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Outline

Why deep learning ?
Theoretical results : to efficiently represent highly-varying functions

Why is it hard ? : non-convexity

Why our current algorithms working ?

Going Forward : Research program

Focus on optimization, large scale, sequential aspect
Expoit un-/semi-supervised, multi-task, multi-modal learning
Curriculum
Parallel search for solutions
Synthetically generated + real data of increasing complexity
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1D Generalization

Why Deep Learning ? Let us go back to basics.

Easy 1D generalization if the target function is smooth (few variations).
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Curse of Dimensionality

Local generalization : local kernel SVMs, GP, decision trees, LLE,
Isomap, etc.

Theorem Sketch

Local learning algorithms cannot
generalize to variations not covered
by the training set.

Informal Corollary

Local learning algorithms can require
a number of training examples
exponential in the input dimension
to obtain a given generalization
error.

Local learning ok in high dimension if target function is smooth
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Strategy : Distributed Representations

Distributed representation : input ⇒ combination of many features

Parametrisation : Exponential advantage : distr. vs local

Missing in most learning algorithms
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Exploiting Multiple Levels of Representation

Distributed not enough : need non-linear + depth of composition

V4

V2

V1

Retina

Higher-level abstractions

Primitive pattern detectors

Oriented edge detectors

Pixels
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Architecture Depth

Most current learning algorithms have depth 1, 2 or 3 : shallow

Theorem Sketch

When a function can be compactly represented by a deep architecture,
representing it with a shallow architecture can require a number of
elements exponential in the input dimension.

SHALLOW DEEP

 

Fat architecture ⇒ too rich space ⇒ poor generalization
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Training Deep Architectures : the Challenge

Two levels suffice to represent any function

Shallow & local learning works for simpler
problems : insufficient for AI-type tasks

Up to 2006, failure of attempts to train deep
architectures (except Yann Le Cun’s
convolutional nets !)

Why ? Non-convex optimisation
and stochastic !

Focus NIPS 1995-2005 : convex learning
algorithms

⇒ Let us face the challenge !

7/23



2006 : Breakthrough !

FIRST : successful training of deep architectures !
Hinton et al (UofT) Neural Comp. 2006, followed by Bengio et al
(U.Montreal), and Ranzato et al (NYU) at NIPS’2006

One trains one layer after the other of a deep MLP

Unsupervised learning in each layer of initial representation

Continue training an ordinary but deep MLP near a better minimum

Deep Belief Network (DBN)
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Individual Layer : RBMs and auto-encoders

State-of-the-art ’layer components’ : variants of RBMs and Auto-Encoders

Deep connections between the two...

Restricted Boltzmann Machine
Efficient inference of factors h

Auto-encoder :
Find compact representation :
encode x into h(x),
decode into x̂(h(x)).

x

h

errorobserved input
reconstruction

reconstruction model

learned representation

x̂
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Denoising Auto-Encoders

More flexible alternative to RBMs/DBNs, while competitive in accuracy

xx

Clean input x ∈ [0, 1]d is partially destroyed,
yielding corrupted input : x̃ ∼ qD(x̃|x).
x̃ is mapped to hidden representation y = fθ(x̃).

From y we reconstruct a z = gθ′(y).

Train parameters to minimize the cross-entropy “reconstruction
error”

Corresponds to maximizing variational bound on likelihood of a
generative model

Naturally handles missing values / occlusion / multi-modality
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Recent benchmark problems
Variations on MNIST digit classification

basic : subset of original MNIST digits : 10 000 training samples, 2 000 validation

samples, 50 000 test samples.

(a) rot : applied random rotation (angle
between 0 and 2π radians)

(b) bg-rand : background made of ran-
dom pixels (value in 0 . . . 255)

(c) bg-img : background is random patch
from one of 20 images

(d) rot-bg-img : combination of rotation
and background image
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Benchmark problems
Shape discrimination

rect : discriminate between tall and wide rectangles on black background.

rect-img : borderless rectangle filled with random image patch. Background is a
different image patch.

convex : discriminate between convex and non-convex shapes.
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Performance comparison
Results

Dataset SVMrbf DBN-3 SAA-3 SdA-3 (ν)

basic 3.03±0.15 3.11±0.15 3.46±0.16 2.80±0.14 (10%)

rot 11.11±0.28 10.30±0.27 10.30±0.27 10.29±0.27 (10%)

bg-rand 14.58±0.31 6.73±0.22 11.28±0.28 10.38±0.27 (40%)

bg-img 22.61±0.37 16.31±0.32 23.00±0.37 16.68±0.33 (25%)

rot-bg-img 55.18±0.44 47.39±0.44 51.93±0.44 44.49±0.44 (25%)

rect 2.15±0.13 2.60±0.14 2.41±0.13 1.99±0.12 (10%)

rect-img 24.04±0.37 22.50±0.37 24.05±0.37 21.59±0.36 (25%)

convex 19.13±0.34 18.63±0.34 18.41±0.34 19.06±0.34 (10%)
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Strategy : multi-task semi-supervised learning

Most available examples not semantically labeled

Each example informs many tasks

Representations shared among tasks

semi-supervised + multi-task ⇒ Self-Taught Learning (Raina et al)

Generalize even with 0 examples on new task !
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Semi-Supervised Discriminant RBM

RBMs and auto-encoders easily extend to semi-supervised and
multi-task settings !

Larochelle & Bengio, ICML’2008, Hybrid Discriminant RBM :
Comparisons against the current state-of-the-art in semi-supervised
learning : local Non-Parametric semi-supervised algorithms based on
neighborborhood graph ; using only 1000 labeled examples.

Semi-Supervised Classification Error
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Understanding The Challenge

Hypothesis : under constraint of compact deep architecture,
main challenge is difficulty of optimization.

Clues :

Ordinary training of deep architectures (random initialization) :
much more sensitive to initialization seed ⇒ local minima

Comparative experiments (Bengio et al, NIPS’2006) show that the
main difficulty is getting the lower layers to do something useful.

Current learning algorithms for deep nets appear to be guiding the
optimization to a “good basin of attraction”

16/23



Understanding Why it Works

Hypothesis : current solutions similar to continuation methods

target
cost fn

slightly
smoothed

heavily
smoothed

track minima

easy to find initial solution

final
solution
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Several Strategies are Continuations

Older : stochastic gradient from small parameters

Breakthrough : greedy layer-wise construction

New : gradually bring in more difficult examples
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Curriculum Strategy

Start with simpler, easier examples, and gradually introduce more of the
more complicated ones as the learner is ready to learn them.

Design the sequence of tasks / datasets to guide learning/optimization.
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Strategy : Society = Parallel Optimisation

Each agent = potential solution

Better solutions spread through learned language

Similar to genetic evolution : parallel search + recombination

R. Dawkins’ Memes

Simulations support this hypothesis
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Baby AI Project

Combine many strategies, to obtain a baby AI that masters the semantics
of a simple visual + linguistic universe

There is a small triangle. What color is it ? Green

Current work : generating synthetic videos, exploit hints in synthetically
generated data (knowing semantic ground truth)
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The Research Program

Motivation : need deep architectures for AI !

Focus :

Optimization issue, avoiding poor local minima
Large datasets
Sequential aspect / learning context

Exploit :

unsupervised / semi-supervised learning
multiple tasks
mutual dependencies in several modalities (image - language)
Curriculum : human-guided training, self-guided (active) learning
Parallel search
mixture of synthetically generated and natural data, of gradually
increasing complexity.
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Who We Are

The U.Montreal Machine Learning Lab :

Created in 1993, now 2 chairs, 20 researchers including Yoshua
Bengio, Douglas Eck, Pascal Vincent, Aaron Courville, Joseph Turian

A NIPS presence since 1988 ; YB Program Co-Chair NIPS’2008

Major contribution to understanding recurrent neural networks and
context learning, since 1994

Major contribution to distributed representations in language
modeling, since 2000-2003

Three groups initiated renewal in deep architectures in 2006 :
UofT, NYU, U.Montreal

Organized Deep Learning Workshop at NIPS’2008
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