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Artificial Intelligence

Half century of research and goal seems still so far

Why ?

Too much in a hurry for results rather than understanding ?
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Knowledge : from Where ?

AI needs much knowledge about our world

Explicit-symbolic approach :
Cyc = hand-crafted collection of rules and facts

Gigantic Incoherent/Incomplete Not robust
not uncertainty-friendly
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Learning the Knowledge ?

Animals and humans : innate + learned

Can learn many tasks that were not evolution-tuned !

Bet on existence of some generic strategies/principles

More exciting / greater payoff / worth exploring this path
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Compact Representation ⇒ Generalization

Extract the essence from the data ⇒ generalization

Occam’s Razor

Kolmogorov/Solomonoff 1964

Vapnik 1972

minf
1
n

∑n
i=1 error(xi , f (xi )) 6=

minf E [error(xi , f (xi ))]
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1D Generalization

Easy if the target function is smooth (few variations).
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Generalizing Locally

Works well with a good representation : where notion of neighborhood is
meaningful.
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Where Local Generalization Fails

Training set : Klingon characters

Test set :

Pixel-to-pixel Euclidean distance only works very locally

Klingons work in a more abstract representation space
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Local Generalization : negative results

We and others have shown negative results illustrating limitations of local
generalization :

(classical non-parametric)

Local kernel methods :

SVMs
Gaussian Process
Graph-based semi- and un-supervised
learning alg. (LLE, Isomap, etc.)

Decision trees

All break data space in regions s.t.
# degrees freedom ∝ # regions
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Curse of Dimensionality

Basic result :

Theorem Sketch

Local learning algorithms cannot
generalize to variations not covered
by the training set.

Informal Corollary

Local learning algorithms can require
a number of training examples
exponential in the input dimension
to obtain a given generalization
error.
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Curse of Dimensionality

Actual theoretical results (NIPS’2004, NIPS’2005, Semi-Supervised
Learning book) are specialized :

Gaussian kernel machines

Functions varying a lot along a straight line
Parity function

Semi-supervised learning from neighborhood-graph

Decision trees on highly varying functions

Local kernel manifold learning from neighborhood-graph (such as
kPCA, LLE, Isomap, ...)
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Primates Visual System

Visual System : sequence of transformations / abstraction levels
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Strategy : Distributed Representations

Distributed representation : each percept represented by the
combination of many features

Multiple levels of representation (like in the brain)

Exponential advantage

Missing in many current learning algorithms (most clustering,
non-parametric, semi-supervised, kernels, mixture models, etc.)
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Exploiting Multiple Levels of Representation

V4

V2

V1

Retina

Higher-level abstractions

Primitive pattern detectors

Oriented edge detectors

Pixels
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Computation Graph and Depth

Each node = computation element (from a set)
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compute x ∗ sin(a ∗ x + b),
depth=4.

elements = artificial neurons f (x) =
tanh(b + w ′x).
Multi-layer neural net
depth=3.
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Architecture Depth

Theorem Sketch

When a function can be compactly represented by a deep architecture,
representing it with a shallow architecture can require a number of
elements exponential in the input dimension.
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Insufficient Depth

2-level logic circuits on {0, 1}n

can represent any discrete function
most functions require O(2n) logic gates
∃ functions computable efficiently with depth k,
requiring O(2n) gates if depth ≤ k − 1.
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Insufficient Depth

Similar results for circuits of formal neurons

∃ “simple” functions requiring exponential size
architectures with Gaussian kernel machines

Most current/popular learning algorithms :
depth = 1 ou 2, sometimes 3 (e.g. boosted trees,
forests, 2-hidden layer MLPs)
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Insufficient Depth : Consequence

Theoretical results (proved for some element
sets)
insufficient depth ⇒
very fat architecture

⇒ very large number of parameters required

⇒ very large number of examples
required
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Training Deep Architectures : the Challenge

Two levels suffice to represent any function

Up to 2006, failure of attempts to train deep
architectures

Why ? Non-convex optimisation
and stochastic !

Focus NIPS 1995-2005 : convex learning
algorithms

⇒ Let us face the challenge !
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Strategy : multi-task semi-supervised learning

Humans : most examples not semantically labeled

Each example informs many tasks

Representations shared among tasks

Capture common factors of variations to generalize easily to new
tasks (even with 0 examples !)

lim# tasks→∞ = (un+semi)-supervised
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Strategy : one level of abstraction at a time

Humans learn simple things first :
first levels of visual system converge in critical periods

Percept representation = abstraction of the percept

Learn a first level of representation, then a second built on the first,
etc.

Deep Belief Network (DBN)

Yoshua Bengio



2006 : Breakthrough !

FIRST : successful training of
deep architectures !
Hinton et al Neural Comp. 2006, followed by Bengio et al, and
Ranzato et al at NIPS’2006

One trains one layer after the other of an MLP

Unsupervised learning in each layer of initial representation

Continue training an ordinary but deep MLP near a better minimum
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Individual Layer : RBMs and auto-encoders

Restricted Boltzmann Machine :

P(x) =
∑

h

P(x , h) ∝
∑

h

eh′Wx

Allows efficient inference
of causes h = (h1, . . . , hn)

Auto-encoder : Looks for a compact
representation h(x) of x
x ⇒ h(x) ⇒ x̂(h(x))
⇒ reconstruction error(x , x̂)
Learn functions

h(·) and x̂(·).

x

h

errorobserved input
reconstruction

reconstruction model

learned representation

x̂
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Learning deep networks
Supervised fine-tuning

Initial deep hierarchical mapping is
learnt in an unsupervised way.

→ initialization for a supervised
task.

Output layer gets added.

Global fine tuning by gradient
descent on supervised criterion.
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Learning deep networks
Supervised fine-tuning

Initial deep hierarchical mapping is
learnt in an unsupervised way.

→ initialization for a supervised
task.

Output layer gets added.

Global fine tuning by gradient
descent on supervised criterion.

Target

supervised cost
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f
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f sup
θ
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Deep Belief Nets

Hinton et al. (2006) introduced the Deep Belief Network (DBN), a
deep probabilistic/generative neural network

The training procedure is first layer-wise greedy and unsupervised
(initialization).

Then the model is converted into a conditional predictor and
fine-tuned

min
θ

−1

n

n∑
i=t

log p̂(yt |xt , θ)
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Denoising Auto-Encoders

xx

Clean input x ∈ [0, 1]d is partially destroyed,
yielding corrupted input : x̃ ∼ qD(x̃|x).
x̃ is mapped to hidden representation y = fθ(x̃).

From y we reconstruct a z = gθ′(y).

Train parameters to minimize the cross-entropy “reconstruction
error”

Corresponds to maximizing variational bound on likelihood of a
generative model

Naturally handles missing values / occlusion / multi-modality
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Denoising Auto-Encoders
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Manifold Learning Perspective

x

x

x̃

x̃

qD(x̃ |x)

gθ′(fθ(x̃))

Denoising autoencoder can be seen as a way to learn a manifold :

Suppose training data (×) concentrate near a low-dimensional manifold.

Corrupted examples (.) are obtained by applying corruption process

qD(eX |X ) and will lie farther from the manifold.

The model learns with p(X |eX ) to “project them back” onto the manifold.

Intermediate representation Y can be interpreted as a coordinate system
for points on the manifold.
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Benchmark problems
Variations on MNIST digit classification

basic : subset of original MNIST digits : 10 000 training samples, 2 000 validation

samples, 50 000 test samples.

(a) rot : applied random rotation (angle
between 0 and 2π radians)

(b) bg-rand : background made of ran-
dom pixels (value in 0 . . . 255)

(c) bg-img : background is random patch
from one of 20 images

(d) rot-bg-img : combination of rotation
and background image
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Benchmark problems
Shape discrimination

rect : discriminate between tall and wide rectangles on black background.

rect-img : borderless rectangle filled with random image patch. Background is a
different image patch.

convex : discriminate between convex and non-convex shapes.
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Performance comparison
Results

Dataset SVMrbf DBN-3 SAA-3 SdA-3 (ν)

basic 3.03±0.15 3.11±0.15 3.46±0.16 2.80±0.14 (10%)

rot 11.11±0.28 10.30±0.27 10.30±0.27 10.29±0.27 (10%)

bg-rand 14.58±0.31 6.73±0.22 11.28±0.28 10.38±0.27 (40%)

bg-img 22.61±0.37 16.31±0.32 23.00±0.37 16.68±0.33 (25%)

rot-bg-img 55.18±0.44 47.39±0.44 51.93±0.44 44.49±0.44 (25%)

rect 2.15±0.13 2.60±0.14 2.41±0.13 1.99±0.12 (10%)

rect-img 24.04±0.37 22.50±0.37 24.05±0.37 21.59±0.36 (25%)

convex 19.13±0.34 18.63±0.34 18.41±0.34 19.06±0.34 (10%)
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Some Results 2006-2008

Deep architectures superior on MNIST (NIPS’2006)

Greater advantage on more complex tasks (ICML’2007)

RBMs slightly better than ordinary auto-encoders

Denoising auto-encoders ≥ RBMs, and more flexible

Applications in NLP, vision, MOCAP, collaborative filtering

Optimization sometimes still deficient, challenges ahead
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Understanding Why it Works

Continuation methods

target
cost fn

slightly
smoothed

heavily
smoothed

track minima

easy to find initial solution

final
solution
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Several Strategies are Continuations

Older : stochastic gradient from small parameters

Breakthrough : greedy layer-wise construction

New : gradually bring in more difficult examples
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Curriculum Strategy

Start with simpler, easier examples, and gradually introduce more of the
more complicated ones as the learner is ready to learn them.

Design the sequence of tasks / datasets to guide learning/optimization.
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Strategy : Society = Parallel Optimisation

Each human = potential solution

Better solutions spread through language

Similar to genetic evolution : parallel search + recombination

R. Dawkins’ Memes

Simulations support this hypothesis

AI : take avantage of human culture

Yoshua Bengio



Baby AI Project

Combine many strategies, to obtain a baby AI that masters the semantics
of a simple visual + linguistic universe

Subject Question Answer

Color There is a small triangle. What color is it ? Green

Shape What is the shape of the green object ? Triangle

Location Is the blue square at the top or at the bottom ? At the top

Size There is a triangle on the right.

Is it rather small or big ? Small

Size (relative) Is the square smaller or bigger than the triangle ? Bigger
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Conclusions and work in progress

AI ⇒ learning ⇒ generalize
⇒ generalize non-locally ⇒ learn distributed representations
⇒ deep architectures ⇒ optimisation challenge

Breakthrough in 2006

Biological inspiration : humans’ strategies to optimize learning of
world model

multi-task, unsupervised, semi-supervised
multiple levels of distributed representation
learn lower levels first
curriculum / education
collective parallel search

Ongoing work : denoising auto-encoders, work as well or better than
DBNs

Collobert & Weston : learning representations by layer-wise manifold
learning

Patience : see the long term...
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