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Deea Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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Challenge: Compu&a&mnat Scaling

e Recent breakthroughs in speech, object recognition and NLP
hinged on faster computing, GPUs, and large datasets

e A 100-fold speedup is possible without waiting another 10 yrs?

e Challenge of distributed training
* Challenge of conditional computation
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Distributed Training

e Minibatches
e Large minibatches + 2"9 order & natural gradient methods
e Asynchronous SGD (Bengio et al 2003, Le et al ICML 2012, Dean et al NIPS 2012)

* Bottleneck: sharing weights/updates among nodes, to avoid
node-models to move too far from each other

e |deas forward:
* Low-resolution sharing only where needed

 Specialized conditional computation (each computer
specializes in updates to some cluster of gated experts, and
prefers examples which trigger these experts)
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Optimization & Underfitting

e On large datasets, major obstacle is underfitting

e Marginal utility of wider MLPs decreases quickly below
memorization baseline

M vLP
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e Current limitations: local minima, ill-conditioning or else?



Guided Training, Intermediate
Cos«cep&s

 In (Gulcehre & Bengio ICLR’2013) we set up a task that seems
almost impossible to learn by shallow nets, deep nets, SVMs,
trees, boosting etc

e Breaking the problem in two sub-problems and pre-training
each module separately, then fine-tuning, nails it

e Need prior knowledge to decompose the task

e Guided pre-training allows to find much better solutions, escape
effective local minima
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On the difficulty of traiming RNNs

e |CASSP 2013 & ICML 2013 papers:

e Putting together techniques to reduce the difficulty of
training RNNs

* |CLR 2014 paper: Deep Recurrent Nets

* New architectures to boost capacity while maintaining
traininability, by introducing more non-linearities as well as
skip connections
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RNN Training Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2" order)

e |nitialization (start in right ballpark avoids exploding/vanishing)

e Sparse Gradients (symmetry breaking)
e Gradient propagation regularizer (avoid vanishing gradient)
e LSTM self-loops (avoid vanishing gradient)

il 0.35

0.30
0.25 o
o
0.20 =
OJ
0.15
0.10
0.05

eIrror

12 9



Increasing the E:xpressi;ve Power of
RNNs m.&h more Depth

e |CLR 2014, How to construct deep recurrent neural networks

+ deep hid-to-out
+ deep hid-to-hid
+deep in-to-hid
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+ skip connections for
creating shorter paths
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Why Unsupervised Learning?

e Recent progress mostly in supervised DL

e 1 real challenges for unsupervised DL

e Potential benefits:
* Exploit tons of unlabeled data
* Answer new questions about the variables observed
* Regularizer — transfer learning — domain adaptation
e Easier optimization (local training signal)
 Structured outputs
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Basic Challenge with Probabilistic
Models: marginalization

e Joint and marginal likelihoods involve intractable sums over
configurations of random variables (inputs x, latent h, outputs y)

e.g.

P(x) = 2, P(x,h)

P(X,h) = @-energy(x,h) /Z

7 = zx ) @-energy(x,h)

e MCMC methods can be used for these sums, by sampling from a
chain of x’s (or of (x,h) pairs) approximately from P(x,h)
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Two Fundamental Problems
with Probabilistic Models
with Many Random Variables

1. MCMC mixing between modes

(manifold hypothesis) “«
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2. Many non-negligeable modes
(both in posterior & joint distributions)
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For gradient & inference:
More difficult ko mix with better
trained models

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?

Training updates

Gicious circl§

Mixing
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Poor Mixing: Depth to the Rescue

(Bengio et al ICML 2013)

e Sampling from DBNs and stacked Contractive Auto-Encoders:
1. MCMC sampling from top layer model
2. Propagate top-level representations to input-level repr.
e Deeper nets visit more modes (classes) faster

20



Cownclusions

e Deep Learning has matured
e Int. Conf. on Learning Representation 2013 a huge success!

e Industrial applications (Google, Microsoft, Baidu, Facebook, ...)

e Room for improvement:
e Scaling computation
* Optimization
e Bypass intractable marginalizations
* More disentangled abstractions
* Reason from incrementally added facts
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