10%)
rot	11.11±0.28	$14.69{\scriptstyle\pm0.31}$	10.30±0.27	10.30±0.27	10.29±0.27 (10%)	11.62 (10%)
bg-rand	$14.58{\scriptstyle\pm0.31}$	$9.80{\scriptstyle \pm 0.26}$	6.73±0.22	$11.28{\scriptstyle \pm 0.28}$	10.38±0.27 (40%)	15.63 (25%)
bg-img	22.61±0.37	$16.15{\scriptstyle \pm 0.32}$	16.31±0.32	23.00±0.37	16.68±0.33 (25%)	23.15 (25%)
rot-bg-img	$55.18{\scriptstyle \pm 0.44}$	$52.21{\scriptstyle \pm 0.44}$	$47.39 \scriptstyle \pm 0.44$	$51.93{\scriptstyle \pm 0.44}$	44.49 ±0.44 (25%)	54.16 (10%)
rect	2.15±0.13	4.71±0.19	$2.60{\scriptstyle \pm 0.14}$	$2.41{\scriptstyle \pm 0.13}$	1.99±0.12 (10%)	2.45 (25%)
rect-img	$24.04{\scriptstyle\pm0.37}$	$23.69{\scriptstyle \pm 0.37}$	22.50±0.37	$24.05{\scriptstyle\pm0.37}$	21.59±0.36 (25%)	23.00 (10%)
convex	19.13±0.34	$19.92{\scriptstyle \pm 0.35}$	18.63±0.34	18.41±0.34	19.06±0.34 (10%)	24.20 (10%)

Why is unsupervised pretraining working?

- Learning can be mostly local with unsupervised learning of transformations (Bengio 2008)
- generalizing better in presence of many factors of variation (Larochelle et al ICML'2007)
- deep neural nets iterative training: stuck in poor local minima (AISTATS submission)
- pre-training moves into improbable region with better basins of attraction
 - Training one layer after the other ≈ continuation method (Bengio 2008)

Flower Power

Unsupervised pre-training acts as a regularizer . Lower test

 Lower test error at same training error

 Hurts when capacity is too small

• Preference for transformations capturing input distribution, instead of w=0

•But helps to optimize lower layers.

Non-convex optimization

- Humans somehow find a good solution to an intractable nonconvex optimization problem. How?
 - Shaping? The order of examples / stages in development / education

approximate global optimization
 (continuation)

Continuation methods

First learn simpler tasks, then build on top and learn higher-level abstractions.

final solution

target criterion

moderate smoothing

heavy smoothing

track the minimum

easy to find the global minimum

Experiments on multi-stage curriculum training

Stage 1 data:

Stage 2: data

Train deep net for 128 epochs. Switch from stage 1 to stage 2 data at epoch N in {0, 2, 4, 8, 16, 32, 64, 128}.

The wrong distribution helps

Parallelized exploration: Evolution of concepts

- Each brain explores a different potential solution
- Instead of exchanging synaptic configurations, exchange ideas through language

Evolution of concepts: memes

Genetic algorithms need 2 ingredients:
 – Population of candidate solutions: brains
 – Recombination mechanism: culture/language

Conclusions

1. Representation: brain-inspired & distributed

- 2. Architecture: brain-inspired & deep
 - 1. Challenge: non-convex optimization
 - 2. Plan: understand the issues and try to view what brains do as strategies for solving this challenge