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Outline of the Tutorial

1. Representation Learning, motivations
2. Algorithms

Feedforward deep networks
Convolutional nets

Recurrent and recursive nets
Regularization and optimization
RBMs, DBMs and DBNs
Regularized auto-encoders

3. Practical Considerations and Applications
4. Challenges & Ongoing Work

Upcoming book: “Deep Learning”
of the slides and draft chapters of the book.
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Ulkimate Groal

* Understand the principles
giving rise to intelligence



FOoCWs

» Learning: mathematical
and computational
principles allowing one to
learn from examples in
order to acquire knowledge



Breakthrough

» Deep Learning: machine
learning algorithms inspired
by brains, based on learning
multiple levels of
representation / abstraction.



Economic Im Pac&

Deep learning has revolutionized
* Speech recognition
* Object recognition

More to come, including other
areas of computer vision, NLP,
dialogue...



The dramatic impact of Dee
Learhing o Speech Recognition

100%A According to Microsoft’s
speech group:

Using DL

10%

4%

Word error rate on Switchboard

2%

1%

7 1990 2000 2010
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ImagetNet Breakthrough
ad ® Achieves state-of-the-art on many
object recognition tasks.

Ty— v . ' ’
i pickup Jelly fungus elderberry titi

beach wagon glll fungus bullterrier indri
fire engine | dead-man's-fingers currant howler monkey

See: deeplearning.cs.toronto.edu



ImageNet Classification 2012

* Krizhevsky et al. -- 16.4% error (top-5)

e Next best (non-convnet) — 26.2% error

Slide from Rob Fergus, NIPS tutorial, 2012




Mowntreal Deep Nebks Win Emotion
Recognition in the Wild Challenge

Predict emotional expression from video (using images + audio)

Dec. 9, 2013

10




S 10 BREAKTHROUGH
= TECHNOLOGIES 2013

DeeplLearning Temporary Social Prenatal DNA Adc
Media Sequencing Mai
With massive Reading the DNA of
amounts of ; fetuses will be the
comﬁptatlonal power, Messages that quickly next frontier of the Ske
machines can now self-destruct could genomic revolution. prin
recogrnlze objects and enhance the privacy But do you really want wor
translate speech in of online to know about the mar
real time. Artificial communications and genetic problems or the
intelligence is finally make people freer to musical aptitude of tect
getting smart. be spontaneous. - your unborn child? - jetg
Memoryimplants Smart Watches Ultra-Efficient Solar Big
Power Phc
A maverick
neuroscientist Coll
believes he has Doubling the ana
deciphered the code efficiency of a solar fron
o whircrh the hrain ~rall vwirnild camnlaetahs nhn



A LTivnnAd +~ Aal> AT alitxr W

EXCLUSIVE

Facebook, Google in 'Deep Learning'
Arms Race

NEWS BULLETIN

Google Beat Facebook for DeepMmd

Google Acqulres Artificial Intelllgence Startup DeepMind
For More Than $5ooM

Catherine Shu (@cathe



Some Applications of DL

Language Modeling (Speech Recognition, Machine Translation)
Acoustic Modeling (speech recognition, music modeling)

NLP syntactic/semantic tagging (Part-Of-Speech, chunking,
Named Entity Recognition, Semantic Role Labeling, Parsing)

NLP applications: sentiment analysis, paraphrasing, question-
answering, Word-Sense Disambiguation

Object recognition in images: photo search and image search:
handwriting recognition, document analysis, handwriting
synthesis, superhuman traffic sign classification, street view
house numbers, emotion detection from faaal images roads
from satellites. ] '




Challenges

 Unsupervised Learning &
Reinforcement Learning
* Intractable computations
* Key to more adaptable models and complex
output decisions
* Scaling up to much larger models
(& Big Data)

e Expanding the scope of deep learning
applications

14



Potential Outcome: AT

e Computers that can
*see and hear
*understand natural language
*understand human behavior

e Better understanding of human &
animal intelligence

e Personal assistants, self-driving cars...

15



OLkimate Goals

o Al
* Needs knowledge
* Needs learning

* Needs generalization

e Needs ways to fight the curse of dimensionality
* Needs disentangling the underlying explanatory factors

16



Part 1

Intro & Motivations for
Representation Learhing
and Deep Learhing



What is Machine Learning?

Mathematical principles and computer algorithms exploiting data

 for extracting what is GENERAL

* so as to be able to say something meaningful about new cases
* to identify which configurations of variables are plausible
* to generate new plausible configurations or choose best ones

* to learn to predict, classify, take decisions



Representation Learning

e Good features essential for successful ML: 90% of effort

raw represented MACHINE
input > by téreserd ml | | EARNING
data features

 Handcrafting features vs learning them

e Good representation?

* guesses
the features / factors / causes

19



Google Image Search:

Different object types represented in the
same space

DDDDDDD

DOLPHIN
— OBAMA
—EIFFEL TOWER

"?Google:

'S. Bengio, J.
Weston & N.
»_ Usunier

Se¢ (1JCAI 2011,
NIPS’2010,
JMLR 2010,
MLJ 2010)

[

4

100-dim
embedding space

Learn ®(+) and 9,-) to optimize precision@k.



Following up ol (Bengio et al NIPS2000)
Neural wor émbedqus - visualizakion

need help
come
go
take
qive keep
make get
meet cee continue
expect want become
think
say remain
are .
Is
be
wergas
being
been
haqmas

21 have



Analogical Representations for Free
(Mc.kotov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome

22



DEQF Represehka&i.oh Learning

Learn multiple levels of representation

of increasing complexity/abstraction i
* theory: exponential gain hym—
X

* brains are deep
e cognition is compositional
e Better mixing (Bengio et al, ICML 2013)

e They work! SOTA on industrial-scale Al tasks
(object recognition, speech recognition,
language modeling, music modeling)

23



Learning mut&ipte levels BN
0{ TQPTQSQV\EQ&I:OV\ (Lee, Largman, Pham & Ng, NS 209)

) (Lee, Grosse, Ranganath & Ng, ICML 2009)
Successive model layers learn deeper intermediate representations

High-level
g Layer 3 linguistic representations

Parts combine
to form objects

A AN TN ALV VP
b SIS U SPIA L A b Laverd

Prior: underlying factors & concepts compactly expressed w/ multiple levels of abstraction




subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program



N

bsubsub] subsubsub?

subsubsu //////////fBbS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



'Dee.p Architectures are Mo»re
Expre.sswe.

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal opproximo‘ror
RBF units

RBMs & ou’ro encoders = universal approximat;
Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007, Bengio &

Delalleau 2011, Braverman 2011)

Some functions compactly
represented with k layers may
require exponential size with 2
layers




Breakthrough in 2006

e Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

* Unsupervised feature learners:
* RBMs

e  Auto-encoder variants
Sparse coding variants

28
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Stacking Single-Layer Learners

e One of the big ideas from 2006: layer-wise unsupervised feature

learning : OOOOO00) by,

! RBM '

(©O00000) h:! :y@ @oooooo) thn

I e o i o .
Coo0o00 M 10005000 ! 0003600 »
| RBM : -

©000000 * ! GO0 x OO00000) x

RBM for x RBM for hy RBM for y and hy

Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)

Stacking regularized auto-encoders - deep neural nets

29



‘Dee.p Supervi.se.d Neural Nets

e Now can train them even without
unsupervised pre-training:
better initialization and non-
linearities (rectifiers, maxout),
generalize well with large labeled
sets and regularizers (dropout)

 Unsupervised pre-training:
rare classes, transfer, smaller

labeled sets, or as extra
regularizer.

30



Deep Learning

When the number of levels can be data-
selected, this is a deep architecture

h,; m—
h., s—
h, s
X —

31



A Good 0lLd ‘Deep Architecture: MLPs

—

Output layer

Here predicting a supervised target

Hidden layers

These learn more abstrac
representations as you head up

Input layer —

This has raw sensory inputs (roughly)
32



A (Vanilla) Modern Deep Architecture

~ @
Optional Output layer ™ / \

Here predicting or conditioning on a
supervised target

Hidden layers

These learn more abstrac
representations as you head up

Input layer

Inputs can be reconstructed, filled-in V

or sampled —

33



What differences with
Neural Nets of the 90's?

e QOther kinds of hierarchies are possible (e.g. A. Yuille, D. McAllester )
e Bigger models

* Better training

e Initialization: information flow (Jacobians e-values closer to 1)
* Symmetry breaking: initialization, sparsity regularization and non-
linearities (rectifier, maxout, etc.)
e Unsupervised and multi-task learning = better transfer learning
e Larger labeled sets: the advantage increases!

e Better regularizers (dropout, injected noise, temporal coherence)
34



ML 1ol, What We Are Fighting Against:
The Curse of ‘mmehsiovml,i!:v

To generalize locally,
need representative
examples for all
relevant variations!

Classical solution: hope
for a smooth enough
target function, or
make it smooth by
handcrafting good
features / kernel

1 dimension:
10 positions

2 dimensions:
100 positions
Q

» 3 dimensions:
1000 positions!



Easy Learning

learned function: prediction = f(x)




Local Swmookthwess Prior: Local.l.j
Capture the Variaktions

* = training example

YA

true functjgn: unknbwn

prediction

.-~""learnt = interpolat
f X I , .’ .
(x) oy




However, Real Data Are hear Highly
Curved Sub- Manifolds

v
7
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4 E
e

raw input vector space
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Not bime:nsionati&v so much as
Number of Variations ‘

e Theorem: Gaussian kernel machines need at least k examples
to learn a function that has 2k zero-crossings along some line

M
//’\\/\/ \//X/x

e Theorem: For a Gaussian kernel machine to learn some

maximally varying functions over d inputs requires O(2¢)
examples




Greomelbrical view on machine Learning

e Generalization: guessing where probability mass concentrates

e Challenge: the curse of dimensionality (exponentially many
configurations of the variables to consider)

40



For AI Tasks: Manifold skructure

e examples concentrate near a lower dimensional “manifold

e Evidence: most input configurations are unlikely

. [shrinking
transformation

4 J'n
a

raw input vector space




Putting Probability Mass where
Structure is Plausible

e Empirical distribution: mass at
training examples

e Smoothness: spread mass around

e |nsufficient

e Guess some ‘structure’ and
generalize accordingly

42



Is there any ho pe to
generalize v\ov\%ocattv?

Yes! Need gqood pri.ors!



Bypassing the curse

We need to build compositionality into our ML models

Just as human languages exploit compositionality to give
representations and meanings to complex ideas

Exploiting compositionality gives an exponential gain in
representational power
Distributed representations / embeddings: feature learning

Deep architecture: multiple levels of feature learning

Prior: compositionality is useful to describe the
world around us efficiently

44



45

Six Grood Reasons ko Exptare.
Represen&abiov\ Leariing



# 1 Learning fe.a&wre.s , hot jus&
handerafting them

Most ML systems use very carefully hand-designed
features and representations

Many practitioners are very experienced — and good — at such
feature design (or kernel design)

“Machine learning” often reduces to linear models (including
CRFs) and nearest-neighbor-like features/models (including n-
grams, kernel SVMs, etc.)

Hand-crafting features is time-consuming, brittle, incomplete

46



#2 Distributed Represen&a&&av\s

Many neurons active simultaneously in the brain: around
1%

The input is represented by the activation of a set of
features that are not mutually exclusive.

Can be exponentially more efficient than local
representations




#2 Nown-distributed represen&a&iav\s

e (lustering, Nearest-

Clusterin
N ne Neighbors, RBF SVMs, local
X > non-parametric density
D estimation & prediction,

decision trees, etc.

e Parameters for each
distinguishable region

LOCAL PARTITION

e # of distinguishable regions
is linear in # of parameters

- No non-trivial generalization to regions without examples

48



#2 The power of distributed

represen tatiowns

49

Factor models, PCA, RBMs,
Neural Nets, Sparse Coding,
Deep Learning, etc.

Each parameter influences
many regions, not just local
neighbors

# of distinguishable regions

grows almost exponentially
with # of parameters

GENERALIZE NON-LOCALLY
TO NEVER-SEEN REGIONS

Multi-
Clustering

C1

artition 1

Cl=1
C2=0
C3=0

Cl1=0
C2=1
C3=0

Sub-— p’utltlon 3

Sub-—partition 2

\ Cl=1
v C2=0 ,:'
\C3=1 j

\ C1=0
C2=1
\ C3=1

\

DISTRIBUTED PARTITION \\

C2

input

C3

Non-mutually
exclusive features/
attributes create a
combinatorially large
set of distinguiable
configurations



#2 The power of distributed
representations

Learned attributes/
embeddings

Sub—partition 3 o
\ Sub-—partition 2

N-grams,
clustering, etc.

X v Cl=1
Cl=1 \ €220 7
C2=0 \C3=1 7
C3=0 L
v
. Sub—partition 1 o -
‘3

prototypes

Cl1=0

et \ Ci=0
C3=0 \ Co=1
\ C3=1

DISTRIBUTED PARTITION \

LOCAL PARTITION

Learning a set of features that are not mutually exclusive
can be exponentially more statistically efficient than
having nearest-neighbor-like or clustering-like models

50



# 2 The need for distributed
representations

Multi-

Clustering Clustering

Sub—partition 3 o
\ Sub-—partition 2

v Cl=1

X Cl=1 \ C2=0
C2=0 \C3=1 7
C3=0 \ 7
\/
o 7\ Cl=1
/ Sub—partition 1 : 5
X
C1=0
C2=1 \ C1=0
C3=0 \ =1
\ C3=1

DISTRIBUTED PARTITION
LOCAL PARTITION

Learning a set of features that are not mutually exclusive
can be exponentially more statistically efficient than
having nearest-neighbor-like or clustering-like models

51



Why N-grams have poor generalization

52

For fixed N, the function P(next word | last N-1 words) is learned
purely from the instances of the specific N-tuples associated
with each possible (N-1)-word context. No generalization to
other sequences of N words.

With back-off / smoothing models, there is some (limited)
generalization arising from shorter n-grams, for which there is

more data, at the price of less specific predictions.
the

No sharing, where lots ca{/\do
would be possible /\ /K

sat is sat barks

e

on 'YX



# 3 Unsupervised feature Learning

Today, most practical ML applications require (lots of)
labeled training data

But almost all data is unlabeled, e.g. text, images on the web

The brain needs to learn about 104 synaptic strengths

... in about 10° seconds
Labels cannot possibly provide enough information

Most information acquired in an unsupervised fashion

53



#3 How do humans generalize
from very few examples?

54

They transfer knowledge from previous learning:
* Representations

*  Explanatory factors

Previous learning from: unlabeled data
+ labels for other tasks

Prior: shared underlying explanatory factors, in
particular between P(x) and P(Y|x)



F 3 Sharing Statistical Strength bj
Semi-Supervised Learning

e Hypothesis: P(x) shares structure with P(y|x)

purely semi-
supervised P supervised

55



Why Semi-Supervised Learning Worlks

e The labeled examples (circles) help Without unlabele}examf)les
to identify the class of each cluster
of unlabeled examples.

e The unlabeled examples (colored
dots) help to identify the shape of

each cluster.

0 ? 3 7'?g = 1": A gie N _ r gr:’l
feW |abe|ed & ] "7‘; ‘e . ~‘ :;‘1-'4 ) :?:.n' ) ‘ | 11 l‘ ‘{ "" QI !l: r] ?’
examples wie | Tels 8 g8 mubnifiion & .{ \-._ ij‘m il hm i ol

A\ . "
happiness many unlabeled examples



#F 4 Depth

Deep Architecture in the RBrain

Q o0 9 Higherlevel visual
abstractions

Primitive shape
detectors

Edge detectors

pixels




very high level representation:

H 4 Levels of [l
Representation " A

. etc ...

4

slightly higher level representation

A

raw input vector representation:

A’=|23|19|20 18




#4 Deep Architecture in our mind

very high level representation:

 Humans organize their ideas and ol [STTG] -
concepts hierarchically A
 Humans first learn simpler concepts . efc ...
and then compose them to represent A
more a b St ra Ct ones slightly higher level representation
* Engineers break-up solutions into raw input vector representation:
multiple levels of abstraction and w=[23[1920] 18

évl-". ”T'Z 7Y

processing

It would be good to automatically
learn / discover these concepts

(knowledge engineering failed
because of superficial introspection?)



#4 Learning muﬂ:i.pl.e Llevels
of representation

There is theoretical and empirical evidence in favor of
multiple levels of representation

Exponential gain for some families of functions

Biologically inspired learning
Brain has a deep architecture

Cortex seems to have a
generic learning algorithm

Humans first learn simpler
concepts and then compose
them into more complex ones

60



#4 Sharing Compov\eu!:s i a ‘Deep
Architecture

Polynomial expressed with shared components: advantage of
depth may grow exponentially

(r179)(XoX3) + (r129) (23224) + (X2X3)2 + (x9x3)(7374)

3) 2X3) + (1374)
Sum-product
network
LYy

Theorems in
(Bengio & Delalleau, ALT 2011;

Delalleau & Bengio NIPS 2011)
xrs T4



#4“ Handling the compasi&iohau.&v
of human Language and thought

e Human languages, ideas, and “ \ i -
artifacts are composed from £>

simpler components I
Xt X, X1

e Recursion:the same
operator (same parameters) is
applied repeatedly on
different states/components
of the computation

e Result after unfolding = deep l(Bottou 2011, Socher et al 2011)
b

. computation / representation




#E Mulli-Task Learning

e Generalizing better to new tasks
(tens of thousands!) is crucial to
approach Al

e Deep architectures learn good
intermediate representations that
can be shared across tasks

(Collobert & Weston ICML 2008,
Bengio et al AISTATS 2011)

e Good representations that
disentangle underlying factors of
variation make sense for many tasks  E.g. dictionary, with intermediate
because each task concerns a concepts re-used across many definitions
subset of the factors

Prior: shared underlying explanatory factors between tasks
63



HE Combining Mulkiple Sources of
Evidence with Shared Representations

peron || wert
hi
e Relational learning: multiple sources, ol Jwords | history |

different tuples of variables
e Share representations of same types N
across data sources
e Shared learned representations help event ur' person

propagate information among data
sources: e.g., WordNet, XWN,
Wikipedia, FreeBase, ImageNet...

(Bordes et al AISTATS 2012, MLJ 2013)
* FACTS = DATA = P(person,url,event)
e Deduction = Generalization S

P(url,words,history)

e Traditional ML: data = matrix

history words url

64



#6 Different object types

represented in same space

DOLPHIN
OBAMA
—EIFFEL TOWER

) Google:

| S. Bengio, J.
Weston & N.
Usunier

Lo (1CAI 2011,

NIPS’2010,
JMLR 2010,
ML J. 2010)

100-dim
embedding space

Learn ®(<) and &,(-) to optimize precision@k.



#6 Invariance and Disen&ahgtihg

e |nvariant features

e Which invariances?

e Alternative: learning to disentangle factors

e Good disentangling =
avoid the curse of dimensionality

66



#6 Emergence of Disentangling

TR ;‘;—!
7 N
T

e (Goodfellow et al. 2009): sparse auto-encoders trained
on images

* some higher-level features more invariant to
geometric factors of variation

e (Glorot et al. 2011): sparse rectified denoising auto-
encoders trained on bags of words for sentiment
analysis

 different features specialize on different aspects
(domain, sentiment)

Bas St

67



#6 Sparse Representations

e Just add a sparsifying penalty on learned representation
(prefer Os in the representation)

e Information disentangling (compare to dense compression)
e More likely to be linearly separable (high-dimensional space)

e Locally low-dimensional representation = local chart
e Hi-dim. sparse = efficient variable size representation
= data structure

Few bits of information Many bits of information

H B I .

Prior: only few concepts and attributes relevant per example

68




arse Qec&bfier Neural Nebworles

and Bengio AISTATS 2011), foIIowmg up on (Nair & Hinton 2010) softplus RBMs

‘De.eor
Bordés

Glor

Neuroscience motivations Machine learning motivations

Leaky integrate-and-fire model

mm) Sparse representations
mm) Sparse gradients
mm) Trains deep nets even w/o pretraining

Rectifier mite container ship motor scooter leopard
f(X) =ma X(O ,X) mite container ship motor scooter ledpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

Output

Outstanding results by Krizhevsky et al 2012
killing the state-of-the-art on ImageNet 1000:

Hidden layer 2
e 2"d best 27% err
i Previous SOTA  45% err 26% err
Krizhevsky etal 37% err 15% err




Tem Foral. Coherence and Scales

* Hints from nature about different explanatory factors:
e Rapidly changing factors (often noise)
* Slowly changing (generally more abstract)
e Different factors at different time scales

e Exploit those hints to disentangle better!

e (Becker & Hinton 1993, Wiskott & Sejnowski 2002, Hurri &
Hyvarinen 2003, Berkes & Wiskott 2005, Mobahi et al
2009, Bergstra & Bengio 2009)



Bypassing the curse by sharing
statistical strength

e Besides very fast GPU-enabled predictors, the main advantage
of representation learning is statistical: potential to learn from
less labeled examples because of sharing of statistical strength:

* Re-use, combination and composition of learned functions/
factors

* Unsupervised pre-training and semi-supervised training

* Multi-task learning

* Multi-data sharing, learning about symbolic objects and their
relations

71



W‘kv NOwW ¢

Despite prior investigation and understanding of many of the
algorithmic techniques ...

Before 2006 training deep architectures was unsuccessful
(except for convolutional neural nets when used by people who speak French)

What has changed?

*  New methods for unsupervised pre-training have been
developed (variants of Restricted Boltzmann Machines =
RBMs, regularized auto-encoders, sparse coding, etc.)

*  New methods to successfully train deep supervised nets
even without unsupervised pre-training

*  Successful real-world applications, winning challenges and

beating SOTASs in various areas, large-scale industrial apps
72



73

Ability to train deep architectures by
using layer-wise unsupervised
learning, whereas previous purely
supervised attempts had failed

Unsupervised feature learners:
* RBMs

e  Auto-encoder variants

Sparse coding variants

WA  Bengi
Montréal
Torontg 7R
Hinto -
%8 Le Cun
212 New York



More about depth



Architecture bep!:k

output
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'Dee.p Architectures are Mo»re
Expre.sswe.

Theoretical arguments:

=

Logic gates

2 layers of = Formal neurons = universal opproximo‘ror
RBF units

RBMs & ou’ro encoders = universal approximat;
Theorems on advantage of depth:

(Hastad et al 86 & 91, Bengio et al 2007,

Bengio & Delalleau 2011, Braverman 2011,

Pascanu et al 2014)

Some functions compactly
represented with k layers may

require exponential size with 2
layers




N

bsubsub] subsubsub?

subsubsu //////////fBbS“bSUbs
subsub1 subsub2 subsub3

sub //jgbZ sub3
\ . /

“Deep” computer program



subroutine1 includes gybroutine? includes
subsub1 code and  sybsub2 code and
subsub2 code and  sybsub3 code and

subsubsub1 code subsubsub3 code and ...

\\ /

main

“Shallow” computer program
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COMNECTION ADNTS SEE
BELow FOR NEATR CRCUT
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“Shallow” circuit

iInput

123 n

Falsely reassuring theorems: one can approximate any
reasonable (smooth, boolean, etc.) function with a 2-layer
architecture



/

Good zwork -- but 7 think
we rmiight need a little
rmiore detail right fere.

81
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Part 2

Representation Learhing
Algorithms



Linear Regression

Neural network view

Intuitive understanding of the dot product:
each component of x weighs differently on the response.

yIfO(X) = W1X1 + WoXo + ...+ WgXqg+ b

Neural network terminology:

l

p \“ ‘ o / :
A~
0 linear output neuron ,‘R.F )
Dol

Y NEURON A
o
Arsaapes sent down axon ‘

-
Q/l‘ e e

0 R ~\¢ .

-1
Dendeise

layer of input neurons




Logistic Regression / |

e Predict the probability of a |
category vy, given input x /

* P(Y=y | X=x)

e Simple extension of linear
regression (binary case):
e P(Y=1 | X=x) = sigmoid(b + w. x)
e Train by tuning (b,w) to maximize
average log-likelihood

P(Y=1|x)

Average( log P(Y=y|X=x) )
over training pairs (x,y), by gradient-

logistic output neuron

based optimization (

e This is a very shallow neural input x

network (no hidden layer)
84



A neural network = running several
Logistic regressions at the same time

If we feed a vector of inputs through a bunch of logistic regression
functions, then we get a vector of outputs

But we don’t have to decide
ahead of time what variables

these logistic regressions are
trying to predict!

85



A neural network = running several
Logistic regressions at the same time

... which we can feed into another logistic regression function

and it is the training
criterion that will
decide what those
intermediate binary
target variables should
be, so as to make a
good job of predicting
the targets for the next
layer, etc.

86



A neural network = running several
Logistic regressions at the same time

e Before we know it, we have a multilayer neural network....

87



Bac:k-—?rap

e Compute gradient of example-wise loss wrt
parameters

* Simply applying the derivative chain rule wisely
_ _ Oz __ Oz Oy
e=fly) y=9) 5 =573

* |f computing the loss(example, parameters) is O(n)
computation, then so is computing the gradient

88



Simn Fte. Chain Rule

89

Az = %Ay

Ay = =2 Ax

Az = g; ngx
9z _ 9z dy

Ox ~ Oy Ox



Mutl:i;pte. Palbths Chain Rule

Oz __ Oz Oy

Oz OYo

X Ox ~ Oy; Ox

90

Oys Ox



Mutf:ipte. Pabhs Chain Rule - General

&

91



Chain Rule in Flow G-'mpk
2

Flow graph: any directed acyclic graph
node = computation result
arc = computation dependency

{y1, Y2, ... yn}=successors of T

0z 0vy;
Z 0y; Ox
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Back—-‘?ralo TN Mutti—Laye.r Net
NLL = —log P(Y = y|x)
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Bmck'-?rrpp in Greneral Flow G*mpk

Single scalar output 2

1. Fprop: visit nodes in topo-sort order
- Compute value of node given predecessors
2. Bprop:
- initialize output gradient =1
- visit nodes in reverse order:
Compute gradient wrt each node using
gradient wrt successors

{yl, Y2, « .. yn} = successors of I
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Back-Prop in Recurrent & Recursive

Nets

* Replicate a
parameterized function
over different time
steps or nodes of a DAG

* Qutput state at one
time-step / node is used
as input for another
time-step / node

95
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Backpropagation Through Structure

* Inference - discrete choices
* (e.g., shortest path in HMM, best output configuration in CRF)

E.g. Max over configurations or sum weighted by posterior

The loss to be optimized depends on these choices

The inference operations are flow graph nodes

If continuous, can perform stochastic gradient descent

* Max(a,b) is continuous. o
O______.
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Automatic Differentiation

* The gradient computation can

\ : .

'ﬁ ﬂ. be automatically inferred from
the symbolic expression of the

fprop.

* Each node type needs to know
how to compute its output and
how to compute the gradient
wrt its inputs given the
gradient wrt its output.

\
""Q‘L’ e Easy and fast prototyping

- theano
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“Dee.p Su.pervi.sed Neural Nets

98

We can now train them even
without unsupervised pre-
training, thanks to better
initialization and non-linearities
(rectifiers, maxout) and they can
generalize well with large labeled
sets and dropout.

Unsupervised pre-training still
useful for rare classes, transfer,
smaller labeled sets, or as an extra
regularizer.




Stochastic Neurowns as Regularizer:
Improving neural networks by preventing co-adaptation of

feature detectors (Hinkown ek al 2012, arXiv)

e Dropouts trick: during training multiply neuron output by
random bit (p=0.5), during test by 0.5

e Used in deep supervised networks
e Similar to denoising auto-encoder, but corrupting every layer

e Works better with some non-linearities (rectifiers, maxout)
(Goodfellow et al. ICML 2013)

e Equivalent to averaging over exponentially many architectures
* Used by Krizhevsky et al to break through ImageNet SOTA
e Also improves SOTA on CIFAR-10 (18—2>16% err)
* Knowledge-free MNIST with DBMs (.952.79% err)
o TIMIT phoneme classification (22.7219.7% err)
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Temporal & Spatial Inputs:
Convolutional & Recurrent Nets

e Local connectivity across time/space
e Sharing weights across time/space (translation equivariance)

e Pooling (translation invariance, cross-channel pooling for learned invariances)
Input layer (S1) 4 feature maps

(Cl) 4 feature maps (S2) 6 feature maps

(C2) 6 feature maps

l sub-sampling layer l convolution layer l sub-sampling layer | fully connected MLP |

><1048 dense ‘ ‘ ‘
Xt Xt Xt

dense|

Il Recurrent nets (RNNs) can summarize
information from the past

Bidirectional RNNs also summarize
101 information from the future



Cownvolution = sparse connectivitu +
parame&er sharing s =@ w)t)= 3 slajuft—

a=—00
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Pooling Layers

e Aggregate to achieve local invariance

NoloIoIO R OIOIoION

Max-pooling Effect of translation

e Subsampling to reduce temporal/spatial scale and computation
() (1) (02) (o) (o0) (01
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Mutl:sipte. Convolutions: Feature Maps
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Alternating convolutions & pooling

e |nspired by visual cortex, idea from Fukushima’s Neocognitron,
combined with back-prop and developped by LeCun since 1989

Input layer (S1) 4 feature maps

1 1 (CI) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

convolution layer l sub-sampling layer | convolution layer l sub-sampling layer | fully connected MLP |

e |ncreasing number of features, decreasing spatial resolution

° Top Iayers are fu”y connected Krizhevsky, Sutskever & Hinton 2012
breakthrough in object recognition

128 ><2_4><zm; dense

dense dense)

128 Max

pooling 204 2048
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Distributed Representations
& Neural Nets:

How ko do uv\supervised

training?
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Unsupervised and Transfer Learning
Challenge + Transfer Learning

Raw data

ICML’2011
workshop on

Unsup. &

Transfer Learning:™”|

095

085

curve (AUC)
o

o
< 065

3 layers

Cha%ﬁvxgez ‘De.e,gwg‘.aamm

2 layers

3 4
N umber ot tiaining e xamples)

SYLVESTER VALID: ALC=09316

q 1lst Place

NIPS’2011
Transfer
Learning

Challenge
Paper:
ICML’2012

& 9 & &
4 layers

LogziN umber ot training examples)




i CA code= latent features h

C0000

= Linear Manifold / \
= Linear Auto-Encoder
=L

ear Gaussian Factors 000 @ @0 - O

input reconstruction
Input x, 0-mean Linear manifold
features=code=h(x)=W x
reconstruction(x)=W" h(x) = W™ W x x x

W = principal eigen-basis of Cov(X)

Probabilistic interpretations:

1. Gaussian with full
covariance W' W+Al

2. Latent marginally iid
Gaussian factors h with
x = WT h + noise
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Directed Factor Models:

109

‘P(x,k).-‘?(k)‘?(xlh)

factors prior  likelihood
P(h) factorizes into P(h,) P(h.,)...
Different priors: 1 2 2’) 2N D s
* PCA: P(h,) is Gaussian
* ICA: P(h,) is non-parametric
* Sparse coding: P(h,) is concentrated near O
Likelihood is typically Gaussian x [ h

with mean given by W' h
procedures (predicting h, given x) differ

Sparse h: x is explained by the weighted addition of selected filters h,
X hl h3 W3 h5 W5

ZA<=.9x / +.8x +.7x \




Sparse autoencoder illustration for
images

Natural Images

Learned bases: }

Test example

lh,, ..., hel] = 1[0,0,..,0,0.8,0,..,0,0.3,0,..0,0.5,0]
110 (feature representation)




Stacking Single-Layer Learners

e PCAis great but can’t be stacked into deeper more abstract

representations (linear x linear = linear)
e One of the big ideas from Hinton et al. 2006: layer-wise

unsupervised feature learning

P e— — — — — — — —

10OCOO0O) h!

RBM |

..... >
'©oooooo) by

'(OOOOOOO) bl
!
!

©000000 !

| RBM

Cooo'ooo@ x

RBM for hy

RBM for x

" T ©0O00000) hy

' RBM '
| |

(O @OOOOOO) hal

(OOOOOOO) X

RBM for ¥ and hy

Stacking Restricted Boltzmann Machines (RBM) - Deep Belief Network (DBN)

111



Effective deep Learning first became
possible with unsupervised pre-training

(with RBMs and Denoising Auto-Encoders)

With unsupervised pre-training

T 3 T T
28 R . B ag ERUTUORRR RS O A TRRPPPPPPP T TR O
f : + : : : :
: T —_ H : : :
o 2 b IR i .................................................... T o2k SRR O PSPPSR O SR
[ : : : a ; : : :
o : : | : : : :
= 0y PR PP PRPPPES j: ..................... L PR PRRRERE _ e: 3 b e
‘6 : t i P : F : :
E i : : g : : : :
B 23| e i ..................... i ..................... T s ol O O SO O U
c ; ¥ : : : + :
+ | : s : : : :
:g ¥ i l L : : : :
~~~~~~ _'__41_ R, B RAAREEERTEEERERPRRER -t S
8 2 | | | i c 2 : : : :
= = ' ' 2 : : + H
nisF- | EEEEEEEEEE] EREREEEEES [ --L— ----------------------------- W o1sk U s A A e
2 ! — . | g z 5 z !
© —_— | 1 — : : : :
=] SRR e LT U e R
= ; A e R : ‘ =3
@ : 5 : . i B H H I
= B T ST T TS ST P T ST PUE PR TP TP P TP POUUUURPUPRUUN 4 = — 1 . - I
1.4 ! 14 | IRRREEREEE o [ EEREERERRERRERPRPRES Jrorre
: T —_ 5 ]
: | | i i
: —_— T |
1o b s _— N ]
i 12 § + St KI% | I
1 1 1 1
! 2 3 4 1 2 3 4 5

number of layers number of layers
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Op

timizing Deep Nown-Linear

ComPosi.l:iov\ of Functions Seems Hard

113

Failure of training deep supervised nets before 2006

Regularization effect + optimization effect of
unsupervised pre-training

Is optimization difficulty due to
* ill-conditioning?

* local minima?

* something else?

The jury is still out, but we now have success stories of training
deep supervised nets without unsupervised pre-training



Initial Examytes Matter More
(eritical peri‘.od?)

Variance of the output

[os]

4 < =x 1-layer network without pretraining
€5 _“ ® @ 1-layer network with RBM pre-training
[} \ . N N . N N . .
£ \ 5
P20 N WS RV SO RS S SN S R
e N
= \\“
m5_ ..... \. ............................................................................................
gl A\
° b
%4_ ........ %\ ......................................................................................
o e : : : : : : ;
Solo S K S R S
5 s NIRRT : s e
> : Q : : X"'%----:-_X ) !
) ' ' . H \ . -~
] IS R SN SRR S— SN S S
®.. y
g L R S ‘.-“---‘-____._“/

; ; i ; ; i
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction at which we vary the examples

(o)
o
o—-
=
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Order & Selection of Examples Ma!:&ars

(Bengio, Louradour, Collobert & Weston, ICML’2009)

e Curriculum learning

e (Bengio et al 2009, Krueger & Dayan 2009) Ik ok VN

e Start with easier examples

—curriculum

e Faster convergence to a better local = = no-curriculum
minimum in deep architectures
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Curriculum Learning

Guided learning helps fraining humans and animails

Start from simpler examples / easier tasks (Piaget 1952, Skinner 1958)



Continuation Methods

Final solution

Track local minima

asy to find minimum



Layer-wise Uhsupervised Learning

Input 000 .. O
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Layer-Wise Unsupervised Pre-training

features O00©® ... @
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Layer-Wise Unsupervised Pre-training

features O 0®@®

_ ?
reconstruptlon 00 ..0 = 000 O input
of input '\
.\
Input %
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Layer-Wise Unsupervised Pre-training

features O00©® ... @
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Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..
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Layer-wise Unsupervised Learning

reconstruction '
Q0O 09 .. ©

"
of features O »\ T l

More abstract

features ;'

features O0® ... @
input %@y
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Layer-Wise Unsupervised Pre-training

More abstract

features V '{

features O 0®@®

Input o0 ..
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Layer-wise Uhsupervised Learning

Even more abstract
features O

® ..
More abstract I/;><
features V o 'ﬁ

features 00©® ... @

Input o0 ..
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Supervi.se.d Fine-Tuning

Output - Target
f(X) six _Y
@
Even more abstract / / \
features O

.. @
More abstract I/;><T
features V 'ﬁ

features WV
iInput o0 ..

e Additional hypothesis: features good for P(x) good for P(y|x)
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Greedy Layerwise Su,pervisad Training

s

U
h2©OQ§)OOO> hz@OOCADOOO)
W» U, W,
nQOOOO00D hi@OOSDOOO) y m@OOCBOOO)
W, Uy W1 Wi
x s xQO0O00 x ©O0000)

Generally worse than unsupervised pre-training but better than ordinary
training of a deep neural network (Bengio et al. NIPS’2006). Has been used
successfully on large labeled datasets, where unsupervised pre-training did
not make as much of an impact.



Supervised Fine-Tuning is Important

e Greedy layer-wise
unsupervised pre-

0.10

1Nt 1 —— No AA, hidden supervised fine-tuning
traln | ng phase Wlth ------ No AA, no hidden supervised fine-tuning
_ ---- AA, hidden supervised fine-tuning
RBMS or aUtO enCOderS - - AA, no hidden supervised fine-tuning

on MNIST

e Supervised phase with or
without unsupervised
updates, with or without
fine-tuning of hidden
layers

e (Cantrain all RBMs at the °® 5 160 150 700
same time, same results

0.05F

o



Understanding the difficully of
training deep feedforward
supervised heural networks

(Glorot & Bengio, AISTATS 2010)

Study the activations and gradients
* wrt depth
* as training progresses
 for different initializations = big difference
 for different non-linearities = big difference

First demonstration that deep supervised nets can be successfully
trained almost as well as with unsupervised pre-training, by
setting up the optimization problem appropriately...



Reskricted Bolkzmann Machines



Undirected Models:

the Restricted

[Hinton et al 2006]

, Boltzmann Machine

Probabilistic model of the joint distribution of
the observed variables (inputs alone or inputs
and targets) x

hy hy hy

Latent (hidden) variables h model high-order
dependencies

Inference is easy, P(h|x) factorizes into product
of P(h; | x)

X1 X

See Bengio (2009) detailed monograph/review: ﬂ
“Learning Deep Architectures for Al”.

See Hinton (2010)
“A practical guide to training Restricted Boltzmann Machines”



Bolkzmann Machines & MRFs

e Boltzmann machines:

- 1 1 1 S oo —
(Hinton 84) P(CE) _ Ze—Energy(m) _ ZecTzz:-{—a:TWm _ Eezz 'L-'L'z'*‘zz.’j z;Wijxj

e Markov Random Fields:
Undirected

graphical

1 i o models
P(x) = Eezi ’Lfi.(\)

Soft constraint / probabilistic statement

® More interesting with latent variables!



Restricted Boltzmann Machine
(RBM)

P(m h) — lebTh-i-cT:L’-i-hTWm — lezz bihi+2j Cjil}j-i-zi,j hiW;;x;
) 7 7
e A popular building
block for deep
architectures

O - ¢ n hidden

e Bipartite undirected
graphical model

x Observed



Block Gribbs Sampling in RBMs

h, ~P(h]x) h, ~P(h1X,) hs ~P(h|x;)

N~

C
X, X, ~ P(x|h,) X3~ P(x|h,)

pum—

® Fasy inference

P(h]x) and P(x|h) factorize = ' . p 1\ Gibbs

P(h|x)=T1 P(h,|x) sampling x>h=>x->N...

“—

T T T
P($,h) — %6b h+c” z+h” Wx



RBM with (imaqe, Label) visible uniks

hidden

OCOOO OO0

A
@XXX) 00000

label

Y

(Larochelle & Bengio 2008)



RBMs are Universal Approximators

(Le Roux & Bengio 2008)

e Adding one hidden unit (with proper choice of parameters)
guarantees increasing likelihood

e With enough hidden units, can perfectly model any discrete
distribution

e RBMs with variable # of hidden units = non-parametric



REBM Conditionals Factorize

b/ / /
P(hix) — exp(b’x + c’h + h/Wx)

St exp(b/x + ¢/h + h/Wx)
I, exp(c;h; + h; W;x)
H,L- Zfli eXp(Cifli + EZWZX)

B H exp(h;(c; + W;x))
2 exp(hy (s + Wix)

= H P(h;|x).




RBM Energy Gives Binomial Neurons

With h; € {0,1}, recall Energy(x,h) = —b’x — c’h — h'Wx

elci +1W;x+other terms

P(hz = 1|X) - elci—{—lwix—i—other terms + eOc,-+OW,-x—|—other terms

eci +W;x

eci+Wix + 1
1
1 _|_ e_ci_Wix
= sigm(c; + W;x).

1
l+e—a"

since sigm(a) =



G—Energy(x,h)

RBM Free Energy Pxh=—7p

* Free Energy = equivalent energy when marginalizing

—Energy(x,h) e—FreeEnergy(X)

€

P(x) = Eh: = = =

e Can be computed exactly and efficiently in RBMs
FreeEnergy(x) b'x — Z log Z ehi(ci +Wix)

e Marginal likelihood P(x) tractable up to partltlon function Z



Energy-Based Models Gradient

e —Energy(x)

_ _ —Energy(x)
P(x) = 7 Z = Z e sy
Olog P(x)  OEnergy(x) 0OlogZ
00 B 00 00
dlogZ  dlog). e Eneray(®)
oo B 00
10 ZX e—Energy(x)
- Z 0
— _i Energy(x) 8EnergY( )
Z 00

B Z P(x (9Energy( )




Bolkzmann Machine Gradient

P(.T) =~ Zh e—Energy(m h) _

e Gradient has two components:

0log P(x)

o6

[“posiﬂve phose”]

—FreeEnergy(:c)

[“negaﬂve phase” ]

Vs

| OFreeE ~ 6FreeEnergy(5:)\
(b My, P02
OE h OE h
— 3 P(h|z) negriat) Zg{;ﬁp( h) S=Re (L. )
o J

® |n RBMs, easy to sample or sum over h|x
m Difficult part: sampling from P(x), typically with a Markov chain




Positive & Negative Samples

 Observed (+) examples push the energy down

e Generated / dream / fantasy (-) samples / particles push
the energy up

X- Equilibrium: E[gradient] =0



Training RBMs

Contrastive Divergence: start negative Gibbs chain at observed x, run k
(CD-k) Gibbs steps

SML/Persistent CD: run negative Gibbs chain in background while
(PCD) weights slowly change

Fast PCD: two sets of weights, one with a large learning rate

only used for negative phase, quickly exploring
modes

Herding: Deterministic near-chaos dynamical system defines
both learning and sampling

Tempered MCMC: use higher temperature to escape modes



Contrastive Divergence

Contrastive Divergence (CD-k): start negative phase

block Gibbs chain at observed x, run k Gibls steps
(Hinton 2002)

h™ ~P(h|x") h™~P(h|x)
é c
Observed x* k=2steps Sampled x
positive phase negative phase
push down

Free Energy

push up



Persistent CD (PCD) / Skochastic Max.

Likelihood (SML)

Run negative Gibbs chain in background while weights sloy¥s
change (Younes 1999, Tieleman 2008).

* Guarantees (Younes 1999; Yuille 2005)

* |f learning rate decreases in 1/t,

chain mixes before parameters change too much,

chain stays converged when parameters change

h*~P(h|x")

Observed x*
(positive phase)

previous X

new x



Obstacle: Vicious Circle Bebtween
Learhing and MCMC Sampling

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?

Training updates

Gicious circl§

Mixing

146 A\WUAN



Sowme RBM Variawks

e Different energy functions and allowed
values for the hidden and visible units:

* Hinton et al 2006: binary-binary RBMs
Welling NIPS’2004: exponential family units )

Ranzato & Hinton CVPR’2010: Gaussian RBM weaknesses (no
conditional covariance), propose mcRBM

e Ranzato et al NIPS’2010: mPoT, similar energy function
Courville et al ICML’2011: spike-and-slab RBM
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Convolubionally Trained
Spilke & Slab RBMs Samples




ssRBM is not Cheating

Samples from p-ssRBM:

T:
9
o
£
©
(%)
©
Q
)
O
| -
()]
C
()
OF

Nearest examples in CIFAR:
(least square dist.)

Training examples




Auto-Encoders & Variawks:
Learning a computational graph



Compu&a&iov\ai. Grapks

e Operations for particular task

 Neural nets’ structure = computational graph for P(y|x)
e Graphical model’s structure # computational graph for inference

e Recurrent nets & graphical models

= family of computational graphs sharing parameters

e Could we have a parametrized family of computational graphs
defining “the model”?
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Sim pl.e. Aubto-Encoders

152

code= latent features h

MLP whose target output = input CO0000

encoder
Reconstruction= decoder(encoder(mput / Wr
mput X

e.g. O
h = tanh(b + Wx
reconstruction = tanh(c+ W7h)
Loss L(z,reconstruction) = ||reconstruction — z||?

With bottleneck, code = new coordinate system
Encoder and decoder can have 1 or more layers
Training deep auto-encoders notoriously difficult

Ce0 - O

reconstruction

r(x)



Link Between Contrastive Divergence
oand Aubto-Encoder Reconstruction
Error Gradient

e (Bengio & Delalleau 2009):

e CD-2k estimates the log-likelihood gradient from 2k
diminishing terms of an expansion that mimics the Gibbs
steps

e reconstruction error gradient looks only at the first step, i.e.,
is a kind of mean-field approximation of CD-0.5

d

-1
0log P(xy) Z(ElélogP(xslhs) 4 . ElﬁlogPa(l;slxm)

00

|

s=1

0log P(x;)
+ E [ 50




I finally understand what
auto-encoders do!

e Tryto carve holes in ||r(x)-x||*> or -log P(x | h(x)) at examples

vy

e Vector r(x)-x points in direction of increasing prob., i.e. estimate
score = d log p(x) / dx: learn score vector field = local mean

e Generalize (valleys) in between above holes to form manifolds

e drlx)/dx estimates the local covariance and is linked to the
Hessian d?log p(x) / dx?

A Markov Chain associated with AEs estimates the data-
generating distribution (Bengio et al, arxiv 1305.663, 2013)

154



Stacking Auto-Encoders

r

U
hz@OOQOOO) hz@OOQOOO)
W, w;' W,
llelelelelelel0) h;@OOOOO>OOOOOOO)HI nOOOO000)
W, Wy W;A W:A
x ©O000CO000D x©OO0O x ©O000)

Auto-encoders can be stacked successfully (Bengio et al NIPS’2006) to form !
highly non-linear representations, which with fine-tuning overperformed i
purely supervised MLPs
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(Auto-Encoder) Reconskruction Loss

e Discrete inputs: cross-entropy for binary inputs
* -2 x log r(x) + (1-x.) log(1-r,(x)) (with 0<r,(x)<1)

or log-likelihood reconstruction criterion, e.g., for a
multinomial (one-hot) input

* -2 x logri(x) (where 2.r(x)=1, summing over subset of inputs
associated with this multinomial variable)

e |In general: consider what are appropriate loss functions to
predict each of the input variables,

typically, reconstruction neg. log-likelihood —log P(x | h(x))
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Denoising Auto-Encoder B

(Vincent et al 2008)

e Corrupt the input during training only
e Train to reconstruct the uncorrupted input

Hidden code (representation) KL(reconstruction | raw input)

(OO0

-V W

-
-
-~
-

-
-

RORO Ole— (00000 (OO000)

Corrupted input Raw input reconstruction

e Encoder & decoder: any parametrization
e As good or better than RBMs for unsupervised pre-training



Denoising Auto-Encoder
e Learns a vector field pointing towards

higher probability direction (Alain & Bengio 2013) concentrate near a
r(x)-x o< dlogp(x)/dx lower dimensional
“manifold”

e Some DAEs correspond toa kmd of

Matching (Vincent 2011)
[equivalent when noise—>0]
* Compared to RBM: Corrupted input
No partition function issue, -~ —g_
+ can measure training

. \ 1
criterion .« _ 7

prior: examples



Auto-Encoders Learn Salienk
Variakions, Like a non-Linear PCA

..0 .(

* Minimizing reconstruction error forces to

keep variations along manifold. ®
* Regularizer wants to throw away all

variations. 9
e With both: keep ONLY sensitivity to

variations ON the manifold.
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First Theoretical Resullks on
Probabilistic Interpretation of Auto-

Eut:oders (Vincent 2011, Alain & Bengio 2013)

* Continuous X

* @Gaussian corruption

e Noiseoc—=>0

 Squared reconstruction error | |r(X+noise)-X| |2

(r(X)-X)/o? estimates the score d log p(X) / dX

e Langevin + Metropolis-Hastings can be used to approximately
sample from such a model, but mixing was poor
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ularized Auto-Encoders Learn a

9
Vector Field or a Markov Chain

Transition Diskribution

e (Bengio, Vincent & Courville, TPAMI 2013) review paper
(Alain & Bengio ICLR 2013; Bengio et al, arxiv 2013)
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Lamﬁraﬁhve Aubto-Encoders

‘ 6 (Rifai, Vincent, Muller, Glorot, Bengio ICML 2011; Rifai, Mesnil,
- Vincent, Bengio, Dauphin, Glorot ECML 2011; Rifai, Dauphin,
Vincent, Bengio, Muller NIPS 2011)

reconstruction(x) = g(h(x)) = decoder(encoder(z))

Training criterion:

2
Jcar(0) Z )\Z 8:1: ) + L(z, reconstruction(x))

xeD, 1] |

wants contraction in all cannot afford contraction in
directions manifold directions

If h;=sigmoid(b;+W; x)

(dh,(x)/dx)? = h2(1-h)2W,2



L.c:»v\%ra\&%wa Aubto-Encoders

BF ¥ (Rifai, Vincent, Muller, Glorot, Bengio ICML 2011; Rifai, Mesnil,
- Vincent, Bengio, Dauphin, Glorot ECML 2011; Rifai, Dauphin,
Vincent, Bengio, Muller NIPS 2011)

Most hidden units saturate (near
0 or 1, derivative near 0):

few responsive units represent
the active subspace (local chart)

Each region/chart = subset of active hidden units
Neighboring region: one of the units becomes active/inactive
SHARED SET OF FILTERS ACROSS REGIONS, EACH USING A SUBSET



Coordinate System & Eigenspectrum

e |deal spectrum of dh/dx for manifolds

A

d
= manifold dimension
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1.5

O
in

Jacobian singular values

CIFAR-10

o AE
o CAE

- -
-

Jacobian’s spectrum is peaked =
RN local low-dimensional
: _>.representation / relevant factors

[E—

100 200 300 400 500 600 700 800
# singular values
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Input Point Tangents

MNIST

167



Input Point Tangents

MNIST Tangents

168



Diskributed vs Local
(CIFAR-10 unsupe.rvised)

Input Point Tangents

Contractive Auto-Encoder
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Denoising auto-encoders
are also contractive!

e Taylor-expand Gaussian corruption noise in reconstruction

error.

El(z,r(z+¢€))]

Q

E

(zz: — (r(m) +

E|

or(x)
oz

N’ (- (mmggu))]

or(x)

e Yields a contractive penalty in the reconstruction function
(instead of encoder) proportional to amount of corruption noise
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Learhed Tangent Pro !:
the Manifold Tangent Classifier

(Rifai et al NIPS 2011)

3 hypotheses:

1. Semi-supervised hypothesis (P(x) related to P(y|x))

2. Unsupervised manifold hypothesis (data
concentrates near low-dim. manifolds)

3. Manifold hypothesis for classification (low density
between class manifolds)



Learhed Tangent Pro &F:
the Manifold Tangent Classifier

Class 1
manifold

Makes classifier f(x) insensitive to
variations on manifold at x

Tangent plane characterized by dh(x)/dx

manifold

(Rifai et al NIPS’2012)



Learhed Tangent Pro &P:
the Manifold Tangent Classifier

Algorithm:

1. Estimate local principal directions of variation U(x)
by CAE (principal singular vectors of dh(x)/dx)

2. Penalize f(x)=P(y|x) predictor by || df/dx U(x) ||

Makes f(x) insensitive to variations on manifold at x,
tangent plane characterized by U(x).



Manifold Tangent Classifier Resulbs

e Leading singular vectors on MNIST, CIFAR-10, RCV1:

Trading +gilt -slow +matur -percent | +bin -anti +interest -sen
& +yen -term +auction -sent +coupon  -predict | +calcul -californ
Markets +usda -debt +treasur -pressure | +discount -belgian | +overnight -introduc

e Knowledge-free MNIST: 0.81% error

K-NN NN SVM  DBN CAE DBM CNN MTC
3.09% 1.60% 1.40% 1.17% 1.04% 095% 0.95% 0.81%

° -
Semi-su P. NN SVM CNN TSVM DBN-INCA EmbedNN CAE MTC
100 | 25.81 2344 2298 16.81 - 16.86 1347 12.03
600 | 1144 885 7.68 6.16 8.7 5.97 6.3 5.13
1000 | 10.7  7.77  6.45 5.38 - 5.73 477  3.64
3000 | 6.04 421  3.35 3.45 3.3 3.59 3.22  2.57

SVM  Distributed SVM MTC

* Forest (500k examples)
4.11% 3.46% 3.13%




Predictive Sparse ‘De.composﬁkiav\

e |ntroduce an auxiliary variable in auto-encoder fq
D CT

e Approximate the inference of sparse coding by a
parametric encoder:

Predictive Sparse Decomposition
(Kavukcuoglu et al 2008)

e Very successful applications in machine vision
with convolutional architectures

@ Fe(z; K) (2 )——

175 2|1




Predictive Sparse. ‘be.composikioh

e Stacked to form deep architectures F“EE-

 Alternating convolution, rectification, pooling ﬁ‘ilﬁ““

 Tiling: no sharing across overlapping filters I.Iﬂ‘nh.ii.nili

e Group sparsity penalty yields topographic Sl Frar
maps

Overlapping — ) .
Neighborhoods v = ,/2 w; 2} fx\\ Fo(z; K) ()
Pi P1 'P\ls JEPR; U e ) v
~ | ~
e — &2 NN
D (2)
oY
K
/\Z wjzj2
. _ i=1 \| jeP
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Deep Varianks



Level-Local Learning is Important

e |nitializing each layer of an unsupervised deep Boltzmann
machine helps a lot

e |nitializing each layer of a supervised neural network as an RBM,
auto-encoder, denoising auto-encoder, etc can help a lot

e Helps most the layers further away from the target
* Not just an effect of the unsupervised prior

e Jointly training all the levels of a deep architecture is difficult
because of the increased non-linearity / non-smoothness

e |nitializing using a level-local learning algorithm is a useful trick

e Providing intermediate-level targets can help tremendously
(Gulcehre & Bengio ICLR 2013)



Stack of RBMs / AEs
> Deep MLY

 Encoder or P(h|v) becomes MLP layer
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Staclk of RBMs / AEs
= De.e.r Auto-Encoder

(Hinton & Salakhdtdinov 2006)

e Stack encoders / P(h|x) into deep encoder
e Stack decoders / P(x|h) into deep decoder

o
"
j—
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Stack of RBMs / AEs

> 'De.e.p Recurrent Auto-Encoder
(Savard 2011) REl (Bengio & Laufer, arxiv 2013). R,

e Each hidden layer receives input from below and above h

2
e Deterministic (mean-field) recurrent computation (Savard 2011) $W2
e Stochastic (injecting noise) recurrent computation: Deep

Generative Stochastic Networks (GSNs) h,
(Bengio & Laufer arxiv 2013) §W1

h; e——
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9 DQQF BQLE"Q{ NQ& (Hinon e\aI2006)

e Stack lower levels RBMs’ P(x| h) along with top-level RBM
° P(X/ h1/ h2/ h3) = P(h2/ h3) P(hllhz) P(X | hl)
e Sample: Gibbs on top RBM, propagate down

182
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Stack of RBMs ll

> De.eﬁ Bolbtzmann Machine

(Salakhutdinov &*™Hinton AISTATS 2009)

e Halve the RBM weights because each layer now has inputs from
below and from above

e Positive phase: (mean-field) variational inference = recurrent AE

e Negative phase: Gibbs sampling (stochastic units)
e train by SML/PCD

h;mees e y E— T—
Ya 3 2
h, —— Ms
2 2 2
h, ? A
T

!
2 2VV5

. S s

x‘wzl —ZT 2%

:
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Stack of Auto-Encoders
> Deep Greherative Auto-Encoder

(Rifai et al ICML 2012)

e MCMC on top-level auto-encoder
* h,,; = encode(decode(h,))+o noise
where noise is Normal(0, d/dh encode(decode(h,)))
e Then deterministically propagate down with decoders
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Grenerative Stochastic Networks (GSN)

(Bengio, Yao, Alain & Vincent, arxiv 2013; Bengio & Laufer, arxiv 2013)

e Recurrent parametrized stochastic computational graph that
defines a transition operator for a Markov chain whose
asymptotic distribution is implicitly estimated by the model

 Noise injected in input and hidden layers
e Trained to max. reconstruction prob. of example at each step
e Example structure inspired from the DBM Gibbs chain:

h, noise

h Wi\wg\)/wz/’

sample x;

sample x, sample x;

3 to 5 steps
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Denoising Auto-Encoder Marikov Chain

* P(X): true data-generating distribution
« C(X|X): corruption process

e Py, (X|X)i denoising auto-encoder trained with n examples X, X
from C(X|X)P(X) , probabilistically “inverts” corruption

o I : Markov chain over X alternating X ~ C(X|X), X ~Py, (X|X)

corrupt

C(X|X)

<2

t+2

Xt X t+1 X t+2
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Previous Theoretical Resullts on
Probabilistic Interpretation of Auto-
E\f\t:oders (Vincent 2011, Alain & Bengio 2013)

* Continuous X

* @Gaussian corruption

e Noiseoc—=>0

e Squared reconstruction error | | r(X+noise)-X| |2

(r(X)-X)/o? estimates the score d log p(X) / dX
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New Theoretical Results
(Bengio et al NIPS 2013)

* Denoising AE are consistent estimators of the data-generating
distribution through their Markov chain, so long as they
consistently estimate the conditional denoising distribution and

the Markov chain converges.

~

Making Py (X|X) match P(X|X) makes 7, (X) match P(X)

/1

truth stationary distr. truth

denoising distr.
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Learning wikth a simpl.er normalization
constant, a nearly unimodal
conditional di.s&ra)u&i.oh instead of a
compiica&e.d multimodal one
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Learining with a simpter normalization
constant, a nearly unimodal
conditional distribution instead of a
complicated multimodal one

Ogé? %bjg e.g. add isotropic noise
Fo
& g
x: data sample  °.%, &
~ &» o8
z: corrupted sample | o,
& B
? QQJ OOO
c‘??&po ofgﬂ%o
8%(?609 9 Q%%O %?}
8o
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Leariing with a simpter normalization
constant, a nearly unimodal
conditional distribution instead of a
complicated multimodal one

o & Q%O%?C)O@Qc)?p 3 c?o%%
o Sl ® ° 3
%’ * R
s
5§§0 ° .ol o
& s o & MCMC step of
0o & S5 o .
o 2. denoising auto-encoder:
OE’%@ .+ (1) sample corruption
x: data sample’.% & = P(7
~ fost gg €Xr (CIZ‘CE)
Z: corrupted samplé- 5 9 lo denois:
S5 3 (2) sample denoising
%pg% e reconstruction
S8® o o &

%B@C’O@@’ig%%ooggo o 85" x ~ P(x|T)



Shallow Model: Generalizing the Denoising
Auto-Encoder Probabilistic Interpretation

e C(Classical denoising auto-encoder architecture, single hidden layer
with noise only injected in input

e Factored Bernouilli reconstruction prob. distr.

X = fo,(X,7Z)= parameter-less, salt-and-pepper noise on top of X

W T 3 mLI T
1 \W% !
X, 1
sample x, sample x, sample x,

e Generalizes (Alain & Bengio ICLR 2013): not just continuous r.v.,
any training criterion (as log-likelihood), not just Gaussian but
any corruption (no need to be tiny to correctly estimate
distribution).
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Previous Worlk: Denoising Auto-
Encoders as Grenerative Models

e (Bengio et al, NIPS’2013, Generalized denoising auto-
encoders as generative models)

e State = data X, latent variable = H = corrupted data
e Parametrization: learn P(X | H).

e Denoising: predict data X0 from corrupted version H1,
estimate P(X0 | H1). Sample X1 accordingly, etc.

x) xS
e Theorem: if the denoising estimator P(X | H) is consistent,

then the corrupt+denoise Markov chain stationary

distribution is a consistent estimator of P(X).
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Grenerative Sktochastic Nebworlks

* Generalizes the denoising auto-encoder training scheme
* Introduce latent variables in the Markov chain (over X,H)

 |nstead of a fixed corruption process, have a deterministic
function with parameters 6, and a noise source Z as input

Ht—l—l — f@l (Xta Zta Ht)

H, > H, > H,
NSNS
Hipw ~ P, (H|H, Xy)
Xey1 ~ Po,(X|Heyq)
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‘Dee.p Grenerative Architecture

Allow multiple levels of latent variables with arbitrary (but
differentiable) learned transformations in stochastic update function
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vs’t'.s:

For theoretical awnal

Cou.apse the state




Different Kinds of GSN Markov Chains

e Like Denoising Auto-Encoders:

v N

e With latent variables as necessary part of the state:

o
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Stochastic Recurrent Networlke
Trainable bv Backprop

e Using a state update scheme similar to block Gibbs sampling in
the deep Boltzmann machine (Salakhdinov & Hinton 2009), but

with continuous latent variables to be able to back-prop
reconstruction error into it (reparametrization trick)

e Denoising-based training: maximize log P(X,=x, | H,) and
backprop into the net. Noise can be injected everywhere (must
be injected for mixing to happen).
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Cov\sis!:e.ncv Theorem

If we assume that the chain has a stationary distribution T x, and that for every value of (x,h) we
have that

e all the P(Xy = z|Hy = h) = g(x, h) share the same density for t > 1 Time-invariant
e all the P(Hy 1 = h|Hy = b/, X; = ) = f(h, I/, x) share the same density for t > O}parametrization
e P(Hy = h|Xo=z) = P(H; = h| X = ) Initial state distr.=next state distr.

e P(Xy =z|H; =h) = P(Xo=x|H = h) Denoising is consistent

then for every value of (x,h) we get that

e P(Xy=x|Hy= h) = g(z, h) holds, which is something that was assumed only fort > 1

e P(Xt=x,Hi=h)=P(Xg=z,Hy=h) forallt >0

o the stationary distribution T x has a marginal distribution 7y such that  (z) = P (X = z).

Those conclusions show that our Markov chain has the property that its samples in X are drawn

from the same distribution as X.
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GSN Experiments: validating the theorem in
a continuous non-parametric setting

samples data samples data samples
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Experimav\!:s: Shallow vs ‘Dee.p

les
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Quantitative Evaluation of Samples

e Previous procedure for evaluating samples (Breuleux et al 2011,
Rifai et al 2012, Bengio et al 2013):

* Generate 10000 samples from model

* Use them as training examples for Parzen density estimator
* Evaluate its log-likelihood on MNIST test data

Training
examples

GSN-2 DAE RBM DBM-3 DBN-2 MNIST

LOG-LIKELIHOOD 214 -152 -244 32 138 24
STANDARD ERROR 1.1 2.2 54 1.9 2.0 1.6

203



A Proper Grenerative Model for
De endeucv Nebtworks, MP-DBMs, and
e fﬁcien& deep NADE sampling

* Dependency nets (Heckerman et al 2000) estimate Pg (X, | X)
not guaranteed to be conditionals of a unique joint

e GSN defines a unique joint distribution = stationary distr. of chain
(which averages out over resampling orders)

e Generalizes to composite likelihood: P(subset(X) | X \ subset(X))
Justifies efficient sampling scheme for MP-DBMs and deep NADE.

kS
=
9.
&
7
}
l
i
2
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MP-DBMs: GSNs for Classification
(NIPS2013)

e DBM + predict any subset
of visibles given the others
(generalized pseudo-
likelihood), via mean-field
recursion

AN AN
00
:A'A

e GSN MCMC sampling .*o’:‘*

procedure: sample
random subset of visibles,
given the others; iterate.

e C(Classification: predict Y|X
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MP-DBM Results

e Single model of (X,Y) vs multiple stages
of training DBM + fine-tuning

e SOTA on permutation-invariant MNIST
(at time of submission):

* 0.88% error
e Salakhutdinov & Hinton’s DBM: 0.95%

e NORB: 10.6% (vs 10.8% with S&H’s
DBM)

e DBM (Gibbs) samples of trained MP-
DBM are ugly, while GSN sampling
works because it better corresponds to

the training criterion:
206

LA A~ |y
914 [+ >4 ] [ L

g0

ol = | w0 L o
) RS P o S P R P

- |~ | B[ v e

E; ;*,.

R
™~

K~
L0 [ R =D |1 8| [ -2

!
}
0
e
2
7
5
7
g

e & N —

{_f:’ R~ |
~5 MO

r‘
] ol



Reparametrizing Latent variables

e Insight from (Bengio et al 2013, arxiv 1306.1091 & 1308.3432)
papers on GSNs and stochastic neurons:

e Sampling from continuous latent variables (given some
ancestors) can be rewritten as a deterministic function of
other variables and of independent noise sources: h = f(x;n)

* This enables rewriting the gradient log-likelihood as back-
prop, averaged over samples of the noise sources

Plylz) = / P(ylh, 2)P(hlz)dh = / P(y\f (i m), ) P(n)dn

OP(yle) / OP(y|f (;n).x)

90 Y P(n)dn

e A deeper formal analysis of this approach:

* Kingma & Welling 2014, arxiv 1402.0480; see also Wierstra et al 2014,
arxiv 1401.4082.
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Learned Approxima&e Inference

1. Construct a computational graph corresponding to inference
* Loopy belief prop. (Ross et al CVPR 2011, Stoyanov et al 2011)
* Variational mean-field (Goodfellow et al, ICLR 2013)
e MAP (Kavukcuoglu et al 2008, Gregor & LeCun ICML 2010)

* Proposal distribution / recognition net in Wake-Sleep
algorithm (Hinton et al 1995)

2. Optimize parameters wrt criterion of interest, possibly
decoupling from the generative model’s parameters

Learning can compensate for the inadequacy of approximate
inference, taking advantage of specifics of the data distribution
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Auto-Encoding Variational Bayes
(Kingma & Welling, ICLR 2014; DeepMind 2014 )

. . latent
Trained approximate

e Revisiting the wake-sleep algorithm inference <>
e Generative model = deep net with i‘i !
injected noise: decoder

e Learned approximate inference = &

deep net with injected noise: encoder

e Latent variables are continuous,
allowing to back-prop through (trick visible
from GSN paper, Bengio et al ICML 2014)
and train encoder & decoder jointly
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Appticalziov\s



Al Taskes

* Perception
* Vision
* Speech
* Multiple modalities
* Natural language understanding

* Reinforcement learning & control

COMPLEX HIGHLY-STRUCTURED DISTRIBUTION
LOTS OF DATA (maybe mostly unlabeled)
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2012: Industrial-scale success in
speech recognition

e Google uses DL in their android speech recognizer (both server-
side and on some phones with enough memory)

e Microsoft uses DL in their speech recognizer
e Error reductions on the order of 30%, a major progress

/\l \

o They are In fact qute  few arvcie

'8 much work 1o be done In this rea. .
i vary
- And w hm‘ Be able 10 brask down the
, —{ v

S
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The dramatic impact of Deep Learning
ol Speech Recognition
Eaccordihg to Microsoft)

100%a

Using DL

10%

Word error rate on Switchboard

4%

2%

1%

v
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Deep Nebworks for Speech Recognition:
results from Google, IBM, Microsoft

Hours of Deep net+HMM | GMM+HMM GMM+HMM
training data same data more data
09 16.1 23.6

Switchboard 3 17.1 (2k hours)

English 50 17.5 18.8

Broadcast news

Bing voice 24 30.4 36.2

search

Google voice 5870 12.3 16.0 (lots more)
input

Youtube 1400 47.6 52.3

214 (numbers taken from Geoff Hinton’s June 22, 2012 Google talk)



Some Applications of DL

Language Modeling (Speech Recognition, Machine Translation)
Acoustic Modeling (speech recognition, music modeling)

NLP syntactic/semantic tagging (Part-Of-Speech, chunking,
Named Entity Recognition, Semantic Role Labeling, Parsing)

NLP applications: sentiment analysis, paraphrasing, question-
answering, Word-Sense Disambiguation

Object recognition in images: photo search and image search:
handwriting recognition, document analysis, handwriting
synthesis, superhuman traffic sign classification, street view
house numbers, emotion detection from faaal images roads
from satellites. ] '




Industrial-scale success in object

TQCOSV\f-Ef-GV\
¢ Q snake 2

e Krizhevsky, Sutskever & Hinton NIPS 2012

______ [1ichoice Top5

2nd pest 27% err
Previous SOTA 45% err 26% err
Krizhevsky etal  37% err 15% err

e Google incorporates DL in Google+ photo
search, “A step across the semantic
gap” (Google Research blog, June 12, 2013

e Baidu now offers similar services

(T - —— (T

car
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Mowntreal Deep Nebks Win Emotion
Recognition in the Wild Challenge

Predict emotional expression from video (using images + audio)

Dec. 9, 2013
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More Successful Applications

218

Microsoft uses DL for speech rec. service (audio video indexing), based on
Hinton/Toronto’s DBNs (Mohamed et al 2012)

Google uses DL in its Google Goggles service, using Ng/Stanford DL systems,
and in its Google+ photo search service, using deep convolutional nets

NYT talks about these: http://www.nytimes.com/2012/06/26/technology/in-a-
big-network-of-computers-evidence-of-machine-learning.html?_r=1

Substantially beating SOTA in language modeling (perplexity from 140 to 102
on Broadcast News) for speech recognition (WSJ WER from 16.9% to 14.4%)
(Mikolov et al 2011) and translation (+1.8 BLEU) (Schwenk 2012)

SENNA: Unsup. pre-training + multi-task DL reaches SOTA on POS, NER, SRL,
chunking, parsing, with >10x better speed & memory (Collobert et al 2011)

Recursive nets surpass SOTA in paraphrasing (Socher et al 2011)
Denoising AEs substantially beat SOTA in sentiment analysis (Glorot et al 2011)
Contractive AEs SOTA in knowledge-free MNIST (.8% err) (Rifai et al NIPS 2011)

Le Cun/NYU'’s stacked PSDs most accurate & fastest in pedestrian detection
and DL in top 2 winning entries of German road sign recognition competition



Already Many NLP Applications of DL

e Language Modeling (Speech Recognition, Machine Translation)
e Acoustic Modeling

e Part-Of-Speech Tagging

e Chunking

e Named Entity Recognition
 Semantic Role Labeling

e Parsing

* Sentiment Analysis

e Paraphrasing

* (Question-Answering

e Word-Sense Disambiguation
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Neural Language Model

 Bengio et al NIPS’2000
and JMLR 2003 “A

Neural Probabilistic
Language Model”

* Each word represented by
a distributed continuous-
valued code vector =
embedding

* Generalizes to sequences
of words that are
semantically similar to
training sequences

220

i-th output = P(w; = i | context)

normalized exponential

(e o [ ]

000 )

most| computation here

W

tanh
( 00 ..)

----------------------

shared parameters
across words

Wt—n+1 Wt—2 Wi—1



Neural word embeddings -
visualization

need help
come
go
take
give keep
make  get
meet cee continue
expect want become
think
say remain
are .
is
be
wergas
being
been

hadnaS
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Analogical Representations for Free
(Mc.kc;tov et al, ICLR 2013)

e Semantic relations appear as linear relationships in the space of
learned representations

* King —Queen = Man—-Woman
e Paris — France + Italy = Rome

France

a

Paris

Rome
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Deep / Recurrent Nets for Modeling
Sequences in Music & Language

* (Boulanger, Bengio & Vincent, ICML 2012)

* Recurrent nets + RBMs Y
SOTA ¢ Acoustics = musical score h
* (Bengio, Boulanger & Pascanu, ICASSP 2013) P
e Optimization techniques for recurrent nets N

* Symbolic sequences (music, language)
e (Pascanu, Mikolov & Bengio, ICML 2013)
* Handling longer-term dependencies

* Symbolic sequences (music, language)
223



Recurrent Neural Nebworles

e Selectively summarize an input sequence in a fixed-size state
vector via a recursive update

St = FO(St—laxt)

St+1

unfold Fo ’cf Fo .(T) Fo

Lt41
St — Gt(xta Lt—1yLt—2y 4L, 5131)
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Recurrent Neural Nebtworles

e Can produce an output at each time step: unfolding the graph
tells us how to back-prop through time.

2 Ot—1 Ot Ot +1

W
S ' W St—1 St t+1
W W W
untold
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Crenerative RNNs

e An RNN can represent a fully-connected directed generative
model: every variable predicted from all previous ones.

T
P(x) = P(z1,...27) = H P(xt¢|ri—1,2t—2,...21)
t=1

Li_1 Ly Litq

Lt = — lOg P($t|xt—17$t—2a c. 5(31)
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Increasing the E:xpressi;ve Power of
RNNs m.&h more Depth

e |CLR 2014, How to construct deep recurrent neural networks

+ deep hid-to-out
+ deep hid-to-hid
+deep in-to-hid

t-1 t t+1
Ordinary RNNs Vi Vi
Y 4
Z1 t
+ stacking — hté he
he §
- t

227

+ skip connections for
creating shorter paths



123 Fo, S R
Deep RNN Results '
117 o . ------------------
e Language modeling :
(Penn Treebank perplexity) [ S
107.5 [y e ey
i i e 2 < < ~ o
* Music modeling (Muse, NLL) 2 2 2 2 S
— £ £ £ &£ 2 =
6,990 [y i o AL 7 2 =
s A S w u €
: E
6.954 || - - ] a 8
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Already Many NLP Applications of DL

e Language Modeling (Speech Recognition, Machine Translation)
e Acoustic Modeling

e Part-Of-Speech Tagging

e Chunking

e Named Entity Recognition
 Semantic Role Labeling

e Parsing

* Sentiment Analysis

e Paraphrasing

* (Question-Answering

e Word-Sense Disambiguation
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Encoder-Decoder Framework for
Machine Trawnslation

e One encoder and one decoder per language

e Universal intermediate representation

 Encode(French) = Decode(English) = translation model

* Encode(English) = Decode(English) = language model

e Parametrization grows linearly with # languages, not quadratic

English sentence English sentence

For bitext data
For unilingual data

- French sentence English sentence



RNNs for Machine Translation

(Cho, Merrienboer, Gulcehre, Bougares, Schwenk, Bengio; arxiv 2014)

Encoder-decoder framework:
Decoder

e Encoder = ‘summarizing’ RNN: word
sequence - last-state vector = sequence

representation
e Decoder = ‘generative’ RNN: context C 2 e
distribution over word sequences T
X X, X
Encoder
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RNNs for Machine Translation

e Decoder = ‘generative’ RNN: context C = distribution over word sequences

« P(Y,.Y; | €)= TUP(Y, | H, C)

where hidden state H, summarizes past seq. Decoder
H, = f(H,.., Y;.1,C)=F(Y,,-.Y,,C)

e Directed graphica] model: ancestral sampling

fromY, to Y.

e Output sequence can be of different length T'2T ? T
X1 X, Xr

not necessarily aligned with input sequence

Encoder
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RNNs for MT: Resulls

e English-French
WMT 14 task

 Train on both
bilingual
(supervised) and
unilingual
(unsupervised)

e Trained on phrases
(phrase table),

added into log-linear
model of MOSES

233

BLEU
Models dev test
Baseline 27.63 | 29.33
CSLM 28.33 | 29.58
RNN 28.48 | 29.96
CSLM + RNN 28.60 | 30.64
CSLM + RNN + WP | 2893 | 31.18

)

+1.85 BLEU points



Proctical Considerations
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Deep Learning Tricks of the Trade

* Y.Bengio (2013), “Practical Recommendations for Gradient-
Based Training of Deep Architectures”

* Unsupervised pre-training -
* Stochastic gradient descent and setting learning rates

* Main hyper-parameters
e Learning rate schedule
e Early stopping
* Minibatches
e Parameter initialization
e Number of hidden units
e L1 and L2 weight decay
e Sparsity regularization

* Debugging

How to efficiently search for hyper-parameter configurations
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Stochastic Gradient Descent (SGD)

e Gradient descent uses total gradient over all examples per
update, SGD updates after only 1 or few examples:

8L(Zt, 0)
00

* L=loss function, z,= current example, © = parameter vector, and
g, = learning rate.

H(t) < H(t_l) — €4

e Ordinary gradient descent is a batch method, very slow, should
never be used. 2" order batch method are being explored as an

alternative but SGD with selected learning schedule remains the
method to beat.
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Learning Rates

e Simplest recipe: keep it fixed and use the same for all
parameters.

e Collobert scales them by the inverse of square root of the fan-in
of each neuron

e Better results can generally be obtained by allowing learning
rates to decrease, typically in O(1/t) because of theoretical

convergence guara ntees, e.g.,
€EQT

T max(t, 7)

with hyper-parameters g, and t.

e New papers on adaptive learning rates procedures (Schaul 2012,
2013), Adagrad (Duchi et al 2011 ), ADADELTA (Zeiler 2012)
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Early Stopping

» Beautiful FREE LUNCH (no need to launch many different
training runs for each value of hyper-parameter for #iterations)

e Monitor validation error during training (after visiting # of
training examples = a multiple of validation set size)

e Keep track of parameters with best validation error and report
them at the end

e If error does not improve enough (with some patience), stop.
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Long-Term Dependencies i

* Invery deep networks such as recurrent networks (or possibly
recursive ones), the gradient is a product of Jacobian matrices,
each associated with a step in the forward computation. This
can become very small or very large quickly [Bengio et al 1994],
and the locality assumption of gradient descent breaks down.

L= L(sr(s7—1(---8t+1(8¢,-...))))
8_L B 0L Ost 0St11
Os;  OsT Osp—_1 ~ Osy

e Two kinds of problems:
* sing. values of Jacobians > 1 - gradients explode

 or sing. values < 1 = gradients shrink & vanish
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The Optimization Challenge in
Deep / Recurrent Nets

e Higher-level abstractions require highly non-linear
transformations to be learned

e Sharp non-linearities are difficult to learn by gradient

e Composition of many non-linearities = sharp non-linearity

e Exploding or vanishing gradients

i1 & Eir1
l &1 l 9& l O&t11
Oxt-1 O OXpq1
N Xi-1 - > Xt - > Xty pa—




RNN Tricks

(Pascanu, Mikolov, Bengio, ICML 2013; Bengio, Boulanger & Pascanu, ICASSP 2013)

e Clipping gradients (avoid exploding gradients)

e Leaky integration (propagate long-term dependencies)

e Momentum (cheap 2" order)

e |nitialization (start in right ballpark avoids exploding/vanishing)

e Sparse Gradients (symmetry breaking)
e Gradient propagation regularizer (avoid vanishing gradient)
e LSTM self-loops (avoid vanishing gradient)

0.35
0.30
0.25 o
o
0.20 =
w
0.15
0.10
0.05

eIrror

4.6 ' =
/6
% 5-
Or 3-2 -2.0
> 5.4 -24 722 7%
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Gradient Norm Clipping

8error

g <
if Hg” > threshold then

threshold A
L —
g g S

end if




Long-Term Dependencies
and Clipping Trick

L I
@E') Xt1 X; Xt+1
Trick first introduced by Mikolov is to clip gradients

to a maximum NORM value.

Makes a big difference in Recurrent Nets (Pascanu et al ICML 2013)

Allows SGD to compete with HF optimization on difficult long-term
dependencies tasks. Helped to beat SOTA in text compression,
language modeling, speech recognition.
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Tem Foral. Coherence and Scales

e Hints from nature about different explanatory factors:
e Rapidly changing factors (often noise)
* Slowly changing (generally more abstract)
e Different factors at different time scales

e Exploit those hints to disentangle better!

(Becker & Hinton 1993, Wiskott & Sejnowski 2002, Hurri &

Hyvarinen 2003, Berkes & Wiskott 2005, Mobahi et al 2009,
Bergstra & Bengio 2009)

e RNNs working at different time scales
(Elhihi & Bengio NIPS’1995), (Koutnik et al ICML 2014)



Combining ctipgi‘.hg to avoid gradient
explosion and Jacobian regularizer to
avold gradient vanishing

e (Pascanu, Mikolov & Bengio, ICML 2013)

basic tanh

1.0 @ @ @i @ i @ i @i o

0.8}
()]
306l
§ : e - MSGD
qg o—e MSGD-C
%0_4_ oo MSGD-CR]|
o

0.2

0.0 O o- -0

5'0 160 1'50 260 2_"50
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Normalized Initializabtion ko Achieve
Uniby-Like Jacobian
Assuming f'(act=0)=1

To keep information flowing in both direction we would like to have the
following properties.

e Forward-propagation:
V(i,4'), Var[z'] = Var[z"] & Vi,n;Var[Wi = 1
e Back-propagation:
v(i,4'), Var[a§;8t] Var [6C°St] & Viyni Var[WY =1
Possible compromise:

Vi, Var[W? = - +2n (4)
3 1+1

This gives rise to proposed normalized initialization procedure:

Wi Ul V6 V6 )
Vi T 1 /Ty T g




test error %

Normalized Initialization with Variance-

Preserving Jacobians

T
AN WA, v —

(S

gofl — Sigmoid depth 5 |

— Sigmoid depth 4
| — Tanh
— Softsign
Tanh N
Softsign N
— Pre-training

..........................................................................................................................................................................

: : LA \ W R
L3O WKt 8
: : T, A
‘. \\4",' vt

# exemples seen le7

Unsupervised
pre-tfraining:
Automatically
variance-
preserving!

. D
\,
o /
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Orthogonal Initialization Works Even
Better

e Auto-encoder pre-training tends to yield orthogonal W

e (Saxe, McClelland & Ganguli ICLR 2014) showed that very deep nets

initialized with random orthogonal weights are much easier to
train

N
o
o

e Allsingular values =1

— Glorot
| — Pretrained
| — Orthogonal

-
o
o

)
o

o

Epochs to reach error threshold
—
o
o

50 100
Depth

o
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Handling Large Output Spaces

e Auto-encoders and RBMs reconstruct the input, which is sparse and high-
dimensional; Language models have a huge output space (1 unit per word).

code= latent features

C0000
Y JORA | 00® ~ O
sparse input dense output probabilities /

e (Dauphin et al, ICML 2011) Reconstruct the non-zeros in
the input, and reconstruct as many randomly chosen
zeros, + importance weights 1N

categories

* Decompose output probabilities hierarchically (Mo
& Bengio 2005; Blitzer et al 2005; Mnih & Hinton words within each category

2007,2009; Mikolov et al 2011) ﬂﬂ. n
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Automatic Differentiation

* Makes it easier to quickly and
safely try new models.

* Theano Library (python) does it
symbolically. Other neural
network packages (Torch,
Lush) can compute gradients
for any given run-time value.

(Bergstra et al SciPy’2010)

~ theano
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Grid Search for Hyper-Parameters

* Discretize hyper-parameter values

 Form cross-product of values across all

hyper-parameters: the grid [T o
* Launch atrial training + validation error | o 4

measurement for each element of the

grid " °© °

* (Can be parallelized on a cluster, but may

need to redo failed experiments, until all
grid is filled

*»s1 Exponential in # of hyper-parameters!



Examples of hyper-parameters in DL
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Initial learning rate

Learning rate decrease rate

Number of layers
Layer size

Non-linear activation function
Output non-linearity
Output cost function

Minibatch size
Skip connections
Dropout probability

L1 regularizer, L2 regularizer
Max weight vector norm
Pre-training algorithm

Other hyper-parameters:

Pre-training hyper-parameters
Momentum

Gradient clipping norm

Early stopping patience

Input normalization

Input dimensionality reduction
Convolution kernels widths
Convolutions stride

Pooling windows sizes

Pooling strides

Number of shared layers in
multi-task settings

Output layer regularizer
Embeddings dimension



Random Sampling of Hyperparameters

(Bergstra & Bengio 2012)

e Random search: simple & efficient
* Independently sample each HP, e.g. I.rate~exp(U[log(.1),log(.0001)])
* Each training trial is iid
* |If a HP is irrelevant grid search is wasteful
* More convenient: ok to early-stop, continue further, etc.

Grid Layout Random Layout

Unimportant parameter
O
O
O
Unimportant parameter
(@)
O

“O O O

553 Important parameter Important parameter



Random Search Learning Curves

e Blue dotted line = grid search with 100 trials
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Random Search Learning Curves

e Blue dotted line = grid search with 100 trials

L0 rectangles L0 rectangles images
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Sequehﬁai. Model-Rased Op&imiz.a!:iov\
of Hyper-Parameters

o
30

25r

20F

(Hutter et al JAIR 2009; Bergstra et al NIPS 2011; Thornton et al

arXiv 2012; Snoek et al NIPS 2012)
Iterate

Estimate P(valid. err | hyper-params config x, D)

choose optimistic x, e.g. max, P(valid. err < current min. err | x)

train with config x, observe valid. err. v, D < D U {(x,v)}

— GP mean||

o o data

0 u.1v
0.08
| 0.06f
0.041
1 0.02f

0.00




Part 4

Challenges & Questions
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Why is Unsupervised Pre-~Training
Sometimes Working So Well?

e Regularization hypothesis:
* Unsupervised component forces model close to P(x)
* Representations good for P(x) are good for P(y|x)

e Optimization hypothesis:
e Unsupervised initialization near better local minimum of P(y|x)

e Can reach lower local minimum otherwise not achievable by random initialization
* Easier to train each layer using a layer-local criterion

(Erhan et al IMLR 2010)




Learining Tra jectories in
Function Space

e Each point a model in
function space

e Color=epoch .
i

e Top: trajectories w/o
pre-training

e Each trajectory é
converges in differen@%@ |
local min. T

 No overlap of regions
with and w/o pre-
training



Learining Tra jectories in
Function Space

e Each trajectory I
converges in different e — ........ ............ out pre tralnmg ............ ............ .............
local min. Fan, S

* With ISOMAP, try to
preserve geometry:
pretrained nets =
converge near each ' B Tk N R
other (less variance) 1000 a .......... ............. ............. ............. ............. .............

1500 —oevennnns PRI PR e e RERUR s PR :

- be o . WitE re-tréinin
500 ‘Y'AHAH.?% o0 e éuA“A.“AuéuAHA“A“A;APA“A“AJ AAAAAAA gAué

-500

e Good answers =
worse than a needle
in a haystack
(learning dynamics)

-1500 I I i i i 1 I i
-4000 -3000 -2000 -1000 0 1000 2000 3000 4000




Deea Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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bee.ﬁ Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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Challenge: Compu&a&mnat Scaling

e Recent breakthroughs in speech, object recognition and NLP
hinged on faster computing, GPUs, and large datasets

e A 100-fold speedup is possible without waiting another 10 yrs?

e Challenge of distributed training
* Challenge of conditional computation
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Challenge: Computational Scaling

e Recent breakthroughs in speech, object recognition and NLP
hinged on faster computing, GPUs, and large datasets

e In speech, vision and NLP applications we tend to find that

BIGGER IS BETTER

Because deep learning is
EASY TO REGULARIZE while
it is MORE DIFFICULT TO AVOID UNDERFITTING
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We still have a Long waYy to 90
A Taw compuf:a&i,ovml power

~
4

be

©OOEO0D) » -* *$
B _
odfo0o o T
X S o
@oo‘:pooc» .
OO0 *

266



Hungry for more computing power

e |sa 100-fold or 1000-fold speedup possible without waiting
another 10 yrs?

e Challenge 1: distributed training

¢ Cha”enge 2: Condiﬁonal Computaﬁon Moore’s law on single cores
has saturated: growth now
comes from parallelization

Volta

| Volta
L Stacked DRAM

B Maxw

Unified Virtual Memory

Dynamic Parallelism

]
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Distributed Training

e Minibatches
e Large minibatches + 2"9 order & natural gradient methods
e Asynchronous SGD (Bengio et al 2003, Le et al ICML 2012, Dean et al NIPS 2012)

* Bottleneck: sharing weights/updates among nodes, to avoid
node-models to move too far from each other

e |deas forward:
* Low-resolution sharing only where needed

 Specialized conditional computation (each computer
specializes in updates to some cluster of gated experts, and
prefers examples which trigger these experts)
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Conditional Computation: only visit a
small fraction o{r parameters ; example

e We need to improve (reduce) the ratio of
NUMBER OF COMPUTATIONS / NUMBER OF PARAMETERS

e Extreme success story (but poor generalization): decision trees
e Deep nets: O(N) computations for O(N) parameters
* Decision trees: O(N) computations for O(2N) parameters

0




Conditional Computation: only visit a
small fraction o{r parameters ; example

e Regular mixture of experts (Jacobs et al 1991)
Output = weighted sum of experts outputs 2

Gater partitions input space, chooses gater {.7 SXperts
which expert to listen in each region.
Gater softmax output = weights input

* No computational benefit, but easier optimization (each expert
specializes in its gater-assigned region)

e Hard mixtures of experts (Collobert, Bengio & Bengio 2002)
* Gater takes a hard decision

* No benefit a training time (need to run all experts to tell gater
which one it should have chosen)

* O(K) speedup at test time if K experts



Conditional Com fpul:a&i.ow 1.7 visik a

small fraction o

pamme.!:e.rs exampie

Conditional computation for deep nets: sparse
distributed gaters selecting combinatorial =
subsets of a deep net —

Challenges: -
* Credit assignment for hard decisions
* Gated architectures exploration

Output softmax

(Bengio, Leonard, Courville 2013): /-: _
Estimating or Propagating Gradients Gated units [experts)
Through Stochastic Neurons for Gater path

Conditional Computation Gating units= ®



Credilt Assignment for Discrete Actions

(Bengio, Leonard, Courville 2013): Estimating or Propagating Gradients
Through Stochastic Neurons for Conditional Computation Output softmax

e Gating units take a hard decision / \
Gated units (experts)

e Gradient through discrete function =0

Gater path

e Solutions in (Bengio, Leonard, Courville 2013

e Heuristic back-prop (straight
through estimator),

Gating units= ¢

also (Gregor et al ICML 2014). noise T

* Noisy rectifier: n——f— _>_/4> x

» Smooth times Stochastic bvp - ™\ main path
with b ~ Bin(Vp) Gating unit

* REINFORCE with variance reduction
baseline, i.e., RL, i.e. correlate with
loss, no back-prop for gaters
* Another option: train a stochastic credit-assignment machine by
272Reweighted Wake-Sleep (Bornschein & Bengio 2014)



Conditional Compu!:a!:c’,ov\ on kthe
Ou&pu& Lanver

e When computing the loss L(f(x),y), we can exploit the knowledge
of y to make the computation of the loss NOT HAVE TO
COMPUTE ALL THE PARAMETERS involved in f(x).

e Example 1: - log P(y|x) can be decomposed in a tree structure
over the classes y, into super-(super-)categories

e Example 2: a sampling approximation of L(f(x),y) can be
computed that is much cheaper
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Handling Large Output Spaces

e Auto-encoders and RBMs reconstruct the input, which is sparse and high-
dimensional; Language models have a huge output space (1 unit per word).

codes latent features Alternatives to likelihood not

Q.... requiring the compute the
cheap expensive normalization constant, e.g. NCE
(Mnlh&Kavukcuoqu NIPS 2013)
sparse input dense output probabilities

e (Dauphin et al, ICML 2011) Reconstruct the non-zeros in
the input, and reconstruct as many randomly chosen
zeros, + importance weights 1N

« (Collobert & Weston, ICML 2008) sample a ranking loss categories
 Decompose output probabilities hierarchically (Morin
& Bengio 2005; Blitzer et al 2005; Mnih & Hinton Q

n words within each category

2007,2009; Mikolov et al 2011) ﬂﬂ.
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Exploiting Sparsity

275

If X is sparse, computing Wx only needs to touch the
columns associated with non-zero x.

Unfortunately, it is more difficult to exploit sparsity on
GPUs, especially when the pattern of sparsity is not
the same between examples of the same mini-batch

Implementations using the sparse matrix
multiplications with CUDA can be 100x slower than

their dense counterparts (on a per-multiply-add basis)
while their CPU equivalents can be 10x slower than

their dense counterparts.



Bloclke-Wise Sparsi&v

If the sparsity pattern is constrained to be block-wise,
with blocks of 16 or 32 (the GPU block size) then one can
efficiently handle sparse activations and inputs.

(Leonard et al 2014)

Preliminary experiments on a large neural language
model (Billion words dataset, 800k output vocabulary

L I
- -
® - - f]
‘.
-~

—— J
-, .

* 50x speedup against same-size dense y

* 5xloss compared against same #multiply-add dense
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Sparse inpu&s = S-uoav connections

* Much larger payoff can be obtained when using 3-way
connections if the input is very sparse e.g. one-hot
code for characters (Sutskever et al ICML 2011)

* E.g. Each input symbol s, selects a different recurrent
weight matrix of an RNN

h.,1=tanh(b + W, h,) 1
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Exponentially Exploding the
#Parameters’for fixed Computation

(Cho & Bengio 2014)

To drastically increase the ratio of parameters to
computation, binarize the pattern of activations of a layer
to select up to 2X weight matrices (n x m) for computing
the next layer.

Gater: k of the n units
Memory = parameters: 2n m
Computation: n m

Many variants are possible (may use different k bits for
each hidden unit, may add prefix-indexed matrices, etc.)
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beeﬁ Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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Optimization & Underfitting

e On large datasets, major obstacle is underfitting

Marginal utility of wider MLPs decreases quickly below
memorization baseline

e Current limitations: local minima, ill-conditioning or else?
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Saddle Points, not Local Minima

e Traditional thinking is that major obstacle for training deep nets is
local minima

e Theoretical and empirical evidence suggest instead that saddle

points are exponentially more prevalent critical points, and local
minima tend to be of cost near that of global minimum

e (Pascanu, Dauphin, Ganguli, Bengio 2014): On the saddle point

problem for non-convex optimization.
3
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Saddle-Free Optimization
(Pascanu, 'Da\upkm, Granguli, Bengio 2014)
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Replace eigenvalues A of Hessian by |A|

Training error (%)
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Saddle-Free Optimization
(Pascanu, 'Da\upkm, Granguli, Bengio 2014)

e Replace eigenvalues A of Hessian by |A]
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Saddle-Free Optimizakion
(Pascany, 'Dauupkm, Granquli, Bengio 2014)
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Guided Training, Intermediate

Com:ep&s

 In(Gulcehre & Bengio ICLR’2013) we set up a task that seems
almost impossible to learn by shallow nets, deep nets, SVMs,

trees, boosting etc

Algorithm 20k dataset 40k dataset 80k dataset
Training Test Training Test Training Test
Error Error Error Error Error Error
SVM RBF 26.2 50.2 28.2 50.2 30.2 49.6
KNN 24.7 50.0 25.3 49.5 25.6 49.0
Decision Tree 5.8 48.6 6.3 49.4 6.9 49.9
Randomized Trees 3.2 49.8 3.4 50.5 3.5 49.1
MLP 26.5 49.3 33.2 49.9 27.2 50.1
Convnet/Lenet5 50.6 49.8 49.4 49.8 50.2 49.8
Maxout Convnet 14.5 49.5 0.0 50.1 0.0 44.6
2 layer sDA 49.4 50.3 50.2 50.3 49.7 50.3
Struct. Supervised MLP w/o hints 0.0 48.6 0.0 36.0 0.0 12.4
Struct. MLP+CAE Supervised Finetuning 50.5 49.7 49.8 49.7 50.3 49.7
Struct. MLP+CAE+DAE Supervised Finetuning 49.1 49.7 49.4 49.7 50.1 49.7
Struct. MLP4+DAE+DAE Supervised Finetuning 49.5 50.3 49.7 49.8 50.3 49.7
CHANCE
PREDICTIONS
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Guided Training, Intermediate
Concepts

 In(Gulcehre & Bengio ICLR’2013) we set up a task that seems

almost impossible to learn by shallow nets, deep nets, SVMs,

trees, boosting etc

Algorithm 20k dataset 40k dataset 80k dataset
Training Test Training Test Training Test
Error Error Error Error Error Error
SVM RBF 26.2 50.2 28.2 50.2 30.2 49.6
KNN 24.7 50.0 25.3 49.5 25.6 49.0
Decision Tree 5.8 48.6 6.3 49.4 6.9 49.9
Randomized Trees 3.2 49.8 3.4 50.5 3.5 49.1
MLP 26.5 49.3 33.2 49.9 27.2 50.1
Convnet/Lenet5 50.6 49.8 49.4 49.8 50.2 49.8
Maxout Convnet 14.5 49.5 0.0 50.1 0.0 44.6
2 layer sDA 49.4 50.3 50.2 50.3 49.7 50.3
Struct. Supervised MLP w/o hints 0.0 48.6 0.0 36.0 0.0 12.4
Struct. MLP+CAE Supervised Finetuning 50.5 49.7 49.8 49.7 50.3 49.7
Struct. MLP+CAE+DAE Supervised Finetuning 49.1 49.7 49.4 49.7 50.1 49.7
Struct. MLP+DAE+DAE Supervised Finetuning 49.5 50.3 49.7 49.8 50.3 49.7
Struct. MLP with Hints | 0.21 | 30.7 | O | 3.1 | 0 | 0.01 |
PERFECT
PREDICTIONS
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Guided Training, Intermediate
Concepts

e Breaking the problem in two sub-problems and pre-training
each module separately, then fine-tuning, nails it

e Need prior knowledge to decompose the task

e Guided pre-training allows to find much better solutions, escape
effective local minima

inputs —> —> outputs

>
HINTS
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Guided Training, Intermediate
Cos«cep&s

 In (Gulcehre & Bengio ICLR’2013) we set up a task that seems
almost impossible to learn by shallow nets, deep nets, SVMs,

trees, boosting etc

e Breaking the problem in two sub-problems and pre-training
each module separately, then fine-tuning, nails it

e Need prior knowledge to decompose the task

e Guided pre-training allows to find much better solutions, escape
effective local minima HINTS
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Dee.ﬁ Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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Why Unsupervised Learning?

e Recent progress mostly in supervised DL

e 1 real challenges for unsupervised DL

e Potential benefits:
* Exploit tons of unlabeled data
* Answer new questions about the variables observed
* Regularizer — transfer learning — domain adaptation
e Easier optimization (local training signal)
 Structured outputs
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Basic Challenge with Probabilistic
Models: marginalization

e Joint and marginal likelihoods involve intractable sums over
configurations of random variables (inputs x, latent h, outputs y)

e.g.

P(x) = 2, P(x,h)

P(X,h) = @-energy(x,h) /Z

7 = zx ) @-energy(x,h)

e MCMC methods can be used for these sums, by sampling from a
chain of x’s (or of (x,h) pairs) approximately from P(x,h)
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MCMC Sampling Challenges

e Burn-in
* Going from an unlikely configuration to likely ones

e Mixing
* Local: auto-correlation between successive samples

J 7.7 79777

e Global: mixing between major “modes”
5555555500000 0
P vty W Py R o By o oy oy Sy i o S S o

challenge
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Two Fundamental Problems
with Probabilistic Models
with Many Random Variables

1. MCMC mixing between modes
(manifold hypothesis) “«
5555555500000 0

0 0y R o o o £ £ ) 5 N e 1

2. Many non-negligeable modes
(both in posterior & joint distributions)
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First Problem :
MIXING BETWEEN
SEPARATED MODES
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anifold = Mode

examples concentrate near a lower dimensional

“manifold” (region of high density with only few operations
allowed which allow small changes while staying on the
manifold)

Evidence: most input configurations are unlikely

. [shrinking
transformation

4 "
a

raw input vector space




For gradient & inference:
More difficult ko mix with better
trained models

e Early during training, density smeared out, mode bumps overlap

/AR YRR YA
e Later on, hard to cross empty voids between modes

Are we doomed if
we rely on MCMC
during training?
Will we be able to
train really large &
complex models?

Training updates

Gicious circl§

Mixing
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Fixing the Mixing Problem?

e |f there were few important modes, we could just run many
chains from different random starts and collect the results

e We have tried that and it helps only if there are few main modes
 Another option is tempering and related variants

e Appealing but very expensive, has not fixed the problem yet

* Deep represer)tatior_\s: ga“ncj)ther prom\ising avenue

5 = .
L e P>
v G
7 e \
‘ca (S 2
S\ TN
z &y - B \
Pl ~ \
.

N How to temper chocolate
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Poor Mixing: Depth to the Rescue

(Bengio et al ICML 2013)

e Sampling from DBNs and stacked Contractive Auto-Encoders:
1. MCMC sampling from top layer model
2. Propagate top-level representations to input-level repr.
e Deeper nets visit more modes (classes) faster
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‘De.p&k can kel.lo U MCMC is
run i represeu&a&i.oh space

e Better mixing of MCMC at higher levels of
representation (Bengio et al, ICML 2013)

e Distribution at higher levels of abstraction might be
much simpler to represent (extreme: factorises)
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Space-Filling in Representation-Space

e High-probability samples fill more the convex set between them
when viewed in the learned representation-space, making the
empirical distribution more uniform and unfolding manifolds

Linear interpolation at layer 2

ﬂ

3’s manifold

9’s manifold
Linear interpolation at layer 1
o

Linear mterpolatlon in pixel space

\

9 |




Poor Mixing: Depth to the Rescue

e Deeper representations =2 abstractions = disentangling

e E.g.reverse video bit, class bits in learned representations: easy
to Gibbs sample between modes at abstract level

e Hypotheses tested and not rejected:

* more abstract/disentangled representations unfold manifolds
and fill more the space

A Ppixel space A Representation space

9’s ifold 3’s manifold * 9sy B fold

> >
e can be exploited for better mixing between modes
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Space-Filling in Representation-Space
* Deeper representations = abstractions = disentangling
e Manifolds are expanded and flattened

- X-space
4 Pixel space A Representation space
" 3 il q symantol e htod X
Lmenr interpolation at Iayer 2 3’s manifold
. 3
o} ®
9’s mahifold B -
Pe_Linear interpolation at layer 1 ®

1 E

Linear mterpolatlon in pixel space
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Inference Challenges

e Many latent variables involved in understanding
complex inputs (e.g. in NLP: sense ambiguity, parsing,
semantic role)

* Almost any inference mechanism can be combined
with deep learning

e See [Bottou, LeCun, Bengio 97], [Graves 2012]

“l

- )

e Complex inference can be hard (exponentially) and
needs to be approximate = learn to perform inference
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The Main Problem
that Remains:
MANY IMPORTANT

MODES




Many Important Modes
e |ssue arises typically in two places with probabilistic models:

* Inference: need to consider the major modes of P(h|x) or
P(y,h|x)

* Learning (estimating the log-likelihood gradient): need to
consider the major modes of P(h,x) when computing the
gradient of the normalization constant

e |mportant for:
* Unsupervised (and semi-supervised) learning
e Structured output learning
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Potentially Hu & Number of
Modes in &ke Posterior P(h|x)

e Human hears foreign speech x,
y=answer to question:
* 10 word segments
* 100 plausible candidates per word

* 10° possible segmentations
* Most configurations (999999/1000000) implausible
* =» 10%° high-probability modes

e Humans probably don’t consider all these in their mind

e All known approximate inference scheme break down if the
posterior has a huge number of modes (fails MAP & MCMC)
and not respecting a variational approximation (fails variational)
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PROPOSED
SOLUTION




Many Modes Challenge: Instead of
Lleariiing P(x) directly, learn Markov
chain operator P(x, | ;)

e P(x) may have many modes, making the normalization constant
intractable, and MCMC approximations poor

e Partition fn of P(x, | x,;) much simpler because most of the time
a local move, might even be well approximated by unimodal

0.30
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0.20
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0.00
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Bypassing Normalization Constants
with Grenerative Black Boxes

e Instead of parametrizing p(x), |
randaom

parametrize a machine which numbers
generates samples > ted
parameters &
samples

® (Goodfellow et al, 2014, Generatlve/ previous state
adversarial nets) for the case of random

ancestral sampling in a deep numbers
generative net parameters

generated
samples

next state

generated

e (Bengio et al, ICML 2014, Generative Z samples

Stochastic Networks), learning the

transition operator of a Markov
_ generated
.00 Chain that generates the data samples



Ancestral Sampling with Learned
Approximate Inference

Trained approximate, = ™ latent

- /’
inference -
e Helmholtz machine & Wake-Sleep algorithm ‘

e (Dayan, Hinton, Neal, Zemel 1995) a
e Variational Auto-Encoders $
e (Kingma & Welling 2013, ICLR 2014) ‘
e (Gregor et al ICML 2014)
e (Rezende et al ICML 2014)
e (Mnih & Gregor ICML 2014)

e Reweighted Wake-Sleep
e (Bornschein & Bengio 2014)

visible
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beeﬁ Learning Challenges
(Benglo, arxiv 1305.04-45 Deep Learning
of representations: Looking forward)

e Computational Scaling
e Optimization & Underfitting

* Intractable Marginalization, Approximate
Inference & Sampling

e Disentangling Factors of Variation
e Reasoning & One-Shot Learning of Facts
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Disentangling the Underlying Factors

e How could a learner disentangle the unknown
underlying factors of variation?

e Statistical structure present in the data
* Hints = priors

e Good disentangling =2 ,
avoid the curse of dimensionality {81 %#
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Broad Priors as Hinks to Disentangle
the Factors of Variation

e Multiple factors: distributed representations

e Multiple levels of abstraction: depth

e Semi-supervised learning: Y is one of the factors explaining X
e Multi-task learning: different tasks share some factors

e Manifold hypothesis: probability mass concentration

e Natural clustering: class = manifold, well-separated manifolds
e Temporal and spatial coherence

e Sparsity: most factors irrelevant for particular X

e Simplicity of factor dependencies (in the right representation)
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Learning Multiple Levels of
Abstrackion

e The big payoff of deep learning is to allow learning
higher levels of abstraction

e Higher-level abstractions disentangle the factors of
variation, which allows much easier generalization and

transfer

Organizational Maturity
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Cownclusions

e Deep Learning has matured
e Int. Conf. on Learning Representation 2013 a huge success!

e Industrial applications (Google, Microsoft, Baidu, Facebook, ...)

e Room for improvement:
e Scaling computation
* Optimization
e Bypass intractable marginalizations
* More disentangled abstractions
* Reason from incrementally added facts
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If Time Permits...
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Issue: underfitting due to combinatorially many poor
effective local minima

e

where the optimizer gets stuck

Culture vs Effective Local
Minima

Bengio 2013 (also arXiv 2012)
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Parallelized explora&i.ov\ AT
brain space

 Each brain
explores a
potential solution

e Instead of
exchanging
synaptic
configurations,

Brain space exchange ideas

through language

Social success




Memes

Genetic Algorithms Evolution of ideas
Population of candidate solutions  Brains

Recombination mechanism Culture and language




vaa&ke.si.s 1

e When the brain of a single biological agent learns, it performs an
approximate optimization with respect to some endogenous
objective.

ijakke.sis 2

e When the brain of a single biological agent learns, it relies on
approximate local descent in order to gradually improve itself.
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Theoretical and experimental results on deep learning suggest:

ijoékesis 3

 Higher-level abstractions in brains are represented by deeper
computations (going through more areas or more
computational steps in sequence over the same areas).

limited by effective local minima.

321 Possibly due to ill-conditioning, but behaves like local min



ijo!:hesis ]

* Asingle human learner is unlikely to discover high-level
abstractions by chance because these are represented by a deep
sub-network in the brain.

@ o)

\e° K\
0\‘)«\& ’a\\(’

<
Q\)“ GO ©

Nl
e A human brain can learn high-level abstractions if guided by the
signals produced by other humans, which act as hints or indirect

supervision for these high-level abstractions.

vaalzke.si.s &

Supporting evidence: (Gulcehre & Bengio ICLR 2013)
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How is one brain

transfer of information happens

transferring
abstractions to
another brain?

Linguistic Linguistic
representation representation

o ofmuoo_ o

Linguistic exchange
= tiny / noisy channel

Shared input X
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How do we escape Llocal minima?

e |inguistic inputs = extra examples, summarize
knowledge

e criterion landscape easier to optimize (e.g.
curriculum learning)

e turn difficult unsupervised learning into easy
supervised learning of intermediate abstractions
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How could Langquage/education/
culture possibly help find the
better Local minima associated
with more useful abstractions?

More than random search:
potential exponential speed-
up by divide-and-conquer
combinatorial advantage:
can combine solutions to

HvFQ&kQSEvS 7 independently solved sub-

problems

e Language and meme recombination provide an efficient
evolutionary operator, allowing rapid search in the space of
memes, that helps humans build up better high-level internal
representations of their world.
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From where do new ideas emerqge?

e Seconds: inference (novel explanations for current x)
e Minutes, hours: learning (local descent, like current DL)

e Years, centuries: cultural evolution (global optimization,
recombination of ideas from other humans)
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Related Tuborials

e Deep Learning tutorials (python):

e Stanford deep learning tutorials with simple programming
assignments and reading list

e ACL 2012 Deep Learning for NLP tutorial

e |CML 2012 Representation Learning tutorial

e |PAM 2012 Summer school on Deep Learning

e More reading: Paper references in separate pdf, on my web page
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Software

* Theano (Python CPU/GPU) mathematical and deep learning
library

* Can do automatic, symbolic differentiation
* Senna: POS, Chunking, NER, SRL

* by Collobert et al.

* State-of-the-art performance on many tasks

* 3500 lines of C, extremely fast and using very little memory
e Torch ML Library (C++ + Lua)

e Recurrent Neural Network Language Model

e Recursive Neural Net and RAE models for paraphrase detection,
sentiment analysis, relation classification
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Software: what’s next

e Off-the-shelf SVM packages are useful to researchers
from a wide variety of fields (no need to understand
RKHS).

e To make deep learning more accessible: release off-
the-shelf learning packages that handle hyper-
parameter optimization, exploiting multi-core or
cluster at disposal of user.

e Spearmint (Snoek)
* HyperOpt (Bergstra)
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