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Curriculum Learning

Guided learning helps training humans and animals 

Shaping

Start from simpler examples / easier tasks   (Piaget 1952, Skinner 1958)

Education



The dogma in question

It is best to learn from a training set of examples 
sampled from the same distribution as the test set. 
Really?



Question

Can machine learning algorithms benefit from a 
curriculum strategy?

(Elman 1993) vs (Rohde & Plaut 1999)



Convex vs Non-Convex Criteria

� Convex criteria: the order of presentation of examples 
should not matter to the convergence point, but could 
influence convergence speedinfluence convergence speed

� Non-convex criteria: the order and selection of examples 
could yield to a better local minima

humans raised without any human guidance (wild 
children) are much less operationally intelligent

else 



Deep Architectures

� Theoretical arguments: deep architectures can be 
exponentially more compact that shallow ones 
representing the same functionrepresenting the same function

� Many local minima

� Guiding the optimization by unsupervised pre-training 
yields much better local minima o/w not reachable 

� Good candidate for testing curriculum ideas



Deep Training Trajectories

Random initialization 

(Erhan et al. AISTATS 09)

Unsupervised guidance



Starting from Easy Examples

� Sequence of 
training distributions

3 • Most difficult examples

• Higher level abstractions

2

� Initially peaking on 
easier / simpler 
ones

� Gradually give 
more weight to 
more difficult ones 
until reach target 
distribution

1
• Easiest
• Lower level

abstractions



Continuation Methods

Track local minima

Final solution

Easy to find 
minimum



Curriculum Learning

� Sequence of 
training distributions

See ICML’2009 paper 

3 • Most difficult examples

• Higher level abstractions

2

� Initially peaking on 
easier / simpler 
ones

� Gradually give 
more weight to 
more difficult ones 
until reach target 
distribution

1
• Easiest
• Lower level

abstractions



How to order examples?

� The right order is not known

� Toy experiments with simple order� Toy experiments with simple order

• Larger margin first

• Less noisy inputs first

� Simpler shapes first, more varied ones later

� Smaller vocabulary first



Larger Margin First: Faster Convergence



Cleaner First: Faster Convergence



Shape Recognition

First: easier, basic shapes

Second = target: more varied geometric shapes



Shape Recognition Experiment

� 3-hidden layers deep net known to involve local minima 
(unsupervised pre-training finds much better solutions)

� 10 000 training / 5 000 validation / 5 000 test examples

� Procedure:

1. Train for k epochs on the easier shapes

2. Switch to target training set (more variations)



Shape Recognition Results

k



Language Modeling Experiment

� Objective: compute the 
score of the next word 
given the previous ones 
(ranking criterion)(ranking criterion)

� Architecture of the deep 
neural network 

(Bengio et al. 2001, 
Collobert & Weston 2008)



Language Modeling Results

� Gradually increase 
the vocabulary 
size (dips)size (dips)

� Train on Wikipedia 
with sentences 
containing only 
words in 
vocabulary



Conclusion

Yes, machine learning algorithms can benefit 
from a curriculum strategy. 



Why?

� Faster convergence to a minimum

Wasting less time with noisy or harder to predict examples

� Convergence to better local minima� Convergence to better local minima

Curriculum = particular continuation method

• Finds better local minima of a non-convex training criterion

• Like a regularizer, with main effect on test set



Perspectives

� How could we define better curriculum strategies?

� We should try to understand general principles that make 
some curricula work better than others

� Emphasizing harder examples and riding on the frontier



Training Criterion: Ranking Words

sC =
1

D
∑ s,wC =

1

D
∑ max 0, 1− f s( )+ f w

s( )( )sC =
D

w∈D

∑ s,wC =
D

w∈D

∑ max 0, 1− f s( )+ f s( )( )

with S a word sequence

Cs
score of the next word given the previous one

w a word of the vocabulary

D the considered word vocabulary



Curriculum = Continuation Method?

� Examples      from            are weighted by 

� Sequence of distributions                                  called a 
λ

Q z( )∝
λW z( )P z( )

λ0 ≤ W z( ) ≤1P z( )z

� Sequence of distributions                                  called a 
curriculum if:

• the entropy of these distributions increases (larger domain)

• monotonically increasing in λ:

λ
Q z( )∝

λW z( )P z( )

H λQ( )< H λ+εQ( ) ∀ε > 0

λW z( )

λ+εW z( )≥ λW z( ) ∀z, ∀ε > 0



Riding the Frontier

Spending half the time on examples whose likelihood is worse 
than some threshold converges much faster on MNIST
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