Curriculum Learning

Yoshua Bengio, U. Montreal
Jérôme Louradour, A2iA
Ronan Collobert, Jason Weston, NEC

Learning Workshop, April 16th, 2009
Curriculum Learning

Guided learning helps training humans and animals

Start from simpler examples / easier tasks (Piaget 1952, Skinner 1958)
The dogma in question

It is best to learn from a training set of examples sampled from the same distribution as the test set.
Really?
Question

Can machine learning algorithms benefit from a curriculum strategy?

(Elman 1993) vs (Rohde & Plaut 1999)
Convex vs Non-Convex Criteria

- **Convex criteria**: the order of presentation of examples should not matter to the convergence point, but could influence *convergence speed*.

- **Non-convex criteria**: the order and selection of examples could yield to a *better local minima*.

else: humans raised without any human guidance (wild children) are much less operationally intelligent.
Deep Architectures

- Theoretical arguments: deep architectures can be exponentially more compact than shallow ones representing the same function.
- Many local minima.
- Guiding the optimization by unsupervised pre-training yields much better local minima otherwise not reachable.
- Good candidate for testing curriculum ideas.
Deep Training Trajectories

(Erhan et al. AISTATS 09)

Random initialization

Unsupervised guidance
Starting from Easy Examples

- Sequence of training distributions
- Initially peaking on easier / simpler ones
- Gradually give more weight to more difficult ones until reach target distribution
Continuation Methods

Target objective

Heavily smoothed objective

Final solution

Track local minima

Easy to find minimum

Continuation Methods
Curriculum Learning

See ICML’2009 paper

- Sequence of training distributions
- Initially peaking on easier / simpler ones
- Gradually give more weight to more difficult ones until reach target distribution

1. Easiest
 - Lower level abstractions

2.

3. Most difficult examples
 - Higher level abstractions
How to order examples?

- The right order is not known
- Toy experiments with simple order
 - Larger margin first
 - Less noisy inputs first
- Simpler shapes first, more varied ones later
- Smaller vocabulary first
Larger Margin First: Faster Convergence

![Graph showing easiness based on margin](image)
Cleaner First: Faster Convergence

Easiness based on number of noisy inputs

Average test error

Input dimension
Shape Recognition

First: easier, basic shapes

Second = target: more varied geometric shapes
Shape Recognition Experiment

- 3-hidden layers deep net known to involve local minima (unsupervised pre-training finds much better solutions)
- 10 000 training / 5 000 validation / 5 000 test examples

Procedure:
1. Train for k epochs on the easier shapes
2. Switch to target training set (more variations)
Shape Recognition Results

![Box plot showing best validation classification error vs switch epoch k]

- The box plot displays the distribution of best validation classification error for different switch epoch values of k.
- Each box represents the interquartile range (IQR) with a line at the median, and the whiskers extend to show the range of the data excluding outliers.
- The data shows a trend of decreasing classification error as the switch epoch k increases.

Note: The specific values and details of the box plot are not provided in the image.
Language Modeling Experiment

- **Objective**: compute the score of the next word given the previous ones (ranking criterion)

- Architecture of the deep neural network (Bengio et al. 2001, Collobert & Weston 2008)
Language Modeling Results

- Gradually increase the vocabulary size (dips)
- Train on Wikipedia with sentences containing only words in vocabulary
Yes, machine learning algorithms can benefit from a curriculum strategy.
Why?

- Faster convergence to a minimum
 Wasting less time with noisy or harder to predict examples

- Convergence to better local minima

Curriculum = particular continuation method

- Finds better local minima of a non-convex training criterion
- Like a regularizer, with main effect on test set
Perspectives

- How could we define better curriculum strategies?
- We should try to understand general principles that make some curricula work better than others
- Emphasizing harder examples and riding on the frontier
Training Criterion: Ranking Words

\[C_s = \sum_{w \in D} \frac{1}{|D|} C_{s,w} = \sum_{w \in D} \frac{1}{|D|} \max(0, 1 - f(s) + f(s^w)) \]

with

- \(S \) a word sequence
- \(C_s \) score of the next word given the previous one
- \(w \) a word of the vocabulary
- \(D \) the considered word vocabulary
Curriculum = Continuation Method?

- Examples \(z \) from \(P(z) \) are weighted by \(0 \leq W_\lambda(z) \leq 1 \)

- Sequence of distributions \(Q_\lambda(z) \propto W_\lambda(z) P(z) \) called a curriculum if:
 - the entropy of these distributions increases (larger domain)
 \[H(Q_\lambda) < H(Q_{\lambda+\epsilon}) \quad \forall \epsilon > 0 \]
 - \(W_\lambda(z) \) monotonically increasing in \(\lambda \):
 \[W_{\lambda+\epsilon}(z) \geq W_\lambda(z) \quad \forall z, \forall \epsilon > 0 \]
Riding the Frontier

Spending half the time on examples whose likelihood is worse than some threshold converges much faster on MNIST.