Learning Deep Representations

Yoshua Bengio

September 25th, 2008 DARPA Deep Learning Workshop

Thanks to : James Bergstra, Olivier Breuleux, Aaron Courville, Olivier Delalleau, Dumitru Erhan, Pascal Lamblin, Hugo Larochelle, Jerome Louradour, Nicolas Le Roux, Pierre-Antoine Manzagol, Dan Popovici, François Rivest, Joseph Turian, Pascal Vincent Check review paper "Learning Deep Architectures for Al" on my web page

Outline

- Why deep learning?
 - Theoretical results : to efficiently represent highly-varying functions
- Why is it hard? : non-convexity
- Why our current algorithms working?
- Going Forward : Research program
 - Focus on optimization, large scale, sequential aspect
 - Expoit un-/semi-supervised, multi-task, multi-modal learning
 - Curriculum
 - Parallel search for solutions
 - Synthetically generated + real data of increasing complexity

1D Generalization

Why Deep Learning? Let us go back to basics.

Easy 1D generalization if the target function is smooth (few variations).

Curse of Dimensionality

Local generalization : local kernel SVMs, GP, decision trees, LLE, lsomap, etc.

Local learning ok in high dimension if target function is smooth

Strategy : Distributed Representations

- Distributed representation : input \Rightarrow combination of many features
- Parametrisation : Exponential advantage : distr. vs local
- Missing in most learning algorithms

Exploiting Multiple Levels of Representation

Distributed not enough : need non-linear + depth of composition

Higher-level abstractions

Primitive pattern detectors

Oriented edge detectors

- 4 同 ト 4 日 ト 4 日 ト

Pixels

Architecture Depth

Most current learning algorithms have depth 1, 2 or 3 : shallow

Theorem Sketch

When a function can be compactly represented by a deep architecture, representing it with a shallow architecture can require a number of elements exponential in the input dimension.

Fat architecture \Rightarrow too rich space \Rightarrow poor generalization

・ロト ・回ト ・ヨト ・ヨト

Training Deep Architectures : the Challenge

- Two levels suffice to represent any function
- Shallow & local learning works for simpler problems : insufficient for Al-type tasks
- Up to 2006, failure of attempts to train deep architectures (except Yann Le Cun's convolutional nets!)
- Why? Non-convex optimisation and stochastic!
- Focus NIPS 1995-2005 : convex learning algorithms

く伺き くほき くほう

 \Rightarrow Let us face the challenge !

2006 : Breakthrough !

- FIRST : successful training of deep architectures ! Hinton et al (UofT) Neural Comp. 2006, followed by Bengio et al (U.Montreal), and Ranzato et al (NYU) at NIPS'2006
- One trains one layer after the other of a deep MLP
- Unsupervised learning in each layer of initial representation
- Continue training an ordinary but deep MLP near a better minimum

Deep Belief Network (DBN)

イロト イポト イヨト イヨト

Individual Layer : RBMs and auto-encoders

State-of-the-art 'layer components' : variants of RBMs and Auto-Encoders Deep connections between the two...

Restricted Boltzmann Machine

Efficient inference of factors h

Auto-encoder :

Find compact representation : encode x into h(x), decode into $\hat{x}(h(x))$.

- Clean input x ∈ [0, 1]^d is partially destroyed, yielding corrupted input : x̃ ~ q_D(x̃|x).
- $\tilde{\mathbf{x}}$ is mapped to hidden representation $\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}})$.
- From **y** we reconstruct a $\mathbf{z} = g_{\theta'}(\mathbf{y})$.
- Train parameters to minimize the cross-entropy "reconstruction error"
- Corresponds to maximizing variational bound on likelihood of a generative model
- Naturally handles missing values / occlusion / multi-modality

- Clean input x ∈ [0, 1]^d is partially destroyed, yielding corrupted input : x̃ ~ q_D(x̃|x).
- $\tilde{\mathbf{x}}$ is mapped to hidden representation $\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}})$.
- From **y** we reconstruct a $\mathbf{z} = g_{\theta'}(\mathbf{y})$.
- Train parameters to minimize the cross-entropy "reconstruction error"
- Corresponds to maximizing variational bound on likelihood of a generative model
- Naturally handles missing values / occlusion / multi-modality

- Clean input $\mathbf{x} \in [0,1]^d$ is partially destroyed, yielding corrupted input : $\tilde{\mathbf{x}} \sim q_D(\tilde{\mathbf{x}}|\mathbf{x})$.
- $\tilde{\mathbf{x}}$ is mapped to hidden representation $\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}})$.
- From **y** we reconstruct a $\mathbf{z} = g_{\theta'}(\mathbf{y})$.
- Train parameters to minimize the cross-entropy "reconstruction error"
- Corresponds to maximizing variational bound on likelihood of a generative model
- Naturally handles missing values / occlusion / multi-modality

- Clean input $\mathbf{x} \in [0, 1]^d$ is partially destroyed, yielding corrupted input : $\tilde{\mathbf{x}} \sim q_D(\tilde{\mathbf{x}}|\mathbf{x})$.
- $\tilde{\mathbf{x}}$ is mapped to hidden representation $\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}})$.
- From **y** we reconstruct a $\mathbf{z} = g_{\theta'}(\mathbf{y})$.
- Train parameters to minimize the cross-entropy "reconstruction error"
- Corresponds to maximizing variational bound on likelihood of a generative model
- Naturally handles missing values / occlusion / multi-modality

- Clean input x ∈ [0, 1]^d is partially destroyed, yielding corrupted input : x̃ ~ q_D(x̃|x).
- $\tilde{\mathbf{x}}$ is mapped to hidden representation $\mathbf{y} = f_{\theta}(\tilde{\mathbf{x}})$.
- From **y** we reconstruct a $\mathbf{z} = g_{\theta'}(\mathbf{y})$.
- Train parameters to minimize the cross-entropy "reconstruction error"
- Corresponds to maximizing variational bound on likelihood of a generative model
- Naturally handles missing values / occlusion / multi-modality

Recent benchmark problems Variations on MNIST digit classification

basic : subset of original MNIST digits : 10 000 training samples, 2 000 validation samples, 50 000 test samples.

(a) **rot** : applied random rotation (angle between 0 and 2π radians)

(c) **bg-img** : background is random patch from one of 20 images

(b) **bg-rand :** background made of random pixels (value in $0 \dots 255$)

(d) **rot-bg-img :** combination of rotation and background image

• rect : discriminate between tall and wide rectangles on black background.

- rect-img : borderless rectangle filled with random image patch. Background is a different image patch.
- convex : discriminate between convex and non-convex shapes.

Ì.

Dataset	SVM _{rbf}	DBN-3	SAA-3	SdA-3 (ν)
basic	3.03±0.15	$3.11{\scriptstyle \pm 0.15}$	$3.46{\scriptstyle \pm 0.16}$	$2.80_{\pm 0.14} \ (10\%)$
rot	$11.11{\scriptstyle\pm0.28}$	10.30±0.27	10.30±0.27	$10.29_{\pm 0.27}$ (10%)
bg-rand	$14.58{\scriptstyle\pm0.31}$	6.73±0.22	$11.28{\scriptstyle\pm0.28}$	$10.38_{\pm 0.27}$ (40%)
bg-img	22.61±0.37	$16.31{\scriptstyle \pm 0.32}$	$23.00{\scriptstyle\pm0.37}$	16.68±0.33 (25%)
rot-bg-img	55.18 _{±0.44}	$47.39_{\pm 0.44}$	$51.93{\scriptstyle \pm 0.44}$	44.49 ±0.44 (25%)
rect	2.15±0.13	$2.60{\scriptstyle \pm 0.14}$	$2.41{\scriptstyle \pm 0.13}$	$1.99_{\pm 0.12}$ (10%)
rect-img	24.04 _{±0.37}	$22.50{\scriptstyle\pm0.37}$	$24.05{\scriptstyle\pm0.37}$	$21.59_{\pm 0.36} \ (25\%)$
convex	19.13 _{±0.34}	18.63±0.34	$18.41{\scriptstyle \pm 0.34}$	$19.06_{\pm 0.34} \ (10\%)$

Strategy : multi-task semi-supervised learning

- Most available examples not semantically labeled
- Each example informs many tasks
- Representations shared among tasks
- semi-supervised + multi-task \Rightarrow Self-Taught Learning (Raina et al)
- Generalize even with 0 examples on new task !

Semi-Supervised Discriminant RBM

RBMs and auto-encoders easily extend to **semi-supervised and multi-task settings** !

Larochelle & Bengio, ICML'2008, Hybrid Discriminant RBM : Comparisons against the current state-of-the-art in semi-supervised learning : local **N**on-**P**arametric semi-supervised algorithms based on neighborborhood graph ; using only 1000 labeled examples.

15/23

Hypothesis : under constraint of compact deep architecture, *main challenge is difficulty of optimization.*

Clues :

- Ordinary training of deep architectures (random initialization) : much more sensitive to initialization seed ⇒ local minima
- Comparative experiments (Bengio et al, NIPS'2006) show that the main difficulty is getting the lower layers to do something useful.
- Current learning algorithms for deep nets appear to be guiding the optimization to a "good basin of attraction"

Hypothesis : current solutions similar to continuation methods

Several Strategies are Continuations

- Older : stochastic gradient from small parameters
- Breakthrough : greedy layer-wise construction
- New : gradually bring in more difficult examples

Curriculum Strategy

Start with simpler, easier examples, and gradually introduce more of the more complicated ones as the learner is ready to learn them.

Design the sequence of tasks / datasets to guide learning/optimization.

Strategy : Society = Parallel Optimisation

- Each agent = potential solution
- Better solutions spread through learned language
- Similar to genetic evolution : parallel search + recombination
- R. Dawkins' Memes
- Simulations support this hypothesis

Combine many strategies, to obtain a baby AI that masters the semantics of a simple visual + linguistic universe

There is a small triangle. What color is it? Green

Current work : generating synthetic videos, exploit hints in synthetically generated data (knowing semantic ground truth)

The Research Program

- Motivation : need deep architectures for AI !
- Focus :
 - Optimization issue, avoiding poor local minima
 - Large datasets
 - Sequential aspect / learning context
- Exploit :
 - unsupervised / semi-supervised learning
 - multiple tasks
 - mutual dependencies in several modalities (image language)
 - Curriculum : human-guided training, self-guided (active) learning
 - Parallel search
 - mixture of synthetically generated and natural data, of gradually increasing complexity.

The U.Montreal Machine Learning Lab :

- Created in 1993, now 2 chairs, 20 researchers including Yoshua Bengio, Douglas Eck, Pascal Vincent, Aaron Courville, Joseph Turian
- A NIPS presence since 1988; YB Program Co-Chair NIPS'2008
- Major contribution to understanding recurrent neural networks and context learning, since 1994
- Major contribution to distributed representations in language modeling, since 2000-2003
- Three groups initiated renewal in deep architectures in 2006 : UofT, NYU, U.Montreal
- Organized Deep Learning Workshop at NIPS'2008