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@ Why deep learning?
Theoretical results : to efficiently represent highly-varying functions
@ Why is it hard 7 : non-convexity
@ Why our current algorithms working ?
@ Going Forward : Research program

o Focus on optimization, large scale, sequential aspect

e Expoit un-/semi-supervised, multi-task, multi-modal learning
o Curriculum

o Parallel search for solutions

o Synthetically generated + real data of increasing complexity
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1D Generalization

Why Deep Learning ? Let us go back to basics.

Easy 1D generalization if the target function is smooth (few variations).
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# = example (X,y)

o learnt 2
% learnt 1
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Curse of Dimensionality

Local generalization : local kernel SVMs, GP, decision trees, LLE,
Isomap, etc.

T 1 dimension:
10 positions
[]

Theorem Sketch

Local learning algorithms cannot S
generalize to variations not covered 100 pogitions
by the training set. :

| A

Informal Corollary

Local learning algorithms can require
a number of training examples
exponential in the input dimension
to obtain a given generalization
error.

3 dimensions:
> 1000 positions!

A\

Local learning ok in high dimension if target function is smooth
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Strategy : Distributed Representations

@ Distributed representation : input = combination of many features
@ Parametrisation : Exponential advantage : distr. vs local

@ Missing in most learning algorithms
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Exploiting Multiple Levels of Representation

Distributed not enough : need non-linear 4+ depth of composition

V4

V2

V1

Retina

(XX

Higher-level abstractions

Primitive pattern detectors

Oriented edge detectors

Pixels
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Architecture Depth

Most current learning algorithms have depth 1, 2 or 3 : shallow

Theorem Sketch

When a function can be compactly represented by a deep architecture,
representing it with a shallow architecture can require a number of

elements exponential in the input dimension.
level log N
DEEP

SHALLOW

parity(v)
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00000 «x

Fat architecture = too rich space = poor generalization
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Training Deep Architectures : the Challenge

@ Two levels suffice to represent any function

@ Shallow & local learning works for simpler
problems : insufficient for Al-type tasks

e Up to 2006, failure of attempts to train deep
architectures (except Yann Le Cun's
convolutional nets!)

@ Why ? Non-convex optimisation
and stochastic !

@ Focus NIPS 1995-2005 : convex learning
algorithms

= Let us face the challenge!
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2006 : Breakthrough'!

@ FIRST : successful training of deep architectures!
Hinton et al (UofT) Neural Comp. 2006, followed by Bengio et al
(U.Montreal), and Ranzato et al (NYU) at NIPS'2006

@ One trains one layer after the other of a deep MLP

@ Unsupervised learning in each layer of initial representation

@ Continue training an ordinary but deep MLP near a better minimum
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Deep Belief Network (DBN)
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Individual Layer : RBMs and auto-encoders

State-of-the-art 'layer components’ : variants of RBMs and Auto-Encoders

Deep connections between the two...

Restricted Boltzmann Machine Auto-encoder :
Efficient inference of factors h Find compact representation :
encode x into h(x),
decode into X(h(x)).

o 0 :
/h wta|on

reconstruction model

@°6,0

reconstruction.- -~~~
observed input error

S
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Denoising Auto-Encoders

More flexible alternative to RBMs/DBNs, while competitive in accuracy

(elelelel®)
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Denoising Auto-Encoders

More flexible alternative to RBMs/DBNs, while competitive in accuracy

XOXOOl«—>2 (O0000]

e Clean input x € [0,1]? is partially destroyed,
yielding corrupted input : X ~ gp(X|x).
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Denoising Auto-Encoders

More flexible alternative to RBMs/DBNs, while competitive in accuracy
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e Clean input x € [0,1]? is partially destroyed,
yielding corrupted input : X ~ gp(X|x).

@ X is mapped to hidden representation y = fp(X).
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Denoising Auto-Encoders

More flexible alternative to RBMs/DBNs, while competitive in accuracy
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e Clean input x € [0,1]? is partially destroyed,
yielding corrupted input : X ~ gp(X|x).

@ X is mapped to hidden representation y = fp(X).

@ From y we reconstruct a z = gy (y).

10/23



Denoising Auto-Encoders

More flexible alternative to RBMs/DBNs, while competitive in accuracy
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e Clean input x € [0,1]? is partially destroyed,
yielding corrupted input : X ~ gp(X|x).

@ X is mapped to hidden representation y = fp(X).

@ From y we reconstruct a z = gy (y).

@ Train parameters to minimize the cross-entropy “reconstruction
error

o Corresponds to maximizing variational bound on likelihood of a
generative model

o Naturally handles missing values / occlusion / multi-modality
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Recent benchmark problems

Variations on MNIST digit classification

basic : subset of original MNIST digits : 10 000 training samples, 2 000 validation
samples, 50 000 test samples.

SFIIIA

(a) rot : applied random rotation (angle (b) bg-rand : background made of ran-
between 0 and 2 radians) dom pixels (value in 0...255)

(c) bg-img : background is random patch ~ (d) rot-bg-img : combination of rotation
from one of 20 images and background image
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Benchmark problems
Shape discrimination

@ rect : discriminate between tall and wide rectangles on black background.

Jl_'

|

@ rect-img : borderless rectangle filled with random image patch. Background is a
different image patch.

@ convex : discriminate between convex and non-convex shapes.

e ]
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Performance comparison
Results

Dataset SVM,,f DBN-3 SAA-3 SdA-3 (v)
basic 3.03401s  3.1lso1s 346401  2.80xo1 (10%)
rot 1111402 10.30402r  10.30402  10.29027 (10%)
bgrand | 1458405  6.73:02 1128402  10.38202r (40%)
bg-img 2261407 16.3140  23.00+03  16.6803 (25%)
rot-bg-img | 55.18+04 47.39:04s 51.93+04 44.49104 (25%)
rect 2.15+013  2.60s01¢ 241013 1.99:012 (10%)
rect-img 24.04+037 22.50+03 24.05+03 21.59+036 (25%)
convex 19.13403¢  18.63+03¢ 1841403 19.06+034 (10%)
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Strategy : multi-task semi-supervised learning

Most available examples not semantically labeled
Each example informs many tasks
Representations shared among tasks

semi-supervised + multi-task = Self-Taught Learning (Raina et al)

Generalize even with 0 examples on new task !
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Semi-Supervised Discriminant RBM

RBMs and auto-encoders easily extend to semi-supervised and
multi-task settings!

Larochelle & Bengio, ICML'2008, Hybrid Discriminant RBM :
Comparisons against the current state-of-the-art in semi-supervised
learning : local Non-Parametric semi-supervised algorithms based on
neighborborhood graph ; using only 1000 labeled examples.

Semi-Supervised Classification Error
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Understanding The Challenge

Hypothesis : under constraint of compact deep architecture,
main challenge is difficulty of optimization.

Clues :

e Ordinary training of deep architectures (random initialization) :
much more sensitive to initialization seed = local minima

e Comparative experiments (Bengio et al, NIPS'2006) show that the
main difficulty is getting the lower layers to do something useful.

@ Current learning algorithms for deep nets appear to be guiding the
optimization to a “good basin of attraction”
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Understanding Why it Works

Hypothesis : current solutions similar to continuation methods
target
cost fn

slightly
smoothed

final
solution
heavily

smoothed

track mipiima

easy to find initial solution
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Several Strategies are Continuations

@ Older : stochastic gradient from small parameters
o Breakthrough : greedy layer-wise construction

o New : gradually bring in more difficult examples
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Curriculum Strategy

Start with simpler, easier examples, and gradually introduce more of the
more complicated ones as the learner is ready to learn them.

Design the sequence of tasks / datasets to guide learning/optimization.
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Strategy : Society = Parallel Optimisation

Each agent = potential solution
Better solutions spread through learned language
Similar to genetic evolution : parallel search 4+ recombination

R. Dawkins' Memes

Simulations support this hypothesis
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Baby Al Project

Combine many strategies, to obtain a baby Al that masters the semantics
of a simple visual + linguistic universe

There is a small triangle. What color is it ? Green

Current work : generating synthetic videos, exploit hints in synthetically
generated data (knowing semantic ground truth)
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The Research Program

@ Motivation : need deep architectures for Al !

@ Focus :

Optimization issue, avoiding poor local minima
Large datasets
Sequential aspect / learning context

@ Exploit :

o unsupervised / semi-supervised learning

multiple tasks

mutual dependencies in several modalities (image - language)
Curriculum : human-guided training, self-guided (active) learning
Parallel search

mixture of synthetically generated and natural data, of gradually
increasing complexity.
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Who We Are

The U.Montreal Machine Learning Lab :

@ Created in 1993, now 2 chairs, 20 researchers including Yoshua
Bengio, Douglas Eck, Pascal Vincent, Aaron Courville, Joseph Turian

A NIPS presence since 1988; YB Program Co-Chair NIPS'2008

@ Major contribution to understanding recurrent neural networks and
context learning, since 1994

@ Major contribution to distributed representations in language
modeling, since 2000-2003

@ Three groups initiated renewal in deep architectures in 2006 :
UofT, NYU, U.Montreal

@ Organized Deep Learning Workshop at NIPS'2008
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